
1 

 

UKESF Arduino Guide 
The following guide will introduce you to the Arduino microcontroller platform and the Grove 
Beginner Kit for Arduino and teach you basic programming skills. After completing th is guide, 
you should have the confidence and inspiration to undertake electronics projects. Let’s dive 
in! 

This guide attempts to cover the basics of Arduino . Where relevant, links with further 
information are provided for the curious readers.   

  

https://www.arduino.cc/en/Guide/Introduction
https://www.seeedstudio.com/Grove-Beginner-Kit-for-Arduino-p-2895.html
https://www.seeedstudio.com/Grove-Beginner-Kit-for-Arduino-p-2895.html


2 

 

Contents 

Introduction – What is Arduino ........................................................................................................................... 4 

Arduino Uno .................................................................................................................................................... 4 

Grove Beginner Kit for Arduino ....................................................................................................................... 5 

Prerequisites ........................................................................................................................................................ 7 

The Arduino IDE ............................................................................................................................................... 7 

The Seeeduino Lotus Board ............................................................................................................................. 7 

The UKESF Sixth-Formers Library .................................................................................................................... 8 

Digital Outputs ................................................................................................................................................... 10 

Tutorial – Blinking an LED .............................................................................................................................. 10 

Exercise – Changing the Period ..................................................................................................................... 11 

Key Points ...................................................................................................................................................... 12 

Digital Inputs ...................................................................................................................................................... 13 

Tutorial – Reading Button.............................................................................................................................. 13 

Exercise – Inverting the Button State ............................................................................................................ 14 

Key Points ...................................................................................................................................................... 14 

Conditional Logic ............................................................................................................................................... 15 

Tutorial – LED Button Trigger ........................................................................................................................ 15 

Exercise – Blinking LED Button Trigger .......................................................................................................... 16 

Key Points ...................................................................................................................................................... 17 

Analogue Outputs .............................................................................................................................................. 18 

Tutorial – Making an LED Dim ....................................................................................................................... 19 

Exercise – Soft Blinking LED ........................................................................................................................... 20 

Key Points ...................................................................................................................................................... 21 

Analog Inputs ..................................................................................................................................................... 22 

Tutorial – LED with Controllable Intensity ..................................................................................................... 22 

Exercise – Replacing the Potentiometer ....................................................................................................... 23 

Key Points ...................................................................................................................................................... 24 

Serial Communication ....................................................................................................................................... 25 

Tutorial – Communicating with a Computer ................................................................................................. 25 

Tutorial – Reading and Plotting Acceleration Data ....................................................................................... 27 

Exercise – Exploring Serial Devices ................................................................................................................ 28 

Key Points ...................................................................................................................................................... 29 



3 

 

Final Project – Weather Station ........................................................................................................................ 30 

Next Steps .......................................................................................................................................................... 32 

 

  



4 

 

Introduction – What is Arduino 

The Arduino platform is a microcontroller development system that is aimed at people who want to 
use programmable-electronic hardware without needing to delve deeply into how a microcontroller 
operates.  This platform is useful as an introduction to programmable systems for young engineers 
who are yet to learn more about what happens inside microcontrollers. 

Arduino Uno 

Figure 1 shows the hardware for an Arduino Uno. The microcontroller (a Microchip ATmega328P) is 
the large integrated circuit (IC) in the lower-left section of the board. The Arduino includes all the 
software and hardware needed to be powered and programmed through USB, and all its inputs and 
outputs are brought out on connectors (analogue and digital pins) running on along the side edges. 

 
Figure 1.  An Arduino UNO and its pins. The pin diagram has been simplified for the purposes of this guide. The full version is available 
at bit.ly/3jg6PM2. 

Apart from allowing an easy interface with external components, these connectors are designed so 
that add-on printed circuit boards (PCBs), often called shields, can be added. You can buy shields for 
things like motor control, GPS, and mobile telephony to allow projects to be constructed quickly 
without knowing much electronics. 

There are five pin types that are worth remembering and will be used throughout this guide (refer to 
Figure 1): 

- Digital inputs connect to digital output peripherals such as buttons and switches. These are 
the pins labelled as D0-D19. 

- Digital outputs connect to digital input peripherals such as LEDs, bar graph displays and RGB 
LEDs. These are the pins labelled as D0-D19. 

- Analogue inputs connect to analogue output peripherals such as potentiometers, light 
intensity sensors and microphones. These are the pins labelled as A0-A5. 

     d

   e  

L  

  te       i  

     i  

 i  i t     i 

        i 

 t  e    i  

 i       t     e   s     t

 e     t

    

    

    

    

    

  

   

   

   

   

   

     

     

     

   

   

    

   

    

  L

   

   

    

    

  

  

  

  

  

  

  

  

  

  

  

     

  

    

   

   

   

   

L      L   

   L  

   L  

   e 

 
i 
  
  

i 
  
 
e 
 
  

  

https://www.microchip.com/wwwproducts/en/ATmega328P
https://bit.ly/3jg6PM2


5 

 

- Analogue outputs connect to analogue input peripherals such as dimmable LEDs and buzzers. 
These are the pins labelled as ~D3, ~D5, ~D6, ~D10, ~D11.   e “       e” si    s      t ese 
outputs might not be what you expect, but more on that later. 

- Serial communication allows the connection to more complex peripherals such as computer, 
Bluetooth communication peripherals, accelerometers, displays and more! The two serial 
communication protocols that will be used later in this guide are I2C and UART. Their 
connection pins are SDA, SCL and RX, TX respectively. 

