
Function Parameters what it does
void init() none Initiates the ADXL345 with some default register values.

void setCorrFactors (min/max values)
xMin, xMax, yMin, yMax, zMin,
zMax (all float)

Recalculation of (delta g / delta raw) and the offset of each axis.

void setDataRate(adxl345_dataRate)
ADXL345_DATA_RATE_3200
…..
ADXL345_DATA_RATE_0_10

Sets the data rate. You can choose from 16 values between 3200 Hz and 0.1 Hz.

adxl345_dataRate getDataRate() none Returns the data rate as adxl345_dataRate. Look into ADXL345_WE.h for definition.

String getDataRateAsString() none
Since you might not want to go into the details of the library this is an option to get the data
rate range as a better understandable string.

byte getPowerCtlReg() none
This is a function for the more advanced users who might need the status of the Power
Control Register.

void setRange(range)

ADXL345_RANGE_16G
ADXL345_RANGE_8G
ADXL345_RANGE_4G
ADXL345_RANGE_2G

Sets the g range. I have implemented the full resolution as default, so you have no
disadvantage using 16 g range.

adxl345_range getRange() none Returns the selected range as adxl345_range. Look into ADXL345_WE.h for definition.

String getRangeAsString() none
Since you might not want to go into the details of the library this is an option to get the
range as a better understandable string.

void setFullRes(bool) true, false
Enables / disables full resolution. If disabled, resolution is 10 bit for all ranges. If enabled,
resolution increases from 10 to 13 bit going from 2 g to 16 g range.

xyzFloat getRawValues() none
Returns the raw values from the data registers. xyzFloat is a struct which contains three
floats: x,y,z.

xyzFloat getCorrectedRawValues() none
Returns the corrected raw values (calibration applied). xyzFloat is a struct which contains
three floats: x,y,z.

xyzFloat getGValues() none
Returns the g values. If calibration has been applied, it will provide data based on corrected
raws. xyzFloat is a struct which contains three floats: x,y,z.

xyzFloat getAngles() none
Returns the angles base on a a very simple calculation (angle = arcsin g). Okay for g values
up to ~0.6. It's the basis for determining the orientation. xyzFloat is a struct which contains
three floats: x,y,z.

xyzFloat getCorrectedAngles() none
Use measureAngleOffsets first. Then getTilts will start with zero angles. It applies an
additional angle offset.

float getPitch() none
Quite similar to the x values of getCorrectedAngles(). Uses no extra angles offset, but better
for higher angles. It considers also the z-axis.

float getRoll() none
Quite similar to the y values of getCorrectedAngles(). Uses no extra angles offset, but better
for higher angles. It considers also the z-axis.

void measureAngleOffsets() none
Place your ADXL345 flat (in XY plane). The function determins the angle offset which is
internally used for tilts (not for angles).

adxl345_orientation getOrientation() none Returns the orientation as adxl345_orientation. Look into ADXL345_WE.h for definition.

String getOrientationAsString() none
Since you might not want to go into the details of the library this is an option to get the
orientation as a better understandable string: z up (flat), z down, x up, x down, y up, y down

void setMeasureMode (bool) true, false If true, the ADXL345 measures at the selected data rate. If false, it goes into standby mode.

void setSleepMode(bool, frequency)

true, false

ADXL345_WUP_FQ_8
ADXL345_WUP_FQ_4
ADXL345_WUP_FQ_2
ADXL345_WUP_FQ_1

Enables or disables the sleep mode and sets the wake up frequency (1 Hz, 2 Hz, 4 Hz or 8
Hz).

void setSleepMode(bool) true, false Enables or disables the sleep mode without changing the wake up frequency.

void setAutoSleep(bool, frequency)

true, false

ADXL345_WUP_FQ_8
ADXL345_WUP_FQ_4
ADXL345_WUP_FQ_2
ADXL345_WUP_FQ_1

Enables / disables auto sleep mode. You also need to enable inactivity. The link bit must
also be set, this does the library in the background. If you disable auto sleep, you'll have to
delete the link bit manually if you don't want to be set.

void setAutoSleep(bool) true, false Enables or disables the auto sleep mode without changing the wake up frequency.

bool isAsleep(bool) none Returns true if the ADXL345 is asleep, otherwise false.

void setLowPower(bool) none Enables Low Power Mode. I only provides advantages between 12.5 and 400 Hz data rates.

void setInterrupt(type, pin)

ADXL345_OVERRUN
ADXL345_WATERMARK
ADXL345_FREEFALL
ADXL345_INACTIVITY
ADXL345_ACTIVITY
ADXL345_DOUBLE_TAP
ADXL345_SINGLE_TAP
ADXL345_DATA_READY

INT_PIN_1 , INT_PIN_2

Sets an interrupt and specifies the interrupt output pin for that interrupt. Overrun,
watermark and data ready are always enabled, so you can only change the pin (default is
INT1).

void setInterruptPolarity()
ADXL345_ACT_LOW
ADXL345_ACT_HIGH

Sets the interrupt pins active-low or active-high. Default is active-high.

