
You are here: Home - Instruction Set

Nextion Editor Guide

Instruction Set

Datasheets !

Policies !

FAQs

The Nextion Instruction Set
These are the set of commands that Nextion can use.

They are categorized into only a few categories

General Rules and Practices … <goto>

Assignment Statements … <goto>

Operational Commands … <goto>

GUI Designing Commands … <goto>

Color Code Constants … <goto>

System Variables … <goto>

Format of Nextion Return Data … <goto>

Legend:

 : Basic : Enhanced : Intelligent : All

 : Basic or Enhanced : Enhanced or Intelligent

1 – General Rules and Practices
No. General Rule or Practice

1 All instructions over serial: are terminated with three bytes of 0xFF 0xFF 0xFF

ie: decimal: 255 or hex: 0xFF or ansichar: ÿ or binary: 11111111

ie byte ndt[3] = {255,255,255}; write(ndt,3); or print(“\xFF\xFF\xFF”); or print(“ÿÿÿ”)

2 All instructions and parameters are in ASCII

3 All instructions are in lowercase letters

4 Blocks of code and enclosed within braces { } can not be sent over serial

this means if, for, and while commands can not be used over serial

5 A space char 0x20 is used to separate command from parameters.

6 There are no spaces in parameters unless specifically stated

7 Nextion uses integer math and does not have real or floating support.

8 Assignment are non-complex evaluating fully when reaching value after operator.

9 Comparison evaluation is non-complex, but can be joined (see && and ||).

10 Instructions over serial are processed on receiving termination (see 1.1)

11 Character escaping is performed using two text chars: \r creates 2 bytes 0x0D 0x0A, \” 0x22 and \\ for 0x5C

12 Nextion does not support order of operations. sys0=3+(8*4) is invalid.

13 16-bit 565 Colors are in decimal from 0 to 65535 (see 5.Note)

14 Text values must be encapsulated with double quotes: ie “Hello”

15 Items which are specific to Enhanced Models are noted with

16 Transparent Data Mode (used by addt and wept commands)

MCU sending to Nextion

MCU sends command. ie: wept 30,20ÿÿÿ or addt 1,0,320ÿÿÿ

Nextion requires ~5ms to prepare for transparent mode data transfer

Nextion sends “Ready” 0xFE 0xFF 0xFF 0xFF Return Data (see 7.32)

MCU can now send specified quantity (20) of raw bytes to Nextion

Nextion receives raw bytes from MCU until specified quantity (20) is received

Nextion sends “Finished” 0xFD 0xFF 0xFF 0xFF Return Data (see 7.31)

MCU and Nextion can proceed to next command

Note: Nextion will remain waiting at step 5 until every byte of specified quantity is received.

– During this time Nextion can not execute any other commands, and may indeed hang if the MCU fails to deliver

the number of bytes as specified by the command parameter.

– data quantity limited by serial buffer (all commands+terminations + data < 1024)

17 Only component attributes in green and non readonly system variables can be assigned new values at runtime.

All others are readonly at runtime with the exception of .objname

18 Numeric values can now be entered with byte-aligned hex. ie: n0.val=0x01FF

19 Advanced. Address mode is an advanced technique prepending the serial instruction with two bytes for the

address. Two byte address is to be sent in little endian order, ie: 2556 is sent 0xFC 0x09. By default, the Nextion

address is 0 and does not require two byte prefixing. When the two byte addressing is used, Nextion will only

respond to the command if its address matches the two byte prefix, or the transmitted address is 65535 broadcast.

See the addr system variable.

20 Advanced. Protocol Reparse mode is an advanced technique that allows users to define their own incoming

protocol and incoming serial data handling. When in active Protocol Reparse mode, incoming serial data will not

be processed natively by the Nextion firmware but will wait in the serial buffer for processing. To exit active

Protocol Reparse mode, recmod must be set back to passive (ie: in Nextion logic as recmod=0), which can not be

achieved via serial. Send DRAKJHSUYDGBNCJHGJKSHBDNÿÿÿ via serial to exit active mode serially. Most HMI

applications will not require Protocol Reparse mode and should be skipped if not fully understood.

21 Commenting user code inside Events uses the double-slash (two characters of forward slash /) technique. See

2.30 for proper usage.

2 – Assignment Statements
No. Data Type Operator Description/Example (see 1.8 and 1.17)

1 Text = Assignment. Right side will be evaluated with result placed in left side. Component

.txt-maxl needs to be large enough to hold result.

t0.txt=”Hello”

2 Text += Text Addition. Will concatenate left side with right side with result placed left side. ie

t0.txt+=”Hello” is equivalent to t0.txt=t0.txt+”Hello”.

t0.txt=”-“+t0.txt becomes t0.txt=t0.txt+”-“.

Use temp variable to prepend. va0.txt=t0.txt t0.txt=”-“+va0.txt

t0.txt+=” World” // append ” World” to t0.txt

//When contents of t0.txt is “Hello” becomes “Hello World”

3 Text -= Text Subtraction. Will remove right side (a specified numeric amount of characters to

remove) from end of left side and result placed in left side.

t0.txt-=4 or t0.txt=t0.txt-4 // remove last 4 chars from t0.txt

4 Text \ Escape Character. (see 1.11)

Supported is \r hex 0x0D 0x0A, \” hex 0x22, \\ hex 0x5C,

t0.txt=”\r”

5 Text == Boolean Equality. Evaluate left side to right side.

If both left and right sides are the same creates a true condition

if(t0.txt==va0.txt)

6 Text != Boolean Inequality. Evaluate left side to right side.

If both left and right sides are different creates a true condition

if(t0.txt!=va0.txt)

7 Numeric = Assignment. Right side of equation will be evaluated and result placed in left side. If

more than one operator on right side, full evaluation and assignment will occur at each

operator.