Inside the microcontroller on the Arduino Uno, there are several complex peripherals that the 
Arduino platform hides from the programmer by employing high-level functions to control them 
based on relatively simple instructions. The disadvantage of such system is that the user has much 
less control of the detailed operation of the peripherals.  This is only a disadvantage, however, if the 
programmer wants to have such level of control.  This disadvantage is also an advantage to people 
new to microcontrollers, as it allows the user to make things work relatively quickly.  Arduino does 
support low- eve     ess t  t e  i      t    e ’s  e i  e   s for those that want or need it.   

   t   “     t  d  ti   t  t e   d i  ” ( :    i  tes): bit.ly/3vc46ZK 

 
Watch “You can learn Arduino in 15 minutes.” (16:33 minutes) to get some background on Arduino boards: 

bit.ly/30urp2H 

Grove Beginner Kit for Arduino 

This guide is written around the Grove beginner kit for Arduino by Seeed Studio.  The Grove system 
is a modification to the original Arduino Uno which brings various pins out on four-pin connectors 
and various peripherals that you connect as needed, as shown in Figure 2. The four-pin connectors 
have a similar naming convention to the Arduino Uno pins discussed in the previous section. 

 
Figure 2.  The Grove beginner kit for Arduino comprising of the Seeeduino Lotus and 10 peripherals. (Adapted from bit.ly/2OSLrkZ) 

Despite the existence of the four-pin connectors, all peripherals come pre-connected to the 
Seeeduino via PCB tracks (see Figure 3), so no cables are needed to connect! Once the peripherals 
are broken out of the big PCB, the provided Grove cables can be used to connect to the Seeeduino. 
It is recommended to leave the peripherals attached for this practical!   

https://en.wikipedia.org/wiki/I%C2%B2C
https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter
https://bit.ly/3vc46ZK
https://bit.ly/30urp2H
https://bit.ly/2OSLrkZ


6 

 

 
Figure 3.  The PCB tracks, that go through the break-out points of the PCB and connect the peripherals to the Arduino. Thanks to these, 
no cables are needed to use the peripherals. 

  



7 

 

Prerequisites 

Before diving into the fun stuff, the Arduino Software (IDE) and the Seeeduino Lotus board need to 
be installed – this will make the programming of the device possible. 

The Arduino IDE 

The Arduino IDE is available for Windows, Linux, and Mac OS X and can be downloaded from 
arduino.cc/en/software. Launching Arduino should show a window like the one in Figure 4 (without 
the annotations). 

 
Figure 4.  The Arduino IDE. 

The IDE settings can be altered via File > Preferences. Here you can change the font, turn line 
numbers on, etc.  

The Seeeduino Lotus Board 

To get started with the Seeeduino Lotus board, the CP2102 USB Driver for your OS needs to be 
downloaded and installed from bit.ly/3rT2eD8.  

After the driver is installed, connect the Seeeduino Lotus board to your computer using the provided 
USB cable and open the Arduino IDE. 

In the Arduino IDE click on Tools > Board > Arduino Uno to select the correct development board 
model (refer to Figure 5). Then click on Tools > Port > COMN, where N is the port that your operating 
system has assigned to the Arduino (in this case it is COM7). Note that this number may change each 
time you connect the board! 

https://www.arduino.cc/en/software
https://bit.ly/3rT2eD8


8 

 

 
 

Figure 5.  Selecting the correct Board and Port in the Arduino IDE. 

The UKESF Sixth-Formers Library 

This guide comes with an Arduino library, called UKESF Sixth-Formers. A library packs a set of 
functions that allow you to easily do more with an Arduino that is available out of the box. We’ll 
worry about the details later, but for now we need to install this library so that it is ready. To do this, 
in your Arduino IDE go to Sketch > Include Library > Manage Libraries…, then type in UKESF Sixth-
Formers and click Install as shown in Figure 6. Make sure to install the latest version and not the one 
shown below. 

 
Figure 6.  The Library Manager window. 

Apart from expanding the Arduino functionality, this library also installs some Arduino sketches, 
which you’ll be using throughout this guide. When doing the tutorials, you will often see comments 
like “The same code is available in tutorials/01-LED-Blink/”. When you see this, you would go to File 
> Examples > UKESF Sixth-Formers > tutorials > 01-LED-Blink. This is shown in Figure 7. 



9 

 

 

Figure 7.  A visualisation of where the UKESF Sixth-Formers Arduino programs can be found.  



10 

 

Digital Outputs 

Digitals signals are ones that have a discrete amplitude – in other words, the amplitude is one of a 
limited set of values. In Arduino, digital signals have two states: HIGH / 5 V / 1, and LOW / 0 V / 0. 
These could represent the state of an LED: setting a pin HIGH will light an LED connected to it up; 
setting it to LOW will have the opposite effect. 

Tutorial – Blinking an LED 

Blinking an LED is the "Hello, World!" program for Arduino. It is typically the first program to write 
  e   e   i      e   i      t    e ,  s it’s   si   e         b t  i   i t  d  e y   t  t e 
development environment and test your connection to the hardware, as well as the hardware itself. 
Once you have done this, you should be comfortable with the basic Arduino system. 

The first step is to connect the LED peripheral to the Arduino as shown in Figure 8. Note that if you 
  ve ’t b  ke    t t e  e ipherals and Arduino from the kit, this step is not necessary since they are 
connected via the PCB traces! This is applicable to all projects in this practical! 

 

 
Figure 8.  The LED peripheral connected to digital output D4. 

Before we examine the typical Arduino program, type Code 1 below into the Arduino IDE, build it, 
and upload it. If there are errors in your code it will not upload, so wi     t    .    ’t i    e e    s!  
Try to work out the cause(s) instead. A common cause is missing semi-colon(s) (;) from the end of 
statements. If the code ran successfully, you should see the LED blink with a period of half a second! 

 
Code 1.  Code that will blink the built-in LED with a period of 500 milliseconds. The same code is available in tutorials/01-LED-Blink/. 

