
Function Parameters what it does

bool init( ) none
Init() first resets and then initiates the ICM20948 with some default register values. 

Returns true if the ICM20948 has responded.

void autoOffsets ( ) none
Measures acceleration and gyroscope values and calculates offset values. The ICM20948 

should be positioned flat in its xy-plane. 

void enableAcc( true/false ) true / false Enables / disables the accelerometer.

void enableGyr( true/false ) true / false Enables / disables the gyrometer.

void setAccOffsets ( min/max values ) 
xMin, xMax, yMin, yMax, zMin, zMax 

(all float)

A more accurate method to set offsets. You need to determine the min/max raw 

acceleration values for the axes manually (2g range). 

void setGyrOffsets ( x,y,z-Offsets ) xOffset, yOffset, zOffset
A method to set gyroscope offsets. You need to determine the raw gyroscope values, 

when only gravity acts on the sensor.

uint8_t whoAmI( ) none Returns the ID of the ICM20948, which should be 0xEA.

void setGyrDLPF( level ) 

ICM20948_DLPF_0

…..

ICM20948_DLPF_7 

Sets the digital low pass filter for the gyroscope to reduce noise. You can choose from 8 

levels. You find more information in the example sketches. 

void setAccSampleRateDivider( divider )  0…4095 
Divides the sample rate of the accelerometer by (1+divider). It can only be applied if the 

corresponding DLPF is enabled and 0 < DLPF < 7.

void setGyrSampleRateDivider( divider )  0…255 
Divides the sample rate of the gyroscope by (1+divider). It can only be applied if the 

corresponding DLPF is enabled and 0 < DLPF < 7.

void setGyrRange( range ) 

ICM20948_GYRO_RANGE_250, 

ICM20948_GYRO_RANGE_500, 

ICM20948_GYRO_RANGE_1000, 

ICM20948_GYRO_RANGE_2000

Sets the gyroscope range in degrees / second. The higher the range, the lower is the 

resolution. Default is 250.

void setAccRange( range ) 

ICM20948_ACC_RANGE_2G, 

ICM20948_ACC_RANGE_4G, 

ICM20948_ACC_RANGE_8G, 

ICM20948_ACC_RANGE_16G

Sets the range for the accelerometer in g. You can set it to +/2, +/-4, +/-8 or +/- 16 g. The 

higher the range, the lower is the resolution. Default is 2g.

void setAccDLPF( level ) 

ICM20948_DLPF_0

…..

ICM20948_DLPF_7 

ICM20948_OFF

Sets the digital low pass filter to reduce noise. You can choose from 8 levels. You find more 

information in the sketches. ICM20948_OFF disables DLPF. 

void setTempDLPF( level ) 

ICM20948_DLPF_0

…..

ICM20948_DLPF_7 

ICM20948_OFF

Sets the digital low pass filter for the thermometer to reduce noise. You can choose from 8 

levels. You find more information in the sketches. ICM20948_OFF disables DLPF. 

void setI2CMstSampleRate( level ) 0….15

setI2CMstSampleRate sets the rate of the devices controlled by the I2C master,  i.e. the 

magnetometer. It is not the internal sample rate of the magnetometer, but the output 

rate of the I2C master. Allowed values are x = 0...15.

The sample rate is 1.1 kHz / (2^x). Example: x = 13 

=> Sample rate = 1.1 kHz / 8192 = ~0.1343 Hz,  or: data output every ~7.45 seconds.

void readSensor( ) none

Sensor data is read from the data registers and written into a buffer array. The function 

reads "what's there". The update of the data registers with fresh sensor values is 

controlled by the output data rates and sample rate dividers.

xyzFloat getAccRawValues( ) none
Returns a set (x,y,z) of raw acceleration values. xyzFloat is a struct which consists of three 

floats: x,y,z. 

xyzFloat getCorrectedAccRawValues( ) none Returns the "calibrated" raw values for acceleration.

xyzFloat getGValues( ) none Returns g values which are based on the corrected raw acceleration values. 

xyzFloat getAccRawValuesFromFifo( ) none Returns acceleration raw values (one set of x,y,z values) from the Fifo. 

xyzFloat 

getCorrectedAccRawValuesFromFifo( ) 
none Returns corrected (calibrated) raw values from the Fifo. 