n0.val=bauds // places bauds value in n0.val component

8 Numeric += Numeric Addition. Adds value of left side and right side with result placed in left side.

n0.val+=4 is equivalent to n0.val=n0.val+4

n0.val+=va0.val

9 Numeric -= Numeric Subtraction. Subtracts right side from left side with result placed in left side.

n0.val-=4 is equivalent to n0.val=n0.val-4

n0.val-=60 // decreases value of n0.val by 60

10 Numeric *= Numeric Multiplication. Multiplies left side with right side with product result placed

in left side. n0.val*=2 is equivalent of n0.val=n0.val*2

n0.val*=2

11 Numeric /= Numeric Division. Equates division of numerator (left side) and divisor (right side) and

places integer quotient in left side. 60000/20001=2

n0.val/=60

12 Numeric %= Numeric Modulo. Equates division of numerator (left side) and divisor (right side) and

places integer remainder in left side. Divisor MUST be a constant. 60000/20001=19998

n0.val%=60

13 Numeric << Arithmetic Bit Shift Left. Moves all bits specified number to the left.

Using the 16-bit example that follows, (32-bit uses similar rules)

All bits shifted above 15 are lost and undefined bits become 0

n0.val=n0.val<<4

0 0 0 0.0 0 1 1.1 1 0 0.0 0 0 1

0 0 1 1.1 1 0 0.0 0 0 1.

0 0 1 1.1 1 0 0.0 0 0 1.0 0 0 0

14 Numeric >> Arithmetic Bit Shift Right. Moves all bits specified number to the right.

Using the 16-bit example that follows, (32-bit uses similar rules)

All bits shifted below 0 are lost and undefined bits become the signed bit.

When signed bit is 1 (value is negative) then left filled is with 1’s

When signed bit is 0 (value is positive) then left filled is with 0’s

n0.val=n0.val>>4

0 0 0 0.0 0 1 1.1 1 0 0.0 0 0 1

0 0 0 0.0 0 1 1.1 1 0 0

0 0 0 0.0 0 0 0.0 0 1 1.1 1 0 0

15 Numeric & Logical Bitwise AND. Compares all bits left side to all bits right side(mask)

Using the 16-bit example that follows, (32-bit uses similar rules)

Result is a bit of 1 where both left and right bits were 1

n0.val=n0.val&35381

0 1 0 1.1 0 1 1.0 0 1 0.0 1 0 1 n0.val of 23333

1 0 0 0.1 0 1 0.0 0 1 1.0 1 0 1 mask of 35381

0 0 0 0.1 0 1 0.0 0 1 0.0 1 0 1 result is 2597

16 Numeric | Logical Bitwise OR. Compares all bits left side to all bits right side

Using the 16-bit example that follows, (32-bit uses similar rules)

Result is a bit of 1 where either left or right bits were 1

n0.val=n0.val|35381

0 1 0 1.1 0 1 1.0 0 1 0.0 1 0 1 n0.val of 23333

1 0 0 0.1 0 1 0.0 0 1 1.0 1 0 1 constant 35381

1 1 0 1.1 0 1 1.0 0 1 1.0 1 0 1 result is 56117

17 Numeric ^ Logical Bitwise XOR. Applies bit inversion to all bits in the bitmask

Using the 16-bit example that follows, (32-bit uses similar rules)

Result is a bit inverted where maskbit was 1, unchanged where maskbit was 0

n0.val=n0.val^35381

0 1 0 1.1 0 1 1.0 0 1 0.0 1 0 1 n0.val of 23333

1 0 0 0.1 0 1 0.0 0 1 1.0 1 0 1 bitmask of 35381

1 1 0 1.0 0 0 1.0 0 0 1.0 0 0 0 result is 53520

18 Numeric == Boolean Equality. Evaluate left side to right side.

If both left and right sides are the same creates a true condition

if(n0.val==va0.val)

19 Numeric != Boolean Inequality. Evaluate left side to right side.

If both left and right sides are different creates a true condition

if(n0.val!=va0.val)

20 Numeric < Boolean Less than. Evaluate left side to right side.

If left side is less than right side creates a true condition

while(n0.val<va0.val)

21 Numeric <= Boolean Less than or Equal. Evaluate left side to right side.

If left side is less than or equal to right side creates a true condition

while(n0.val<=va0.val)

22 Numeric > Boolean Greater than. Evaluate left side to right side.

If left side is greater than right side creates a true condition

while(n0.val>va0.val)

23 Numeric >= Boolean Greater than or Equal. Evaluate left side to right side.

If left side is greater than or equal to right side creates a true condition

while(n0.val>=va0.val)

24 Code { } Code Block begins with open brace { on line by itself

Code Block ends with closing brace } beginning a new line

see if (see 3.25) while (see 3.26) and for (see 3.27)

25 Code && Condition Joiner AND

Conditions may be joined with no spaces between conditions, left to right evaluation

see if (see 3.25) while (see 3.26) and for (see 3.27)

26 Code || Condition Joiner OR

Conditions may be joined with no spaces between conditions, left to right evaluation

see if (see 3.25) while (see 3.26) and for (see 3.27)

27 Code () Conditions enclosure begins with open parenthesis (

and ends with closing parenthesis) at end of line.

Parenthesis are not allowed to create complex statements.

see if (see 3.25) while (see 3.26) and for (see 3.27)

28 Code . Period Separator. Separates Page, Component and Attributes

Also used with page index and component array. (see 2.29)

page1.va0.val or p0.pic

29 Code [] Array[index]. There are 3 arrays. Keyboard source showcases 2 arrays.

The b[.id] component array which takes component .id as index

The p[index] page array which takes page index as index

These (p[].b[]) need to be used with caution and mindful purpose. Reference to a

component without specified Attribute can create for long and potentially frustrating

debug sessions. The third array is the Serial Buffer Data u[index] array. This is valid when

in active Protocol Reparse mode. Protocol Reparse is an advanced technique that should

be skipped if not fully understood.

p[pageindex].b[component.id].attribute // global scope

b[component.id].attribute // local scope on current page

30 Comment // Double-Slash Commenting to add user comments to code.

Everything to the right of, and including, the double-slash is a comment that will not be

executed by the Nextion interpreter. Comments should: 1) occur on a line by themselves

with the double-slash at the beginning of the line (no leading spaces), 2) immediately

following code on a line without a space separating code and the double slash.