    

  

  

  

  

  

  

  

   ..

   .

  

  

const int ledPin = 4;  // Define the LED pin; It makes the code more readable. 

 

void setup() { 

  pinMode(ledPin, OUTPUT);  // Initialize ledPin as an output. 

} 

 

void loop() { 

  digitalWrite(ledPin, HIGH);  // Turn the LED on (HIGH is the voltage level). 

  delay(250);                  // Wait for 250 milliseconds. 

  digitalWrite(ledPin, LOW);   // Turn the LED off by making the voltage LOW. 

  delay(250);                  // Wait for 250 milliseconds. 

} 

https://en.wikipedia.org/wiki/%22Hello,_World!%22_program


11 

 

Whilst is may seem a little time consuming to get you to type this in yourself it is important that you 
get used to writing c de   d  i di   t e ty  s.   e  i      t    e     ’t i terpret what you type 
unless it is 100% correct so it requires an attention to detail. 

     et’s   de st  d    t t e code above does, and how a typical Arduino program looks: 

- The first section, at the top, is where you put the const int and #include items. These 
should be at the top, as the Arduino software reads the program top-to-bottom. The 
const int line creates a constant integer variable, called ledPin and sets its value to 4, which 
refers to pin D4 of the Arduino. The #include statements are used to include other pieces of 
code, called libraries, in your program – more on that later! 

- The second section is the first function you need and is called setup() (d  ’t     y  b  t t e 
void part). This function is called once at the start of the program and is used for code that 
initialises things before your main program executes. In this example, the ledPin is made an 
output with the function call pinMode(ledPin, OUTPUT). pinMode() takes two arguments: 
the first is the pin you are controlling, and the second is what you want the pin to be. You can 
only have one setup() function in your program. 

- The third section is the main body of the program, called loop(). It is called loop() as it does 
exactly that – the code is executed in the order it appears, and when the program reaches the 
closing brace (}), it returns to the top of loop() and starts again. In this program, there are 
two functions that are called twice. The first one is called digitalWrite(pinNumber,  
status). This function takes two arguments: the first is the pin you are driving (e.g. ledPin), 
and the second is the logic level, which can be HIGH or LOW. The other function is delay(ms) 
which stops the code execution for the specified time (250 ms in the case above). You can 
only have one loop() function in your program. 

You should have also notice the human-readable parts, starting with //. These are called comments 
and are used to describe what the code is doing. You can write anything inside these comments, since 
the Arduino program ignores everything on a line that follows //. 

Exercise – Changing the Period 

As an exercise, try adjusting the arguments in the delay() so that the LED is off for 750 ms 
and on for 250 ms. 



12 

 

Key Points 

 

  

Digital outputs provide on/off functionality to elements, which are connected to the digital output 
pins (D0 to D19) of the Arduino. 

const int is used at the top of an Arduino program to define global variables, such as pin 
definitions. 

Each Arduino program has two compulsory functions - setup(), which is executed once at the 
beginning of the program, and loop(), which is executed repeatedly. 

The pinMode() function configures a given pin to behave as an input or an output; the value of a 
digital output pin can be written using digitalWrite(). The delay() function pauses the 
program execution for a given amount of time. 

The functions above, and all other core Arduino functions, are described in detail in 
bit.ly/39QD7du.  

https://bit.ly/39QD7du


13 

 

Digital Inputs 

Like digital outputs, digital inputs in Arduino also have two states: HIGH and LOW. For example, these 
can be the states of a button. In this part of the practical, you will learn how to switch the LED on and 
off using a button.  

First, we need to take a deeper look at variables. In the previous section we used a const int variable 
to store the value of an Arduino pin. The type of that variable was int, which means that it can store 
integers. The const keyword made that variable a constant, which means that it is not allowed to 
change its value while the program is running. Arduino has another type called bool, which comes 
from Boolean algebra, and stores a single two-state bit which can either be true (HIGH) or false 
(LOW). We will use this variable type below to store the state of a switch. 

Tutorial – Reading Button 

To start with the practical part of this section, connect the LED and the button as in Figure 9.  

 
Figure 9.  The LED peripheral connected to digital output D4, and the Button connected to digital input D6. 

Then, before running the program in Code 2,  et’s   de st  d it first. On the second line, the button 
pin is defined the same way as the LED pin is. In setup(), there is a new function call to pinMode(), 
which sets the button pin to be an INPUT pin. On line 4, a bool variable, called buttonState, is 
declared that will store the state of the button. Note that the const keyword is not used this time, 
since we want this value to be able to change during the program execution. The last new thing in 
the code below is the call to the digitalRead() function, which returns the state of the button pin 
and stores it in the buttonState variable. This variable is then used in the digitalWrite() to set the 
state of the LED. 

    

  

  

  

  

  

  

  

   ..

   .

  

  

https://en.wikipedia.org/wiki/Boolean_algebra#:~:text=In%20mathematics%20and%20mathematical%20logic,denoted%201%20and%200%2C%20respectively.


14 

 

 
Code 2.  Code that will control the LED based on the button state. The same code is available in tutorials/02_Reading-Buttons/. 

After uploading the code above to the Arduino, you should observe that the LED lights up when you 
press the button. 

Exercise – Inverting the Button State 

What if we wanted the LED to be on when the button is not pressed, and have it off when it is 
pressed? Putting an exclamation mark (!) in front of a Boolean will invert its value. For example, if 
the value, stored in buttonState is true, then !buttonState would equal false. Modify the pin state 
inside the digitalWrite() function of Code 2, so that the state that is written to the LED is the 
opposite to the state of the button. If you need help, a solution is available in solutions/ 01-Inverting-
the-Button-State/. 

