
Function Parameters what it does

bool init() none
Init() first resets and then initiates the MPU9250 with some default register values.

Returns true if the MPU9250 has responded.

void autoOffsets () none
Measures acceleration and gyroscope values and calculates offset values. The MPU9250

should be positioned flat in its xy-plane.

void setAccOffsets (min/max values)
xMin, xMax, yMin, yMax, zMin, zMax

(all float)

A more accurate method to set offsets. You need to determine the min/max raw

acceleration values for the axes manually (2g range). Use this function or autoOffset().

void setGyrOffsets (x,y,z-Offsets) xOffset, yOffset, zOffset
A method to set gyroscope offsets. You need to determine the raw gyroscope values,

when only gravity acts on the sensor. Use this function or autoOffset()

void setGyrDLPF(DLPF-level)

MPU9250_DLPF_0

…..

MPU9250_DLPF_7

Sets the digital low pass filter to reduce noise. You can choose from 8 levels. You find more

information in the example sketches.

void setSampleRateDivider(divider) 0…255
Divides the sample rate by (1+divider). It can only be applied if the corresponding DLPF is

enabled and 0 < DLPF < 7.

void setGyrRange(range)

MPU9250_GYRO_RANGE_250,

MPU9250_GYRO_RANGE_500,

MPU9250_GYRO_RANGE_1000,

MPU9250_GYRO_RANGE_2000

Sets the gyroscope range in degrees / second. The higher the range, the lower is the

resolution. Default is 250.

void enableGyrDLPF() none
Enables the digital low pass filter for the gyroscope. The DLPF level needs to be set with

setGyrDLPF().

void disableGyrDLPF(bandwidth)

MPU9250_BW_WO_DLPF_3600

or

MPU9250_BW_WO_DLPF_8800

If you disable the DLPF, you need to choose the bandwidth which is 3600 or 8800 Hz. You

find more information in the example sketches.

void setAccRange(range)

MPU9250_ACC_RANGE_2G,

MPU9250_ACC_RANGE_4G,

MPU9250_ACC_RANGE_8G,

MPU9250_ACC_RANGE_16G

Sets the range for the accelerometer in g. You can set it to +/2, +/-4, +/-8 or +/- 16 g. The

higher the range, the lower is the resolution. Default is 2g.

void enableAccDLPF(true/false) true / false Enables or disables the digital low pass filter.

void setAccDLPF(level)

MPU9250_DLPF_0

…..

MPU9250_DLPF_7

Sets the digital low pass filter to reduce noise. You can choose from 8 levels. You find more

information in the sketches.

void setLowPowerAccDataRate(rate)

MPU9250_LP_ACC_ODR_0_24

…

MPU9250_LP_ACC_ODR_500

Sets the accelerometer output data rate in low power mode, which you enable with

enableCycle(true). You can choose from 12 data rates, which are between 0.24 and 500 Hz.

void enableAccAxes(axes)
e.g.:

MPU9250_ENABLE_X0Z

Enables/Disables axes for acceleration measurement. Example: MPU9250_ENABLE_X0Z

means: x-axis and z-axis enabled, y-axis disabled. Default: all axes are enabled.

void enableGyrAxes(axes)
e.g.:

MPU9250_ENABLE_X0Z
Enables/Disables axes for gyroscope measurements.

xyzFloat getAccRawValues() none
Returns a set (x,y,z) of raw acceleration values. xyzFloat is a struct which consists of three

floats: x,y,z.

xyzFloat getCorrectedAccRawValues() none Returns the "calibrated" raw values for acceleration.

xyzFloat getGValues() none Returns g values which are based on the corrected raw acceleration values.

xyzFloat getAccRawValuesFromFifo() none Returns acceleration raw values (one set of x,y,z values) from the Fifo.

xyzFloat

getCorrectedAccRawValuesFromFifo()
none Returns corrected (calibrated) raw values from the Fifo.

xyzFloat getGValuesFromFifo() none Return values from the Fifo as g values. These are calculated from the corrected raws.

float getResultantG(xyzFloat g-value) g values as xyzFloat
Returns the resulting g value of the three axes (sum of the vectors which is not the sum of

the x,y,z g values). If only gravity acts on the MPU9250, it should always return 1 g.

float getTemperature() none Returns the temperature measured by the temperature sensor of the MPU9250.

xyzFloat getGyrRawValues() none Returns the raw gyroscope values. xyzFloat is a struct which consists of three floats: x,y,z.

xyzFloat getCorrectedGyrRawValues() none Returns the calibrated raw gyroscope values.

xyzFloat getGyrValues() none Returns gyroscope values in degrees/second. Based on calibrated raws.

xyzFloat getGyrValuesFromFifo () none
Returns gyroscope values (one set of x,y,z values) from the Fifo in degrees/second. Based

on calibrated raws.

xyzFloat getMagValues() none Returns the magnetic flux density for the x,y and z-axis in µTesla.

xyzFloat getAngles() none

Returns the angles of the x,y and z axis vs. the horizontal. It only works if only gravity acts

on the MPU9250. The method works well below 60°, then the deviations increase. It's just

the arcsin of the g values of the axes.

MPU9250_orientation getOrientation() none
Returns the axis with the highest positive acceleration. The return value is an enum called

MPU9250_orientation. For "translation" have a look into MPU9250.h.

String getOrientationAsString() none
This function also returns the orientation, but - better to understand - as a string: "x up", "x

down", "y up", "y down", "z up" or "z down".