Commenting of code blocks should occur: 1) before the condition/iteration 2) inside the

opening and closing braces 3) after the code block. Notes: It is important to note that

comments can not interrupt code blocks without causing an “Error: Index was outside the

bounds of the array”. Comments are counted towards the overall “code + attributes” hard

limit of 65534.

// these are valid comments
sys0=0// reset sys0 to zero

The following showcases valid/invalid use

//valid comment before condition/iteration
for(sys0=0;sys0<=sys1;sys0++)
// invalid comment between condition/iteration and block
{
 doevents//valid comment after code on same line
 // valid comment inside block
}
// valid comment outside block

3 – Operational Commands
No. Name Param

Count

Description and Usage/Parameters/Examples

1 page 1 Change page to page specified. Unloads old page to load specified page.

Nextion loads page 0 by default on power on.

usage: page <pid>

<pid> is either the page index number, or pagename

page 0 // Change page to indexed page 0

page main // Change page to the page named main

2 ref 1 Refresh component (auto-refresh when attribute changes since v0.38)

– if component is obstructed (stacking), ref brings component to top.

usage: ref <cid>

<cid> is component’s .id or .objname attribute of component to refresh

– when <cid> is 0 (page component) refreshes all on the current page.

ref t0 // Refreshes the component with .objname of t0

ref 3 // Refreshes the component with .id of 3

ref 0 // Refreshes all components on the current page (same as ref 255)

3 click 2 Trigger the specified components Touch Press/Release Event

As event code is always local, object can not be page prefixed

usage: click <cid>,<event>

<cid> is component’s .id or .objname attribute of component to refresh

<event> is 1 to trigger Press Event, 0 to trigger Release Events

click b0,1 // Trigger Touch Press Event of component with .objname b0

click 4,0 // Trigger Touch Release Event of component with .id 4

4 ref_stop 0 Stops default waveform refreshing (will not refresh when data point added)

– waveform refreshing will resume with ref_star (see 3.5)

usage: ref_stop

ref_stop // stop refreshing the waveform on each data point added

5 ref_star 0 Resume default waveform refreshing (refresh on data point add)

– used to resume waveform refreshing stopped by ref_stop (see 3.4)

usage: ref_start

ref_star // resume default refreshing, refresh on each data point added

6 get 1 Send attribute/constant over serial (0x70/0x71 Return Data)

usage: get <attribute>

<attribute> is either numeric value, .txt contents, or constant

get t0.txt // sends text contents of t0.txt in 0x70 Return Data format

get “123” // sends text constant “123” in 0x70 Return Data format

get n0.val // sends numeric value of n0.val in 0x71 Return Data format

get 123 // sends numeric constant 123 in 0x71 Return Data format

7 sendme 0 Sends number of currently loaded page over serial (0x66 Return Data)

– number of currently loaded page is stored in system variable dp

– used in a page’s initialize event will auto-send as page loads

usage: sendme

sendme // sends the value of dp in 0x66 Return Data Format

8 covx 4 Convert variable from numeric type to text, or text to numeric type

– text must be text ASCII representation of an integer value.

– source and destination types must not be of the same type

– when source is numeric, hex format and length not 0 and <4.

ie: (len 2) positive significant (byte 0 to 3), 123 = 0000007B = 007B

ie: (len 2) negative significant (byte 3 to 0), -123 = FFFFFF85 = FF85

– value is more than allowed space results in a truncation

– it is recommended to ensure handling source length in user code before covx

– in v0.53, covx is deemed undefined if source is larger than length or

dest txt_maxl is smaller than requested length.

(some of these undefines, can be exploited)

ie: src numeric value of 123 with length 0, result is dest text “123”

– when length is fixed and value is less, leading zeros will be added

ie: src numeric value of 123 with length 4, result is dest text “0123”

– when value is larger than length, .txt truncated to least significant digits

ie: src numeric value of 23425 with length 4 result is dest text “3425”

usage: covx <src>,<dest>,<length>,<format>

<src> is text attribute (or numeric attribute when <dest> is text)

<dest> is numeric attribute (or text attribute when <src> is numeric)

<length> will determine if leading zeros added to conversion to text

<format> 0: integer, 1: Comma separated 1,000s, 2: Hex

covx h0.val,t0.txt,0,0 // convert value of h0 into t0.txt without leading zeros

covx t0.txt,h0.val,0,0 // convert t0.txt into integer in h0.val <length> ignored.

covx h0.val,t0.txt,4,0 // convert value of h0 into t0.txt with exactly 4 digits

covx h0.val,t0.txt,4,1 // convert value of h0 into t0.txt with commas

covx h0.val,t0.txt,4,2 // convert value of h0 into t0.txt in 2 bytes of hex digits

Invalid: covx h0.val,va0.val,0,0 or covx t0.txt,va0.txt,0,0 // src & dest same type.

8a cov 3 Depreciated. Convert from numeric type to text, or text to numeric type

– text must be text ASCII representation of an integer value.

– source and destination types must not be of the same type

– when length is fixed and value is less, leading zeros will be added

ie: src numeric value of 123 with length 4, result is dest text “0123”

– dest txt_maxl and length needs be large enough to accommodate conversion.

ie: src numeric value of 123 with length 0, result is dest text “123”

– when value is larger than length, .txt results in a truncation

– it is recommended to handle source length in user code before cov

Note:v0.53 changed behaviour from previous pre/post v0.53 behaviours.

cov is deemed undefined if source is larger than length or the dest txt_maxl is

smaller than the requested length. Some undefines are exploitable.

usage: cov <src>,<dest>,<length>

<src> is text attribute (or numeric attribute when <dest> is text)

<dest> is numeric attribute (or text attribute when <src> is numeric)

<length> will determine if leading zeros added to conversion to text

cov h0.val,t0.txt,0 // convert value of h0 into t0.txt without leading zeros

cov t0.txt,h0.val,0 // convert integer into t0.txt from h0.val <length> ignored.

cov h0.val,t0.txt,4 // convert value of h0 into t0.txt with exactly 4 digits

Invalid: cov h0.val,va0.val,0 or cov t0.txt,va0.txt,0 // src & dest same type.