Key Points 

 

  

const int ledPin = 4;     // Define the LED pin. 

const int buttonPin = 6;  // Define the button pin. 

 

bool buttonState;  // A bool variable to store the state of the button. 

 

void setup() { 

  pinMode(ledPin, OUTPUT);    // Initialize ledPin as an output. 

  pinMode(buttonPin, INPUT);  // Initialize buttonPin as an input. 

} 

 

void loop() { 

  buttonState = digitalRead(buttonPin); 

  digitalWrite(ledPin, buttonState); 

} 

Digital inputs allow us to read digital output peripherals, which are connected to the digital input 
pins (D0 to D19) of the Arduino. 

When using digital inputs, the INPUT mode is used inside the pinMode() function. 

The value of a digital input pin can be read using digitalRead(). 

Boolean (bool) variables are used to store two-state values which can either be true (HIGH) or 
false (LOW). 

Putting an exclamation mark (!) in front of a Boolean will invert its value. 



15 

 

Conditional Logic 

Although the examples above were useful for learning about digital inputs, they were so simple that 
the same functionality could be achieved without a microcontroller. For example, the functionality 
of Code 2 could be replicated by connecting a battery, an LED, and a switch in series. Conditional logic 
allows us to run certain parts of a program when certain conditions are met. For example, suppose 
that we wanted the LED to turn on when the button is pressed but the LED stays on even after the 
button is released. To turn the LED off, we would need to press the button again. This is visualised in 
Figure 10. The switch of a digital signal from low to high is called the rising edge of the signal – the 
high to low transition is the falling edge. 

  
Figure 10.  The digital signals of a button and an LED which is turned on/off on the rising edge of the button. 

Tutorial – LED Button Trigger 

To achieve the desired functionality above, we would need to write a program that monitors the 
previous and the current state of the button. Whenever the previous state was low, and the current 
state is high, a rising edge has occurred, and the button must have just been pressed down.  

To better understand the code below, the whole functionality of the program can be formulated in 
an if … then … statement: if the previous button state was LOW and the current button state is HIGH, 
then toggle the LED state. This same functionality is written as Arduino code in the snippet below: 

 

You should have noticed that the Arduino syntax for the if … then … conditions is: 

 

You should have also noticed that the symbol for equality in Arduino is ==, instead of = which is the 
symbol for assignment. Lastly, you would have noticed the && symbol is the logical and operator. 

0

5

V
O

LT
A

G
E 

[V
]

TIME

Button State LED State

Button is pressed 

LED is on 

Button is pressed 

if (previousButtonState == LOW && currentButtonState == HIGH) { 

  ledState = !ledState;            // Toggle the LED state. 

  digitalWrite(ledPin, ledState);  // Update the LED to the new state. 

} 

if (this condition is met) { 

  then do this 

} 

https://en.wikipedia.org/wiki/Signal_edge
https://en.wikipedia.org/wiki/Signal_edge


16 

 

After putting the logic above in a complete program, we get Code 3. For this tutorial keep the same 
connection as in Figure 9. Upload the code to your Arduino and test if the functionality is as expected. 

 
Code 3. Code that will make the LED turn on the rising edge of the button.  The same code is available in tutorials/03_LED-Button-
Trigger/. 

Exercise – Blinking LED Button Trigger 

Suppose that we now wanted a system that would blink twice every time the LED state changes. 
Assuming that we have setup an output pin called ledPin, we could add the following snippet in the 
conditional statement of Code 3 to get the LED blink twice: 

 

That was a long snippet of code for a relatively simple functionality. Now suppose that for some 
reason we wanted to make the LED blink one hundred times. We could of course write 400 lines of 
code as described above, but there is a much neater way! The code snippet below allows you to 
generate any number of blinks, simply by storing the desired number in the numberOfBlinks variable. 

const int ledPin = 4;     // Define the LED pin. 

const int buttonPin = 6;  // Define the button pin. 

 

bool ledState;             // A bool to store the LED state. 

bool previousButtonState;  // A bool to store the previous button state. 

bool currentButtonState;   // A bool to store the current button state. 

 

void setup() { 

  pinMode(ledPin, OUTPUT);    // Initialize ledPin as an output. 

  pinMode(buttonPin, INPUT);  // Initialize buttonPin as an input. 

} 

 

void loop() { 

  currentButtonState = digitalRead(buttonPin);  // Read current button state. 

 

  // If a rising edge of the button is detected. 

  if (previousButtonState == LOW && currentButtonState == HIGH) { 

    ledState = !ledState;            // Toggle the LED state. 

    digitalWrite(ledPin, ledState);  // Update the LED to the new state. 

  } 

 

  previousButtonState = currentButtonState;  // Current state becomes previous. 

  delay(10); 

} 

digitalWrite(ledPin, HIGH); 

delay(100); 

digitalWrite(ledPin, LOW); 

delay(100);         

digitalWrite(ledPin, HIGH); 

delay(100); 

digitalWrite(ledPin, LOW); 

delay(100); 



17 

 

Your task now is to get familiar with the for control structure from bit.ly/39QD7du, understand the 
snippet below and add the functionality described in this subsection to Code 3. As always, if you get 
stuck, a solution with the completed code is provided in solutions/02-Blinking-LED-Button-Trigger/. 

 

Key Points 

 

  

for (int i = 0; i < numberOfBlinks; i++) { 

  digitalWrite(ledPin, HIGH); 

  delay(100); 

  digitalWrite(ledPin, LOW); 

  delay(100); 

} 

Conditions in Arduino are written using the following syntax: 

if (this condition is met) { 

  then do this 

} 

The symbol for equality in Arduino is ==, whereas the symbol for assignment is =. The && symbol 
is the logical and operator. 

The for control structure is used to repeat a block of statements enclosed in curly braces. 