xyzFloat getGValuesFromFifo( ) none Return values from the Fifo as g values. These are calculated from the corrected raws.

float getResultantG( xyzFloat g-value ) g values as xyzFloat
Returns the resulting g value of the three axes (sum of the vectors which is not the sum of 

the x,y,z g values). If only gravity acts on the ICM20948, it should always return 1 g. 

float getTemperature( ) none Returns the temperature measured by the temperature sensor of the ICM20948.

xyzFloat  getGyrRawValues( ) none Returns the raw gyroscope values. xyzFloat is a struct which consists of three floats: x,y,z. 

xyzFloat getCorrectedGyrRawValues( ) none Returns the calibrated raw gyroscope values.

xyzFloat getGyrValues( ) none Returns gyroscope values in degrees/second. Based on calibrated raws.

xyzFloat getGyrValuesFromFifo ( ) none
Returns gyroscope values (one set of x,y,z values) from the Fifo in degrees/second. Based 

on calibrated raws. 

xyzFloat getMagValues( ) none Returns the magnetic flux density for the x,y and z-axis in µTesla. 

xyzFloat getAngles( ) none

Returns the angles of the x,y and z axis vs. the horizontal. It only works if only gravity acts 

on the ICM20948. The method works well below 60°, then the deviations increase. It's just 

the arcsin of the g values of the axes.

ICM20948_orientation getOrientation( ) none
Returns the axis with the highest positive acceleration. The return value is an enum called 

ICM20948_orientation. For "translation" have a look into ICM20948.h. 

List of public functions of the ICM20948_WE library 



String getOrientationAsString( ) none
This function also returns the orientation, but - better to understand - as a string: "x up", 

"x down", "y up", "y down", "z up" or "z down".

float getPitch( ) none
Returns the pitch tilt angle. The calculation is based on x, y and z and therefore better at 

higher angles than the getAngles method. The latter has a higher precision at small angles. 

float getRoll( ) none Returns the roll tilt angle. Otherwise same comments as for getPitch.

void sleep( true/false ) true / false
Enables / disables sleep mode. After disabling it takes some time before you will measure 

correct acceleration and gyroscope values. This depends on mode / DLPF.

void enableCycle( mode )

ICM20948_NO_CYCLE          

ICM20948_GYR_CYCLE           

ICM20948_ACC_CYCLE           

ICM20948_ACC_GYR_CYCLE       

ICM20948_ACC_GYR_I2C_MST_CYCLE

Enables / disables cycle modes. The ICM20948 toggles between active and sleep mode.  

The frequency depends on the sample. If you enable cycle for several sensors, the priority 

order for the frequency is: gyroscope -> accelerometer -> magnetometer 

(I2C_MST_CYCLE). 

void setGyrAverageInCycleMode

( number )

ICM20948_GYR_AVG_x

x= 1,2,4,8,16,32,64,128
Number of gyroscope samples to be averaged in cycle mode.

void setAccAverageInCycleMode

( number )

ICM20948_ACC_AVG_4 

ICM20948_ACC_AVG_8

ICM20948_ACC_AVG_16

ICM20948_ACC_AVG_32

Number of accelerometer samples to be averaged in cycle mode.

void enableLowPower( true/false ) true / false

The low power mode only affects the digital circuitry, it helps to reduce the digital current 

when sensors are in cycle mode. Sensors in cycle mode and low power mode together help 

to reduce overall current. Enabling low power has no effect when the sensors are in low-

noise mode.

void setFSyncIntPolarity( polarity )
ICM20948_ACT_HIGH

ICM20948_ACT_LOW
Sets the polarity which shall trigger an interrupt.

void setIntPinPolarity( polarity )
ICM20948_ACT_HIGH

ICM20948_ACT_LOW
Sets the interrupt pin polarity active-high (default) or active-low.

void enableIntLatch( true/false ) true, false
If latch is enabled the interrupt pin level is held until the interrupt status is cleared. If latch 

is disabled the interrupt pulse is ~50µs (default).

void enableClearIntByAnyRead( true/false ) true, false
The interrupt can be cleared by any read (true) or it will only be cleared if the interrupt 

status register is read (false = default).

void enableInterrupt( type )