9 touch_j 0 Recalibrate the Resistive Nextion device’s touch sensor

– presents 4 points on screen for user to touch, saves, and then reboots.

– typically not required as device is calibrated at factory

– sensor can be effected by changes of conditions in environment

– Capacitive Nextion devices can not be user calibrated.

usage: touch_j

touch_j // trigger the recalibration of touch sensor

10 substr 4 Extract character or characters from contents of a Text attribute

usage: substr <src>,<dest>,<start>,<count>

<src> is text attribute where text will be extracted from

<dest> is text attribute to where extracted text will be placed

<start> is start position for extraction (0 is first char, 1 second)

<count> is the number of characters to extract

substr va0.txt,t0.txt,0,5 // extract first 5 chars from va0.txt, put into t0.txt

11 vis 2 Hide or Show component on current page

– show will refresh component and bring it to the forefront layer

– hide will remove component visually, touch events will be disabled

– use layering with mindful purpose, can cause ripping and flickering.

– use with caution and mindful purpose, may lead to difficult debug session

usage: vis <comp><state>

<comp> is either .objname or .id of component on current page,

– valid .id is 0 – page, 1 to 250 if component exists, and 255 for all

<state> is either 0 to hide, or 1 to show.

vis b0,0 // hide component with .objname b0

vis b0,1 // show component with .objname b0, refresh on front layer

vis 1,0 // hide component with .id 1

vis 1,1 // show component with .id 1, refresh on front layer

vis 255,0 // hides all components on the current page

12 tsw 2 Enable or disable touch events for component on current page

– by default, all components are enabled unless disabled by tsw

– use with caution and mindful purpose, may lead to difficult debug session

usage: tsw <comp><state>

<comp> is either .objname or .id of component on current page,

– valid .id is 0 – page, 1 to 250 if component exists, and 255 for all

<state> is either 0 to disable, or 1 to enable.

tsw b0,0 // disable Touch Press/Release events for component b0

tsw b0,1 // enable Touch Press/Release events for component b0

tsw 1,0 // disable Touch Press/Release events for component with id 1

tsw 1,1 // enable Touch Press/Release events for component with id 1

tsw 255,0 // disable all Touch Press/Release events on current page

13 com_stop 0 Stop execution of instructions received from Serial

– Serial will continue to receive and store in buffer.

– execution of instructions from Serial will resume with com_star (see 3.14)

– using com_stop and com_star may cause a buffer overflow condition.

– Refer to device datasheet for buffer size and command queue size

usage: com_stop

com_stop // stops execution of instructions from Serial

14 com_star 0 Resume execution of instructions received from Serial

– used to resume an execution stop caused by com_stop (see 3.13)

– when com_star received, all instructions in buffer will be executed

– using com_stop and com_star may cause a buffer overflow condition.

– Refer to device datasheet for buffer size and command queue size

usage: com_star

com_star // resume execution of instruction from Serial

15 randset 2 Set the Random Generator Range for use with rand (see 6.14)

– range will persist until changed or Nextion rebooted

– set range to desired range before using rand

– power on default range is -2147483648 to 2147483647, runtime range is user definable.

usage: randset <min>,<max>

<min> is value is -2147483648 to 2147483647

<max> is value greater than min and less than 2147483647

randset 1,100 //set current random generator range from 1 to 100

randset 0,65535 //set current random generator range from 0 to 65535

16 code_c 0 Clear the commands/data queued in command buffer without execution

usage: code_c

code_c // Clears the command buffer without execution

17 prints 2 Send raw formatted data over Serial to MCU

– prints does not use Nextion Return Data, user must handle MCU side

– qty of data may be limited by serial buffer (all data < 1024)

– numeric value sent in 4 byte 32-bit little endian order

value = byte1+byte2*256+byte3*65536+byte4*16777216

– text content sent is sent 1 ASCII byte per character, without null byte.

usage: prints <attr>,<length>

<attr> is either component attribute, variable or Constant

<length> is either 0 (all) or number to limit the bytes to send.

prints t0.txt,0 // return 1 byte per char of t0.txt without null byte ending.

prints t0.txt,4 // returns first 4 bytes, 1 byte per char of t0.txt without null byte ending.

prints j0.val,0 // return 4 bytes for j0.val in little endian order

HOME PRODUCT DOWNLOAD DOCUMENT SUPPORT COMMUNITY BLOG CONTACT US !

https://nextion.tech/instruction-set/
https://nextion.tech/editor_guide/
https://nextion.tech/datasheets/
https://nextion.tech/policies/
https://nextion.tech/faqs/
https://nextion.tech/
https://nextion.tech/
https://nextion.tech/nextion-editor/
https://nextion.tech/instruction-set/#
https://nextion.tech/forums/
https://nextion.tech/blogs/
https://nextion.tech/contact-us/
https://nextion.tech/instruction-set/#

prints j0.val,0 // return 4 bytes for j0.val in little endian order

prints j0.val,1 // returns 1 byte of j0.val in little endian order

prints “123”,2 // return 2 bytes for text “12” 0x31 0x32

prints 123,2 // returns 2 bytes for value 123 0x7B 0x00

17a print 1 Depreciated. Send raw formatted data over Serial to MCU

– print/printh does not use Nextion Return Data, user must handle MCU side

– qty of data may be limited by serial buffer (all data < 1024)

– numeric value sent in 4 byte 32-bit little endian order

value = byte1+byte2*256+byte3*65536+byte4*16777216

– text content sent is sent 1 ASCII byte per character, without null byte.

usage: print <attr>

<attr> is either component attribute, variable or Constant

print t0.txt // return 1 byte per char of t0.txt without null byte ending.

print j0.val // return 4 bytes for j0.val in little endian order

print “123” // return 3 bytes for text “123” 0x31 0x32 0x33

print 123 // return 4 bytes for value 123 0x7B 0x00 0x00 0x00

18 printh 1 to

many

 Send raw byte or multiple raw bytes over Serial to MCU

– printh is one of the few commands that parameter uses space char 0x20

– when more than one byte is being sent a space separates each byte

– byte is represented by 2 of (ASCII char of hexadecimal value per nibble)