The signal edge in electronics is the term that describes the transition of a digital signal. 

https://www.arduino.cc/reference/en/language/structure/control-structure/for/
https://www.arduino.cc/reference/en/language/structure/control-structure/for/
https://bit.ly/39QD7du
https://www.arduino.cc/reference/en/language/structure/control-structure/for/
https://www.arduino.cc/reference/en/language/structure/control-structure/for/
https://en.wikipedia.org/wiki/Signal_edge


18 

 

Analogue Outputs 

It is unusual for microcontrollers, especially small ones, to include some form of analogue output.  
However, Arduino includes a function called analogWrite(pin, val). How does it do it?  It uses 
something called pulse width modulation (PWM), where pin is the pin that you want to control and 
val is the width of the PWM ranging from 0 to 255. 

But what is PWM exactly? Let’s   ve   look at Figure 11, which shows how the waveform from an 
“      ue   t  t”    t e   d i       d    k.  s t e    e PWM suggests, the Arduino generates a 
series of pulses. The signal, however, is digital since there are only two states: 0 V and 5 V. In fact, if 
you try to imagine an LED driven by this signal it would be blinking. So why is it called analogue? Your 
eyes can only respond to relatively slowly changing light.  Anything flashing faster than about 50Hz 
will appear as a constant level. Therefore, if the signal in Figure 11 blinks fast enough, you would 
notice a dimmer LED, rather than a blinking LED. 

     et’s disse t t e width modulation part in PWM. It essentially means that we can control (or 
modulate) the width of the pulses. The duty cycle describes the proportion    “  ” ti e of the pulse 
within one period of the waveform. A duty cycle of 50% means that an LED driven by PWM will be 
“  ”   %    t e ti e. Figure 11 shows that as the duty cycle is increased, the LED appears brighter 
and vice versa. Referring to the analogWrite(pin, val) function, the duty cycle can be inferred 

using 100 ×
val

255
%. 

https://en.wikipedia.org/wiki/Pulse-width_modulation


19 

 

Duty cycle: 
0% 

 

 

Duty cycle: 
25% 

 

 

Duty cycle: 
50% 

 

 

Duty cycle: 
75% 

 

 

Duty cycle: 
100% 

 

 

Figure 11.  A visualisation of the perceived brightness from an LED driven using PWM for 5 different duty cycles. 

Tutorial – Making an LED Dim 

     et’s t y t is i      ti e.  i st y,     e t t e L    s s     i  Figure 12. Then, in the Arduino IDE 
type Code 4. You should be comfortable with reading and understanding the code by now – it is like 
the digital code from before, but it uses the analogWrite() function in the loop(). 

 

0

5

V
O

LT
A

G
E 

[V
]

TIME

0

5

V
O

LT
A

G
E 

[V
]

TIME

0

5

V
O

LT
A

G
E 

[V
]

TIME

0

5

V
O

LT
A

G
E 

[V
]

TIME

0

5

V
O

LT
A

G
E 

[V
]

TIME

 

   y   did ’t b e k-out any of the sensors, the LED would be automatically connected to pin D4. This pin 
d es   t   ve t e   si   i      t    it,   d s  it    ’t be  sed  s           e   t  t.     et t e   de be    
work correctly, you have to manually connect the LED to one of the analogue pins, such as ~D6. You don’t 
have to break-out the LED board for this to work. 

 



20 

 

Build and upload the code to the Arduino. What do you observe? You should see an LED that shines 
at half of its full brightness. Experiment with different values for the WIDTH variable, such as 0, 64, 
192, 255. What happens to the brightness of the LED as the width is changed? 

 

 
Figure 12.  The LED peripheral connected to analogue output D6. 

 
Code 4.  Code that will make an LED dim, by driving it using PWM with duty cycle of 50%. The same code is available in tutorials/04-
LED-Dim/. 

Exercise – Soft Blinking LED 

In the digital output section, we started by making an LED blink. In this section we learned how to set 
an arbitrary brightness level to the LED, however its brightness would stay constant. In this exercise 
y    i    e        t    ke t e L   b i k “s  t y” in a sinusoidal fashion. The complete program is 
provided for you in Code 5. 

    

  

  

  

  

  

  

  

   ..

   .

  

  

const int ledPin = 6;   // Define the LED pin; 

const int width = 128;  // Set the duty cycle to (100 * 128 / 255) = 50%. 

 

void setup() { 

  pinMode(ledPin, OUTPUT);  // Initialize ledPin as an output. 

} 

 

void loop() { 

  analogWrite(ledPin, width);  // Drive the LED using PWM. 

} 



21 

 

 
Code 5.  Code that will blink make an LED dim, by driving it using PWM with duty cycle of 50%. The same code is available in solutions/ 
03-Soft-Blinking-LED/. 

Your task is to understand this code, then upload it to the Arduino and observe what happens. The 
new concepts to look at are float variables, the sin() and millis() functions. As a reminder, all 
core things to know about Arduino code are available at bit.ly/39QD7du. Once you are comfortable 
with understanding the code, try different frequency values, such as 0.25, 1, 2. What do you 
observe? 

Key Points 

 

  

const int ledPin = 6;         // Define the LED pin; 

const float frequency = 0.5;  // Frequency [Hz] for soft-blinking. 

 

void setup() { 

  pinMode(ledPin, OUTPUT);  // Initialize ledPin as an output. 

} 

 

void loop() { 

  // Set the width to 128 * (1 + sin(2 * pi * f * t)). 

  int width = 128 * (1 + sin(2 * 3.14 * frequency * millis() / 1000)); 

  analogWrite(ledPin, width);  // Drive the LED using PWM. 