ICM20948_FSYNC_INT

ICM20948_WOM_INT

ICM20948_DATA_READY_INT    

ICM20948_FIFO_OVF_INT

Enables an interrupt type. The library has implemented four types: FSYNC pin polarity, 

new data is ready to be read, fifo overflow or wake-on-motion interrupt. The latter is 

triggered by acceleration data which exceeds a defined threshold. If you want to enable 

more than one interrupt type, then call the function several times.

void disableInterrupt( type )

ICM20948_FSYNC_INT

ICM20948_WOM_INT

ICM20948_DATA_READY_INT    

ICM20948_FIFO_OVF_INT

Should be self-explaining (see also enableInterrupt)

bool checkInterrupt( source, type )
source (ICM20948_intType), interrupt 

type

If an interrupt occurred you might want to check if it was data ready, fifo overflow or wake-

on-motion. readAndClearInterrupts() returns the source, but as an enum: 

ICM20948_intType. Either you look up in ICM20948_WE.h how it is defined or you check 

with this function. The disadvantage is that you need to check one by one. 

uint8_t readAndClearInterrupts( ) none Returns which interrupt occurred as ICM20948_intType and clears the interrupt. 

void setWakeOnMotionThreshold

( thresh, mode )

threshold (1…255)

ICM20948_WOM_COMP_DISABLE/ 

ICM20948_WOM_COMP_ENABLE

Sets the threshold for the wake-on-motion interrupt. The LSB is 4 mg (= milli-g), i.e. 1 

equals 4 mg, 255 equals 1020 mg. 

Enables/disables the compare mode. In compare mode the current acceleration value is 

compared with the last measured value. If compare mode is disabled the baseline is the 

starting value, when the WOM interrupt was enabled.

void startFifo( type )

ICM20948_FIFO_ACC,

ICM20948_FIFO_GYR,

 ICM20948_FIFO_ACC_GYR

If called, the ICM20948 starts writing data into the Fifo. Fifo must be enabled before. 

I have implemented three options: you can write acceleration data (max 85 x,y,z sample 

sets), gyroscope data (max 85 x,y,z sample sets) or acceleration and gyroscope data (max 

42 sets) into the Fifo. 

void stopFifo(  ) none Stops writing data into the Fifo.

void enableFifo( true/false ) true / false Enables / disables the Fifo function. 

void resetFifo( ) none Sets the Fifo counter to zero. 

int16_t getFifoCount( ) none

Returns the number of bytes in the Fifo. According to the data sheet the FIFO should be 

max. 512 bytes. However I found 4096. This could be related with the DMP which I have 

not implemented.

void setFifoMode( mode )
ICM20948_CONTINUOUS, 

ICM20948_STOP_WHEN_FULL

Sets continuous or stop-when-full mode. In continuous mode new data is continuously 

written into the Fifo. If full, the oldest data is replaced by new data. In the other mode, no 

new data is written to the Fifo is full. 

int16_t getNumberOfFifoDataSets( ) none

Returns the number of complete data sets in the Fifo. E.g. a complete set of acceleration 

and gyroscope data consists of 2 (acc & gyro) x 3 (x,y,z) x 2 (2 bytes) = 12 bytes. If Fifo is full 

it contains 512 byte or 4096 bytes 

-> 512 / 12 = 42 complete sets, rest is 8. 

-> 4096 / 12 = 341 complete sets, rest is 4.

void findFifoBegin( ) none

In the stop-when-full mode the Fifo will start at the beginning of a set. The last set will be 

incomplete. In the continuous it will end with a complete set. That means in continuous 

mode you (or the library) has to calculate at which byte (fifo count) the first complete set 

starts. 

bool initMagnetometer( ) none
Initiates the magnetometer and reads adjustment factors from the ROM (which have been 

added there by the manufacturer).

void setMagOpMode( mode )

AK09916_PWR_DOWN

AK09916_TRIGGER_MODE

AK09916_CONT_MODE_10HZ

AK09916_CONT_MODE_20HZ

AK09916_CONT_MODE_50HZ    

AK09916_CONT_MODE_100HZ

Sets the operational mode for the magnetometer (AK8963): power down, triggered mode 

(saves power vs. continuous mode), continuous mode at 10, 20, 50 or 100 Hz.

int16_t whoAmIMag( ) none Returns the ID of the AK09916, wich should be 0x4809.