– qty may be limited by serial buffer (all data < 1024)

– print/printh does not use Nextion Return Data, user must handle MCU side

usage: printh <hexhex>[<space><hexhex][…<space><hexhex]

<hexhex> is hexadecimal value of each nibble. 0x34 as 34

<space> is a space char 0x20, used to separate each <hexhex> pair

printh 0d // send single byte: value 13 hex: 0x0d

printh 0d 0a // send two bytes: value 13,10 hex: 0x0d0x0a

19 add 3 Add single value to Waveform Channel

– waveform channel data range is min 0, max 255

– 1 pixel column is used per data value added

– y placement is if value < s0.h then s0.y+s0.h-value, otherwise s0.y

usage: add <waveform>,<channel>,<value>

<waveform> is the .id of the waveform component

<channel> is the channel the data will be added to

<value> is ASCII text of data value, or numeric value

– valid: va0.val or sys0 or j0.val or 10

add 1,0,30 // add value 30 to Channel 0 of Waveform with .id 1

add 2,1,h0.val // add h0.val to Channel 1 of Waveform with .id 2

20 addt 3 Add specified number of bytes to Waveform Channel over Serial from MCU

– waveform channel data range is min 0, max 255

– 1 pixel column is used per data value added.

– addt uses Transparent Data Mode (see 1.16)

– waveform will not refresh until Transparent Data Mode completes.

– qty limited by serial buffer (all commands+terminations + data < 1024)

– also refer to add command (see 3.19)

usage: add <waveform>,<channel>,<qty>

<waveform> is the .id of the waveform component

<channel> is the channel the data will be added to

<qty> is the number of byte values to add to <channel>

addt 2,0,20 // adds 20 bytes to Channel 0 Waveform with .id 2 from serial

// byte of data is not ASCII text of byte value, but raw byte of data.

21 cle 3 Clear waveform channel data

usage: cle <waveform>,<channel>

<waveform> is the .id of the waveform component

<channel> is the channel to clear

<channel> must be a valid channel: < waveform.ch or 255

0 if .ch 1, 1 if .ch 2, 2 if .ch 3, 3 if .ch=4 and 255 (all channels)

cle 1,0 // clear channel 0 data from waveform with .id 1

cle 2,255 // clear all channels from waveform with .id 2

22 rest 0 Resets the Nextion Device

usage: rest

rest // immediate reset of Nextion device – reboot.

23 doevents 0 Force immediate screen refresh and receive serial bytes to buffer

– useful inside exclusive code block for visual refresh (see 3.26 and 3.27)

usage: doevents

doevents // allows refresh and serial to receive during code block

24 strlen 2 Computes the length of string in <txt> and puts value in <len>

usage: strlen <txt>,<len>

<txt> must be a string attribute ie: t0.txt, va0.txt

<len> must be numeric ie: n0.val, sys0, va0.val

strlen t0.txt,n0.val // assigns n0.val with length of t0.txt content

24a btlen 2 Computes number of bytes string in <txt> uses and puts value in <len>

usage: btlen <txt>,<len>

<txt> must be a string attribute ie: t0.txt, va0.txt

<len> must be numeric ie: n0.val, sys0, va0.val

btlen t0.txt,n0.val // assigns n0.val with number of bytes t0.txt occupies

25 if Block Conditionally execute code block if boolean condition is met

– execute commands within block { } if (conditions) is met.

– nested conditions using () is not allowed. invalid: ((h0.val+3)>0)

– block opening brace { must be on line by itself

– no space between block close brace } and else. valid: }else invalid: } else

– Text comparison supports ==, !=

– Numerical comparison supports >, <, ==, !=, >=, <=

– conditions can be joined with && or || with no spaces used

– nested “if” and “else if” supported.

usage: if condition block [else if condition block] [else block]

– (conditions) is a simple non-complex boolean comparison evaluating left to right

valid: (j0.val>75) invalid: (j0.val+1>75) invalid: (j0.val<now.val+60)

if(t0.txt=="123456")
{
 page 1
}

if(t0.txt=="123456"||sys0==14&&n0.val==12)
{
 page 1
}

if(t0.txt=="123456"&&sys0!=14)
{
 page 1
}

if(n0.val==123)
{
 b0.txt="stop"
}else
{
 b0.txt="start"
}

if(rtc==1)
{
 t0.txt="Jan"
}else if(rtc1==2)
{
 t0.txt="Feb"
}else if(rtc1==3)
{
 t0.txt="Mar"
}else
{
 t0.txt="etc"
}

26 while Block Continually executes code block until boolean condition is no longer met

– tests boolean condition and execute commands within block { } if conditions was met

and continues to re-execute block until condition is not met.

– nested conditions using () is not allowed. invalid: ((h0.val+3)>0)

– block opening brace { must be on line by itself

– Text comparison supports ==, !=

– Numerical comparison supports >, <, ==, !=, >=, <=

– conditions can be joined with && or || with no spaces used

– block runs exclusively until completion unless doevents used (see 3.23)

usage: while condition block

– (conditions) is a simple non-complex boolean comparison evaluating left to right

valid: (j0.val>75) invalid: (j0.val+1>75)

// increment n0.val as lon as n0.val < 100. result: b0.val=100
// will not visually see n0.val increment, refresh when while-loop completes
while(n0.val<100)
{
 n0.val++
}

//increment n0.val as long as n0.val < 100. result: n0.val=100
// will visually see n0.val increment, refresh each evaluation of while-loop
while(n0.val<100)
{
 n0.val++
 doevents
}

27 for Block Iterate execution of code block as long as boolean condition is met

– executes init_assignment, then tests boolean condition and executes

commands within block { } if boolean condition is met, when iteration of

block execution completes step_assignment is executed. Continues to

iterate block and step_assignment until boolean condition is not met.