} 

Analogue outputs provide a way of  e e  ti   “       e” signals using PWM. The relevant 
Arduino pins are labelled with ~, such as ~D3, ~D5, ~D6, ~D10, ~D11. 

The analogue value of a signal is controlled by the duty cycle of the PWM signal. This can be 

calculated using 100 ×
val

255
%. 

The analogWrite() is used to control the duty cycle and accepts values between 0 and 255. 

The float variables allow you to store non-integer values. The sin() function allows you to 
calculate the sine of a given input and the millis() function returns the number of milliseconds 
passed since the Arduino board began running the current program. 

https://www.arduino.cc/reference/en/language/variables/data-types/float/
https://www.arduino.cc/reference/en/language/functions/trigonometry/sin/
https://www.arduino.cc/reference/en/language/functions/time/millis/
https://bit.ly/39QD7du


22 

 

Analog Inputs 

Arduino programs work in the digital domain. This means that they cannot work with analogue 
signals directly. Instead, analogue signals are first passed through an analogue-to-digital converter 
(ADC). This is circuit that reads an analogue voltage and assigns a number to it that can be processed 
digitally. In the case of the ADC on the Arduino, it splits the input voltage into 1024 possible steps, 
with 0 V assigned the value 0 and 5 V assigned to 1023. It is linear, so we can predict the number the 
ADC will return for any input (see Figure 13). This number is always an integer and is equal to 

⌊
Vin

Vmax
× 1023⌋, where Vin is the input voltage and Vmax is the maximum input allowed and ⌊⋅⌋ is the 

math floor function (essentially it rounds down to the nearest integer). For the Arduino, Vmax is 5 V. 

An input of 1.8 V should give us ⌊
1.8

5
× 1023⌋ = ⌊368.28⌋ = 368. 

 
Figure 13.  Mapping between analogue input voltages and ADC readings on the Arduino. 

Reading an analogue input value in Arduino is done using the analogRead(pinNumber) function. As 
mentioned above, this function returns an integer in the range [0, 1023], which can be stored in a 
variable of type int. 

Tutorial – LED with Controllable Intensity 

In the previous section, we created a programmatically dimmable LED. However, it was impossible 
for someone to change its brightness without reprogramming the device. Let’s      e t is   d   e te 
            i        s  s t       e t e L  ’s b i  t ess  si       te ti  ete .  

We already know how to write an analogue value (from the previous section), and just learned how 
to read one (using analogRead()). One problem that you might have noticed, however, is that the 
values for analogue outputs range between 0 and 255, whereas those for analogue inputs range 
between 0 and 1023. We could, of course, convert between these two ranges by multiplying or 
dividing by 4. However, Arduino has a convenient function called map(), which can do the mapping 
between these ranges for us. You can read about the map() function at bit.ly/3tbziqq, or try and infer 
how it works from the code below – it is quite simple. 

To complete this tutorial, connect the rotary potentiometer and the LED as shown in Figure 14. Then, 
in the Arduino IDE type Code 6 and upload it to the Arduino. After the code is uploaded, try rotating 
t e   te ti  ete ’s s   t. Y   s    d  bse ve t  t t is      es t e L  ’s b i  t ess. 

0
128
256
384
512
640
768
896

1024

0 1 2 3 4 5

A
D

C
 R

es
u

lt

 ᵢₙ [V]

https://en.wikipedia.org/wiki/Analog-to-digital_converter
https://en.wikipedia.org/wiki/Floor_and_ceiling_functions
https://bit.ly/3tbziqq


23 

 

 
Figure 14.  The LED peripheral connected to digital output D4, and the rotary potentiometer connected to analogue input A0. 

 
Code 6.  Code that will make an LED dim based on the input from a rotary potentiometer. The same code is available in tutorials/05-
LED-Potentiometer/. 

Now try and change the code such that the map() function maps from [0, 1023] to [255, 0] (instead 
of [0, 255]. This can be achieved by swapping the last two arguments (…, 255, 0), to be (…, 0, 255) 
and uploading the modified program to the Arduino. What change in behaviour do you observe? 

Exercise – Replacing the Potentiometer 

Conveniently, all compatible analogue inputs act the same. This means that you can replace the 
potentiometer with the light sensor or the sound sensor and have an LED that is reactive to light or 
sound without changing the logic of your program. Try this for yourself by changing 
potentiometerPin to A2 or A6! 

    

  

  

  

  

  

  

  

   ..

   .

  

  

const int ledPin = 6;             // Define the LED pin. 

const int potentiometerPin = A0;  // Define the potentiometer pin. 

 

void setup() { 

  pinMode(ledPin, OUTPUT);           // Initialize ledPin as an output. 

  pinMode(potentiometerPin, INPUT);  // Initialize potentiometerPin as an input. 

} 

 

void loop() { 

  // Read the potentiometer value in the range [0, 1023]. 

  int potentiometerValue = analogRead(potentiometerPin); 

  // Convert the value from the range [0, 1023] to the range [0, 255]. 

  int ledValue = map(potentiometerValue, 0, 1023, 255, 0); 

  // Set the converted value to the LED. 

  analogWrite(ledPin, ledValue); 

} 



24 

 

Key Points 

 

  

Analogue input signals need to be converted to digital via an ADC, before using them in Arduino. 
The relevant Arduino pins are labeled as A# (e.g. A0). 

The analogRead(pinNumber) function is used to read analogue inputs. It returns an integer in the 
range [0, 1023]. 

The map() function can be used to map between two ranges, such as the range of analogue inputs 
[0, 1023] and analogue outputs [0, 255]. 