List of public functions of the MPU9250_WE library

float getPitch() none
Returns the pitch tilt angle. The calculation is based on x, y and z and therefore better at

higher angles than the getAngles method. The latter has a higher precision at small angles.

float getRoll() none Returns the roll tilt angle. Otherwise same comments as for getPitch.

void sleep(true/false) true / false
Enables / disables sleep mode. After disabling it takes some time before you will measure

correct acceleration and gyroscope values (depends on mode / DLPF).

void enableCycle(true/false) true / false

Enables / disables the low power mode. The MPU9250 toggles between active and sleep

mode. The frequency depends on the low power data rate. Don't use the cycle mode to

obtain gyrocope data.

void enableGyroStandby(true/false) true / false

Enables/disables a lower power mode for the gyroscope with a shorter wake up time, i.e.

when disabled you will need less time until you can measure accurate gyroscope data

compared to the sleep mode.

void setIntPinPolarity(polarity)
MPU9250_ACT_HIGH,

MPU9250_ACT_LOW

Sets the interrupt pin polarity active-high (default) or active-low.

void enableIntLatch(true/false) true, false
If latch is enabled the interrupt pin level is held until the interrupt status is cleared. If latch

is disabled the interrupt pulse is ~50µs (default).

void enableClearIntByAnyRead(true/false) true, false
The interrupt can be cleared by any read (true) or it will only be cleared if the interrupt

status register is read (false = default).

void enableInterrupt(type)

MPU9250_DATA_READY

MPU9250_FIFO_OVF

MPU9250_WOM_INT

Enables an interrupt type. The library has implemented three types: new data is ready to

be read, fifo overflow or wake-on-motion interrupt. The latter is triggered by acceleration

data which exceeds a defined threshold. If you want to enable more than one interrupt

type, then call the function several times.

void disableInterrupt(type)

MPU9250_DATA_READY

MPU9250_FIFO_OVF

MPU9250_WOM_INT

Should be self-explaining (see also enableInterrupt)

bool checkInterrupt(source, type)
source (MPU9250_intType),

interrupt type

If an interrupt occurred you might want to check if it was data ready, fifo overflow or wake-

on-motion. readAndClearInterrupts() returns the source, but as an enum:

MPU9250_intType. Either you look up in MPU9250_WE.h how it is defined or you check

with this function. The disadvantage is that you need to check one by one.

uint8_t readAndClearInterrupts() none Returns which interrupt occurred asMPU9250_intType and clears the interrupt.

void setWakeOnMotionThreshold(thresh) threshold (1…255)
Sets the threshold for the wake-on-motion interrupt. The LSB is 4 mg (= milli-g), i.e. 1

equals 4 mg, 255 equals 1020 mg.

void enableWakeOnMotion(wom_en,

mode)

MPU9250_WOM_DISABLE/

MPU9250_WOM_ENABLE,

MPU9250_WOM_COMP_DISABLE/

MPU9250_WOM_COMP_ENABLE

Enables/disables the wake-on-motion interrupt. Enables/disables the compare mode. In

compare mode the current acceleration value is compared with the last measured value. If

compare mode is disabled the baseline is the starting value, when the WOM interrupt was

enabled.

void startFifo(type)

MPU9250_FIFO_ACC,

MPU9250_FIFO_GYR,

 MPU9250_FIFO_ACC_GYR

If called, the MPU9250 starts writing data into the Fifo. Fifo must be enabled before.

I have implemented three options: you can write acceleration data (max 85 x,y,z sample

sets), gyroscope data (max 85 x,y,z sample sets) or acceleration and gyroscope data (max

42 sets) into the Fifo.

void stopFifo() none Stops writing data into the Fifo.

void enableFifo(true/false) true / false Enables / disables the Fifo function.

void resetFifo() none Sets the Fifo counter to zero.

int16_t getFifoCount() none Returns the number of byte in the Fifo. Maximum is 512 Byte.

void setFifoMode(mode)
MPU9250_CONTINUOUS,

MPU9250_STOP_WHEN_FULL

Sets continuous or stop-when-full mode. In continuous mode new data is continuously

written into the Fifo. If full, the oldest data is replaced by new data. In the other mode, no

new data is written to the Fifo is full.

int16_t getNumberOfFifoDataSets() none

Returns the number of complete data sets in the Fifo. E.g. a complete set of acceleration

and gyroscope data consists of 2 (acc & gyro) x 3 (x,y,z) x 2 (2 bytes) = 12 bytes. If Fifo is full

it contains 512 byte -> 512 / 12 = 42 complete sets, rest is 8.

void findFifoBegin() none

In the stop-when-full mode the Fifo will start at the beginning of a set. The last set will be

incomplete. In the continuous it will end with a complete set. That means in continuous

mode you (or the library) has to calculate at which byte (fifo count) the first complete set

starts.

bool initMagnetometer() none
Initiates the magnetometer and reads adjustment factors from the ROM (which have been

added there by the manufacturer).

void setMagOpMode(mode)

AK8963_PWR_DOWN,

AK8963_TRIGGER_MODE,

AK8963_CONT_MODE_8HZ,

AK8963_CONT_MODE_100HZ

Sets the operational mode for the magnetometer (AK8963): power down, triggered mode

(saves power vs. continuous mode), continuous mode at 8 Hz or 100 Hz.

bool isMagOverflow() none Returns if magnetometer measures out of range.

uint8_t getStatus2Register() none
After you read measured data, you need to complete the read process by reading the

status register 2. The library does this automatically.

void startMagMeasurement() none
Starts a magnetometer measurement in triggered mode and waits until the data is

available.

bool isMagDataReady() none Check if magnetometer data is ready to be read.