– nested conditions using () is not allowed. invalid: ((h0.val+3)>0)

– block opening brace { must be on line by itself

– Text comparison supports ==, !=

– Numerical comparison supports >, <, ==, !=, >=, <=

– conditions can be joined with && or || with no spaces used

– block runs exclusively until completion unless doevents used (see 3.23)

usage: for(init_assignment;condition;step_assignment) block

– init_assignment and step_assignment are simple non-complex statement

valid: n0.val=4, sys2++, n0.val=sys2*4+3 invalid: n0.val=3+(sys2*4)-1

– (conditions) is a simple non-complex boolean comparison evaluating left to right

valid: (j0.val>75) invalid: (j0.val+1>75)

// iterate n0.val by 1's as long as n0.val<100. result: n0.val=100
// will not visually see n0val increment until for-loop completes
for(n0.val=0;n0.val<100;n0.val++)
{
}

////iterate n0.val by 2's as long as n0.val<100. result: n0.val=100
// will visually see n0.val increment when doevents processed
for(n0.val=0;n0.val<100;n0.val+=2)
{
 doevents
}

28 wepo 2 Store value/string to EEPROM

– EEPROM valid address range is from 0 to 1023 (1K EEPROM)

– numeric value length: is 4 bytes, -2147483648 to 2147483647

– numeric data type signed long integer, stored in little endian order.

val[addr+3]*16777216+val[addr+2]*65536+val[addr+1]*256+val[addr] – string content length:

.txt content is .txt-maxl +1, or constant length +1

usage: wepo <attr>,<addr>

<attr> is variable or constant

<addr> is storage starting address in EEPROM

wepo t0.txt,10 // writes t0.txt contents in addresses 10 to 10+t0.txt-maxl

wepo “abcd”,10 // write constant “abcd” in addresses 10 to 14

wepo 11,10 // write constant 11 in addresses 10 to 13

wepo n0.val,10 // write value n0.val in addresses 10 to 13

29 repo 2 Read value from EEPROM

– EEPROM valid address range is from 0 to 1023 (1K EEPROM)

– numeric value length: is 4 bytes, -2147483648 to 2147483647

– numeric data type signed long integer, stored in little endian order.

val[addr+3]*16777216+val[addr+2]*65536+val[addr+1]*256+val[addr] – string content length:

.txt content is lesser of .txt-maxl or until null reached.

usage: repo <attr>,<addr>

<attr> is variable or constant

<addr> is storage starting address in EEPROM

repo t0.txt,10 // reads qty .txt-maxl chars (or until null) from 10 into t0.txt

repo n0.val,10 // reads 4 bytes from address 10 to 13 into n0.val

30 wept 2 Store specified number of bytes to EEPROM over Serial from MCU

– EEPROM valid address range is from 0 to 1023 (1K EEPROM)

– wept uses Transparent Data Mode (see 1.16)

– qty limited by serial buffer (all commands+terminations + data < 1024)

usage: wept <addr>,<qty>

<addr> is storage starting address in EEPROM

<qty> is the number of bytes to store

wept 30,20 // writes 20 bytes into EEPROM addresses 30 to 49 from serial

// byte of data is not ASCII text of byte value, but raw byte of data.

31 rept 2 Read specified number of bytes from EEPROM over Serial to MCU

– EEPROM valid address range is from 0 to 1023 (1K EEPROM)

usage: rept <addr>,<qty>

<addr> is storage starting address in EEPROM

<qty> is the number of bytes to read

rept 30,20 // sends 20 bytes from EEPROM addresses 30 to 49 to serial

// byte of data is not ASCII text of byte value, but raw byte of data.

32 cfgpio 3 Configure Nextion GPIO

usage: cfgpio <io><mode><comp>

<io> is the number of the extended I/O pin.

– Valid values in PWM output mode: 4 to 7, all other modes 0 to 7.

<mode> is the working mode of pin selected by <io>.

– Valid values: 0-pull up input, 1-input binding, 2-push pull output,

3-PWM output, 4-open drain output.

<comp> component .objname or .id when <mode> is 1 (otherwise use 0)

– in binding mode, cfgpio needs to be declared after every refresh of page to reconnect to

Touch event, best to put cfgpio in page pre-initialization event

cfgpio 0,0,0 // configures io0 as a pull-up input. Read as n0.val=pio0.

cfgpio 1,2,0 // configures io1 as a push-pull output, write as pio1=1

cfgpio 2,1, b0 // configures io2 as binding input with current page b0.

// binding triggers b0 Press on falling edge and b0 Release on rising edge

For PWM mode, set duty cycle before cfgpio: ie: pwm4=20 for 20% duty.

cfgpio 4,3,0 // configures io4 as PWM output. pwmf=933 to change Hz.

// changing pwmf changes frequency of all configured PWM io4 to io7

33 ucopy 4 Advanced. Read Only. Valid in active Protocol Reparse mode.

Copies data from the serial buffer.

When Nextion is in active Protocol Reparse mode, ucopy copies data from the serial

buffer. Most HMI applications will not require Protocol Reparse and should be skipped if

not fully understood.

usage: ucopy <attr>,<srcstart>,<len>,<deststart>

<attr> must be a writeable attribute ie: t0.txt, va0.val

<srcstart> must be numeric value ie: 0

<len> must be a numeric value ie: 4

<deststart> must be numeric value ie: 0

ucopy n0.val,0,2,0 // copy buffer bytes 0,1 to lower 2 bytes of n0.val

ucopy n0.val,0,2,2 // copy buffer bytes 0,1 to upper 2 bytes of n0.val

ucopy n0.val,0,4,0 // copy buffer bytes 0,1,2,4 to n0.val

ucopy t0.txt,0,10,0 // copy buffer bytes 0 to 9 into t0.txt

34 move 7 Move component.

usage: move <comp>,<x1>,<y1>,<x2>,<y2>,<priority>,<time>

<comp> is the component name or component id

<x1> is the starting X coordinate

<y1> is the starting Y coordinate

<x2> is the destination X coordinate

<y2> is the destination Y coordinate

<priority> is a value 0 to 100, 100 being highest priority

<time> is time in ms.