25 

 

Serial Communication 

So far, we interfaced the Arduino to both digital and analogue inputs and outputs and this has 
probably sparked your creativity and exposed you to some of the many things Arduino can do. But 
how do we interact with more complex devices, such as a digital accelerometer, OLED displays and 
even your own computer? The answer is serial communication. Essentially, serial communication 
works by converting information to a stream of bits, which are se t  ve     i e.    ’t     y i  t is 
s   ds      i  ted, y   d  ’t  eed t    de st  d t e det i s t   et it    ki  . 

Tutorial – Communicating with a Computer 

The Serial family of functions in Arduino allow us to use the UART communication protocol which can 
be used to communicate to a computer. To use these functions, we need to first call 
Serial.begin(9600) (don’t     y  bout the 9600, it is related to the speed of communication). Once 
you start using Arduino, you’ll notice the begin() come often. 

At this point, you can use functions from the Serial family, such as Serial.print() – which sends 
the text in the parentheses to the computer, and Serial.println() – which does the same, but also 
starts a new line. To test this functionality, type Code 7 in the Arduino IDE, and upload. Then, in the 
Arduino IDE, go to Tools > Serial Monitor, which will open a window, like the one in Figure 15, 
showing the message we sent from Arduino.  

Try sending different messages using both, Serial.print() and Serial.println(), to get a feeling 
of how they work. 

 
Code 7.  Code that will send a “Hello, World!” message to a computer over the USB cable. The same code is available in tutorials/06-
Serial-Monitor/. 

 
Figure 15.  A preview of the Serial Monitor tool in Arduino IDE, showing the “Hello, World!” message that was sent over USB from the 
Arduino. 

void setup() { 

  Serial.begin(9600);               // Begin the Serial communication. 

  Serial.println("Hello, World!");  // Send a message to the computer. 

} 

 

void loop() {} 

https://en.wikipedia.org/wiki/Serial_communication
https://www.arduino.cc/reference/en/language/functions/communication/serial/
https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter
https://www.arduino.cc/en/Serial.Begin


26 

 

Another useful tool in the Arduino IDE is the Serial Plotter. To learn what it does, make the 
connections show in Figure 16, then type in Code 8, and upload it to the Arduino. Then, go to Tools 
> Serial Plotter. 

 
Figure 16.  The rotary potentiometer connected to analogue input A0, and the light sensor connected to analogue input A6. 

 
Code 8.  Code that will send readings from the potentiometer and light sensor to a computer over the USB cable. The same code is 
available in tutorials/07-Serial-Plotter/. 

You should see something similar to the window in Figure 17, which plots the readings from the 
potentiometer and the light sensor in real-time. Try rotating the potentiometer and putting your 
finger on top of the light sensor to block some of the light and see observe the readings change in 
the Serial Plotter window. 

    

  

  

  

  

  

  

  

   ..

   .

  

  

const int potentiometerPin = A0;  // Define the potentiometer pin. 

const int lightSensorPin = A6;    // Define the light sensor pin. 

 

void setup() { 

  pinMode(potentiometerPin, INPUT);  // Initialize potentiometerPin as an input. 

  pinMode(lightSensorPin, INPUT);    // Initialize lightSensorPin as an input. 

  Serial.begin(9600);                // Begin the Serial communication. 

} 

 

void loop() { 

  // Read the analogue values in the range [0, 1023]. 

  int potentiometerValue = analogRead(potentiometerPin); 

  int lightSensorValue = analogRead(lightSensorPin); 

  // Send the readings to the computer in a space-separated format. 

  Serial.print(potentiometerValue); 

  Serial.print(" "); 

  Serial.println(lightSensorValue); 

  // Wait for 100 milliseconds. 

  delay(100); 

} 



27 

 

 
Figure 17.  A preview of the Serial Plotter tool in Arduino IDE, showing the readings from the potentiometer and light sensor that were 
sent over USB from the Arduino. 

Tutorial – Reading and Plotting Acceleration Data 

So far, you learnt how to send data over to a computer, using UART and the Serial functions in 
Arduino. In this tutorial, you will learn how to use I²C to read data from digital peripheral, such as a 
digital accelerometer. If you looked at the I²C specification, you would notice that it is rather 
complicated and requires the use of awkward device and register addresses. Luckily, many of the 
Arduino sensors come with libraries, which provide user-friendly programming interfaces and hide 
away all the address handling. This guide comes with the UkesfSixthFormers library, which you 
should have installed since the Prerequisites sections. This library allows you to easily use the 
accelerometer, air pressure sensor, temperature and humidity sensor, and OLED display. 

To learn how to use this library, make the connection in Figure 18, then study Code 9, type it in, and 
upload to the Arduino. You should have noticed four things: 

- At the top, the UkesfSixthFormers library is included, using #include  

<UkesfSixthFormers.h>. 
- After that, an instance of the accelerometer is made using Accelerometer accelerometer; 

here Accelerometer is the type of device we are instantiating, and accelerometer is the 
name we assign to it, so that we can refer to it later in the code. 

- In …, we call accelerometer.begin() to begin the accelerometer, the same way we did with 
Serial. 

- All this allows us to use functions, such as accelerometer.readX(), to read the accelerometer 
readings. 

After uploading this code, start the Serial Plotter, and shake the accelerometer. You should see the 
waveform moving accordingly. If you leave the accelerometer stationary, you will notice that the 
acceleration doesn’t go to zero. That’s because it also measures acceleration due to gravity. 

https://en.wikipedia.org/wiki/I%C2%B2C
https://en.wikipedia.org/wiki/I%C2%B2C
https://en.wikipedia.org/wiki/I%C2%B2C#Addressing_structure
https://www.arduino.cc/en/reference/libraries
https://en.wikipedia.org/wiki/Acceleration_due_to_gravity


28 

 

 
Figure 18.  The accelerometer connected to the I²C port. 