List of public functions of the ADXL345_WE library

void deleteInterrupt(type)
ADXL345_OVERRUN
ADXL345_WATERMARK
….....(see setInterrupt)

Disables the specified interrupt.

byte readAndClearInterrupts() none
Returns the interrupt source register which is cleared by doing this. The return value is a
byte. For the details look into the library.

bool checkInterrupt(source, type)

Return value of
readAndClearInterrupts

ADXL345_OVERRUN
ADXL345_WATERMARK
….....(see setInterrupt)

Checks if the return value matches a certain interrupt type. Might be easier to use than to
evaluate the return value of readAndClearInterrupt by yourself.

void setLinkBit(bool) true, false
Sets or deletes the link bit, which influences the behavior of inactivity and activity. For
details look into the data sheet or try ADXL345_activity_inactivity_interrupt.ino

void setFreeFallThresholds(g value, time)
threshold in g
threshold in milliseconds (max
1275 ms)

Sets the parameters for the free fall detection. Minimum g and minimum time.

void setActivityParameters(mode, axes,
threshold)

ADXL345_DC_MODE
ADXL345_AC_MODE

ADXL345_X00
ADXL345_XY0
ADXL345_0Y0
…..
ADXL345_XYZ

Threshold in g

Sets the activity parameters. In DC mode the actual accelerations is compared with the
specified threshold. In AC mode the threshold is the acceleration when enabling activity.
The second parameter specifies the axes to be involved.
The third parameter is the minimum threshold which leads to an activity interrupt.

void setInactivityParameters(mode, axes,
threshold, inact time)

same as for setActivityParameters
plus inact time in seconds

Sets the inactivity parameters. Same as for the activity parameters, but threshold is a
maximum value for inactivity. In addition a time must be specified after which the interrupt
will be triggered. Maximum is 255 seconds.

void setGeneralTapParameters(axes,
threshold, duration, latent)

ADXL345_X00
ADXL345_XY0
ADXL345_0Y0
…..
ADXL345_XYZ

threshold in g

duration in milliseconds (max. 159
ms)

latent in milliseconds (max 318
ms)

Sets parameters needed for both tap and double tap detection. Axes are the involved axes.
Threshold is minimum threshold in g. Duration is the maximum period that acceleration
must be above the threshold. Latent is the time after which a new tap can be detected.

void setAdditionalDoubleTapParameters(
suppress, window)

true, false

window in milliseconds (max 318
ms)

Sets additional parameters needed for double tap detection. If the suppress bit is set a
second tap during latency time invalidates the first tap to become a double tap, even if
another tap is detected in the window time.
The window specifies the time period after the end of the latency time in which the second
tap must be detected to get a double tap.

byte getActTapStatus() none
Returns the axes which were inolved in an activity or tap event. Look into ADXL345_WE.h
for definition.

String getActTapStatusAsString() none
Returns the axes which were inolved in an activity or tap event as a better understandable
string.

void setFiFoParameters(trigger int pin,
samples)

ADXL345_TRIGGER_INT_1
ADXL345_TRIGGER_INT_2

number of samples in the Fifo
buffer (max 32) / in trigger mode:
the number of samples which are
kept in FIFO before the trigger
event

The trigger int pin specifies the int pin which an interrupt will be the trigger event. It is only
relevant for the trigger mode.

The number of samples specifies the size of the FIFO for fifo and stream mode. In trigger
mode the specified number is kept in the FIFO and then filled up to 32.

void setFifoMode(type)

ADXL345_BYPASS
ADXL345_FIFO
ADXL345_STREAM
ADXL345_TRIGGER

FIFO - you choose the start, ends when FIFO is full (at defined limit)

STREAM - FIFO always filled with new data, old data replaced if FIFO is full; you choose the
stop

TRIGGER - FIFO always filled up to 32 samples; when the trigger event occurs only defined
number of samples is kept in the FIFO and further samples are taken after the event until
FIFO is full again.

ADXL345_BYPASS - no FIFO

byte getFifoStatus() none Returns the FIFO status register. For advanced users. Look into the data sheet.

void resetTrigger() none Enables the ADXL345 to detect a new trigger. Only relevant for FIFO trigger mode.