move t0,-30,-30,100,150,95,120 // 120ms to move t0 into position 100,150

move t1,-30,-30,200,150,90,180 // 180ms to move t1 into position 200,150

move t2,-30,-30,300,150,100,150 // 150ms to move t2 into position 300,150

// given the example priorities, t2 moves first, then t0 and lastly t1

35 play 3 Play audio resource on selected Channel

usage: play <ch>,<resource>,<loop>

<ch> is the component name or component id

<resource> is the Audio Resource ID

<loop> is 0 for no looping, 1 to loopthe starting Y coordinate

Notes: The play instruction is used to configure and start audio playback. audio0 and

audio1 are used to control the channel. Audio playback is global and playback continues

after leaving and changing pages, if you want the audio to stop on leaving the page, you

should do so in the page leave event

play 1,3,0// play resource 3 on channel 1 with no looping

play 0,2,1// play resource 2 on channel 0 with looping

36 twfile 2 Advanced. Transfer file over Serial

usage: twfile <filepath>,<filesize>

<filepath> is destination path and filename quote encapsulated text

<filesize> is the size of the file in bytes.

twfile “ram/0.jpg”,1120// transfer jpg over serial to ram/0.jpg size 1120 bytes

twfile “sd0/0.jpg”,1120// transfer jpg over serial to sd0/0.jpg size 1120 bytes

37 delfile 1 Advanced. Delete external file.

usage: delfile <filepath>

<filepath> is target path and filename as quote encapsulated text

delfile “ram/0.jpg”// remove transferred file ram/0.jpg

delfile “sd0/0.jpg”// remove transferred file sd0/0.jpg

38 refile 2 Advanced. Rename external file.

usage: refile <oldname>,<newname>

<oldname> is source path and filename as quote encapsulated text

<newname> is target path and filename as quote encapsulated text

refile “ram/0.jpg”,”ram/1.jpg”// rename file ram/0.jpg to ram/1.jpg

refile “sd0/0.jpg”,”sd0/1.jpg”// rename file sd0/0.jpg to sd0/1.jpg

39 findfile 2 Advanced. Find File reports if named external file exists

usage: findfile <pathfile>,<result>

<pathfile> is source path and filename as quote encapsulated text

<result> is a numeric attribute for the result to be stored

Returns 0 result if find fails, returns 1 if find is successful.

findfile “ram/0.jpg”,n0.val// check if file exists, store result in n0.val

findfile “sd0/0.jpg”,sys0//check if file exists, store result in sys0

40 rdfile 4 Advanced. Read File contents and outputs contents over serial

usage: rdfile <pathfile>,<offset>,<count>,<crc>

<pathfile> is source path and filename as quote encapsulated text

<offset> is the starting offset of the file

<count> is number of bytes to return (see note if 0)

<crc> is an option (0: no crc, 1: Modbus crc16, 10: crc32)

If count is 0, then 4 byte file size is returned in little endian order.

rdfile “ram/0.jpg”,0,10,0// send first 10 bytes of file, no CRC, 10 bytes.

rdfile “sd0/0.jpg”,0,10,1// send first 10 bytes of file, MODBUS CRC, 12 bytes.

rdfile “sd0/0.jpg”,0,10,10// send first 10 bytes of file, CRC32, 14 bytes.

41 setlayer 2 Set Component Layer

usage: setlayer <comp1>,<comp2>

<comp1> is component ID or objname of component needing to change layers

<comp2> is the component ID or object name comp1 is placed above

Note: using comp2 value of 255 places comp1 on topmost layer.

setlayer t0,n0//places to above n0’s layer

setlayer t0,255//place t0 on the topmost layer

setlayer n0,3//place n0 on the 3rd layer

42 newdir 1 Advanced. Create a new directory

usage: newdir <dir>

<dir> is directory to be created

Note: directory name to end with forward slash /

newdir “sd0/data/”//create directory called data

newdir “sd0/202003/”//create directory called 202003

43 deldir 1 Advanced. Remove a directory

usage: deldir <dir>

<dir> is directory to be deleted

Note: directory name to end with forward slash /

deldir “sd0/data/”//remove directory called data

deldir “sd0/202003/”//remove directory called 202003

44 redir 2 Advanced. Rename a directory

usage: redir <srcdir>,<destdir>

<srcdir> is directory to be renamed

<destdir> new name of directory being renamed

Note: directory names to end with forward slash /

redir “sd0/data/”,”sd0/data2/”//rename data to data2

redir “sd0/202003/”,”sd0/2004/”//rename 202003 to 2004

45 finddir 2 Advanced. Test if directory exists

usage: finddir <dir>,<attr>

<dir> is directory to test if exists

<attr> number variable where result will be stored

Note: directory names to end with forward slash /

Returns 1 if directory exists, returns 0 if not found

finddir “sd0/data/”,va0.val//find directory data, result in va0.val

finddir “sd0/2003/”,sys0//find directory 2004, result in sys0

46 udelete 1 Advanced. Remove bytes from Serial Buffer

usage: udelete <qty>

<qty> is number of bytes to remove from beginning of Serial Buffer

Note: Protocol Reparse Mode (recmod) must be active to be used. Most HMI applications

will not require Protocol Reparse and should be skipped if not fully understood.

udelete 24//delete first 24 bytes of Buffer

udelete 10//delete first 10 bytes of Buffer

47 crcrest 2 Advanced. Reset CRC and Initialize

usage: crcrest <crctype>,<initval>

<crctype> must be 1 (type Modbus CRC16)

<initval> is crc initial value (usually 0xFFFF)

crcrest 1,0xFFFF//reset and initialize crc

48 crcputs 2 Advanced. Accumulate CRC for Variable or constant

usage: crcputs <attr>,<length>

<attr> is attribute or constant

<length> is 0 (for Automatic) or specified length

crcputs va0.val,0//accumulate crc for va0.val (length auto)

crcputs va1.txt,3//accumulate crc for first 3 bytes of va1.txt

49 crcputh 1 Advanced. Accumulate CRC for hex string

usage: crcputh <hex>

<hex> is string of hex chars

Note: each byte in the hex string has 2 hexdigits, bytes separated by a space.