 
Code 9.  Code that will send readings from the accelerometer sensor to a computer over the USB cable. The same code is available in 
tutorials/08-Accelerometer/. 

Exercise – Exploring Serial Devices 

As mentioned above, the UkesfSixthFormers library also allows you to use the air pressure sensor, 
temperature and humidity sensor, and OLED display. To learn how to use these peripherals, study 
the provided relevant code in: 

- tutorials/09-Air-Pressure 
- tutorials/10-Temperature 
- tutorials/11-Humidity 
- tutorials/12-Display 

You would notice that the way to use them is very similar to the way we used the accelerometer. 

    

  

  

  

  

  

  

  

   ..

   .

  

  

// Include the UKESF library. This will allow you to user peripherals, such as 

// the accelerometer, thermometer, OLED display, etc. 

#include <UkesfSixthFormers.h> 

 

Accelerometer accelerometer;  // Create an instance of the accelerometer. 

 

void setup() { 

  Serial.begin(9600);     // Begin the Serial communication. 

  accelerometer.begin();  // Begin the Accelerometer. 

} 

 

void loop() { 

  float x = accelerometer.readX();  // Read acceleration in the x axis [rad/s]. 

  float y = accelerometer.readY();  // Read acceleration in the y axis [rad/s]. 

  float z = accelerometer.readZ();  // Read acceleration in the z axis [rad/s]. 

  Serial.print(x); 

  Serial.print(" "); 

  Serial.print(y); 

  Serial.print(" "); 

  Serial.println(z); 

} 



29 

 

Key Points 

 

  

Arduino uses the Serial family of functions to communicate with a computer over USB using the 
UART protocol. 

The Serial Monitor and Serial Plotter tools can be used to visualise data sent from an Arduino to 
your computer. 

Libraries, such as the UkesfSixthFormers library can be #included to bring extra functionality to 
your code. Such libraries are often used to abstract away the complexities of using serial 
communications peripherals, such as ones that communicate over I²C. 

https://www.arduino.cc/reference/en/language/functions/communication/serial/
https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter
https://en.wikipedia.org/wiki/I%C2%B2C


30 

 

Final Project – Weather Station 

In the final project, you will be using everything you learnt in this guide, the air pressure sensor, 
temperature and humidity sensor, and OLED display to create the weather station shown in Figure 
19.   

 
Figure 19.  A picture of the weather station that you will be building. It shows the current temperature in °C, humidity in %, and air 
pressure in hPa. 

To start, make the connections from  

Figure 20. Then type in Code 10 in your Arduino IDE. If you try to upload this code, you will notice 
that you get an error. That’s be   se t e   de is i      ete   d is y    t sk t    ke it    k. 
Throughout the code you will find comments, starting with TODO, that tell you what needs to be filled 
in. Complete the code, and check if the weather station looks like the one in Figure 19. If you need 
help, look through the examples in tutorials/09-Air-Pressure, tutorials/10-Temperature, and 
tutorials/11-Humidity to remind yourself how to use the sensors. As a final resort, you can find the 
complete solution in project/Weather-Station-Solution. 

 
Figure 20.  The OLED display, air pressure sensor, and temperature and humidity sensor connected to the serial port of the Arduino. 

    

  

  

  

  

  

  

  

   ..

   .

  

  



31 

 

 
Code 10.  The starter code that you are provided for the weather station. Fill in the rest of the comment in place of the TODO comments 
to complete the functionality. The same code is available in project/Weather-Station-Todo/. 

  

#include <UkesfSixthFormers.h> 

 

// TODO: Define the barometer, hygrometer, and thermometer here. 

WeatherStation weatherStation; 

 

void setup(void) { 

  // TODO: Begin the barometer, hygrometer, and thermometer here. 

  weatherStation.begin(); 

} 

 

void loop(void) { 

  float pressure = // TODO: Read the barometer here. 

  float humidity = // TODO: Read the hygrometer here. 

  float temperature = // TODO: Read the thermometer here. 

 

  weatherStation.setAirPressure(pressure); 

  weatherStation.setHumidity(humidity); 

  weatherStation.setTemperature(temperature); 

  delay(10); 

} 



32 

 

Next Steps 

      t   ti  s      ki   it t is    , y  ’ve  e   ed     t!     t’s i    t  t is t  t y    emember 
it and apply it.  There are lots of other things you can do with the kit you have and what you have 
learned so far. 

Remember, coding requires the following: 

- Care that you get the syntax correct. For those of us that find remembering syntax a challenge 

it is useful to compile a lookup sheet.  

- Well thought out logic – even if a program runs it will only do what you have told it to do, so 

if your logic is incorrect the outcome will be incorrect.  

- Calling things sensible names means that your programmes and easier to find and debug.  

- L st y, it  eq i es     ti e…   


	Introduction – What is Arduino
	Arduino Uno
	Grove Beginner Kit for Arduino

	Prerequisites
	The Arduino IDE
	The Seeeduino Lotus Board
	The UKESF Sixth-Formers Library

	Digital Outputs
	Tutorial – Blinking an LED
	Exercise – Changing the Period
	Key Points

	Digital Inputs
	Tutorial – Reading Button
	Exercise – Inverting the Button State
	Key Points

	Conditional Logic
	Tutorial – LED Button Trigger
	Exercise – Blinking LED Button Trigger
	Key Points

	Analogue Outputs
	Tutorial – Making an LED Dim
	Exercise – Soft Blinking LED
	Key Points

	Analog Inputs
	Tutorial – LED with Controllable Intensity
	Exercise – Replacing the Potentiometer
	Key Points

	Serial Communication
	Tutorial – Communicating with a Computer
	Tutorial – Reading and Plotting Acceleration Data
	Exercise – Exploring Serial Devices
	Key Points

	Final Project – Weather Station
	Next Steps