crcputh 0A//accumulate crc for byte 0x0A

crcputh 0A 0D//accumulate crc for bytes 0x0A 0x0D

50 crcputu 2 Advanced. Accumulate CRC on Serial Buffer

usage: crcputu <start>,<qty>

<start> is start byte of Serial Buffer to accumulate

<qty> is number of bytes to accumulate including start byte

Note: Protocol Reparse Mode (recmod) must be active to be used. Most HMI applications

will not require Protocol Reparse and should be skipped if not fully understood.

crcputu 0,10//accumulate crc for first 10 bytes of Serial Buffer

crcputu 10,10//accumulate crc for second 10 bytes 0x0A 0x0D

51 spstr 4 Split String

usage: spstr <src>,<dest>,<key>,<index>

<src> is src .txt attribute or string data constant

<dest> is .txt attribute where result is stored

<key> is the text delimiter encapsulated in double quotes

<index> is zero-indexed iteration result to return

spstr “ab3cd3ef3ghi”,va1.txt,”3″,0//return string ab before first delimiter occurs

spstr “ab3cd3ef3ghi”,va1.txt,”3″,2//return string ef after second delimiter occurs

4 – GUI Designing Commands
No. Name Param

Count

Description and Usage/Parameters/Examples

1 cls 1 Clear the screen and fill the entire screen with specified color

usage: cls <color>

<color> is either decimal 565 Color Value or Color Constant

cls BLUE // Clear the screen and fill with color BLUE

cls 1024 // Clear the screen and fill with color 1024

2 pic 3 Display a Resource Picture at specified coordinate

usage: pic <x>,<y>,<picid>

<x> is the x coordinate of upper left corner where picture should be drawn

<y> is the y coordinate of upper left corner where picture should be drawn

<picid> is the number of the Resource Picture in the HMI design

pic 10,20,0 // Display Resource Picture #0 with upper left corner at (10,20)

pic 40,50,1 // Display Resource Picture #1 with upper left corner at (40,50)

3 picq 5 Crop Picture area from Resource Picture using defined area

– replaces defined area with content from the same area of Resource Picture

– Resource Picture should be full screen-size or area might be undefined

usage: picq <x>,<y>,<w>,<h>,<picid>

<x> is the x coordinate of upper left corner of defined crop area

<y> is the y coordinate of upper left corner of defined crop area

<w> is the width of the defined crop area

<h> is the height of the defined crop area

<picid> is the number of the Resource Picture in the HMI design

picq 20,50,30,20,0

// crops area 30×20, from (20,50) to (49,69), from Resource Picture 0

4 xpic 7 Advanced Crop Picture

crop area from source Resource Picture render at destination coordinate

usage: xpic <destx>,<desty>,<w>,<h>,<srcx>,<srcy>,<picid>

<destx> is the x coordinate of destination upper left corner

<desty> is the y coordinate of destination upper left corner

<desty> is the y coordinate of destination upper left corner

<w> is the width of the defined crop area

<h> is the height of the defined crop area

<srcx> is the x coordinate of upper left corner of defined crop area

<srcy> is the y coordinate of upper left corner of defined crop area

<picid> is the number of the Resource Picture in the HMI design

xpic 20,50,30,20,15,15,0 // crops area 30×20, from (15,15) to (44,34),

// from Resource Picture 0 and renders it with upper left corner at (20,50)

5 xstr 11 Prints text on the Nextion device using defined area for text rendering

usage: xstr <x>,<y>,<w>,<h>,,<pco>,<bco>,<xcen>,<ycen>,<sta>,<text>

<x> is the x coordinate of upper left corner of defined text area

<y> is the y coordinate of upper left corner of defined text area

<w> is the width of the defined text area

<h> is the height of the defined text area

 is the number of the Resource Font

<pco> is the foreground color of text (Color Constant or 565 color value)

<bco> is a) background color of text, or b) picid if <sta> is set to 0 or 2

<xcen> is the Horizontal Alignment (0 – left, 1 – centered, 2 – right)

<ycen> is the Vertical Alignment (0 – top/upper, 1 – center, 3 – bottom/lower)

<sta> is background Fill (0 – crop image, 1 – solid color, 2 – image, 3 – none)

<text> is the string content (constant or .txt attribute), ie “China”, or va0.txt

xstr 10,10,100,30,1,WHITE,GREEN,1,1,1,va0.txt

// use are 100×30 from (10,10) to (109,39) to print contents of va0.txt using

// Font Resource 1 rendering Green letters on White background with both

// horizontal and vertical centering and sta set as solid-color.

6 fill 5 Fill a defined area with specified color

usage: fill <x>,<y>,<w>,<h>,<color>

<x> is the x coordinate of upper left corner of defined fill area

<y> is the y coordinate of upper left corner of defined fill area

<w> is the width of the defined fill area

<h> is the height of the defined fill area

<color> is fill color, either decimal 565 Color Value or Color Constant

fill 20,20,150,50,1024

// fills area 150×50 from (20,20) to (169,69) with 565 Color 1024.

7 line 5 Draw a line from point to point with specified color

usage: line <x1>,<y1>,<x2>,<y2>,<color>

<x1> is the x coordinate of the starting point of the line to be drawn

<y1> is the y coordinate of the starting point of the line to be drawn

<x2> is the x coordinate of the ending point of the line to be drawn

<y2> is the y coordinate of the ending point of the line to be drawn

<color> is line color, either decimal 565 Color Value or Color Constant

line 20,30,170,200,BLUE // draws line in BLUE from (20,30) to (170,200)

8 draw 5 Draw a hollow rectangle around specified area with specified color

usage: draw <x1>,<y1>,<x2>,<y2>,<color>

<x1> is the x coordinate of the upper left corner of rectangle area

<y1> is the y coordinate of the upper left corner of rectangle area

<x2> is the x coordinate of the lower right corner of rectangle area

<y2> is the y coordinate of the lower right corner of rectangle area

<color> is line color, either decimal 565 Color Value or Color Constant

draw 10,10,70,70,GREEN // draw a Green rectangle around (10,10) to (79,79)

// effectively four lines from (x1,y1) to (x2,y1) to (x2,y2) to (x1,y2) to (x1,y1)

9 cir 4 Draw a hollow circle with specified radius and specified color

usage: cir <x>,<y>,<radius>,<color>

<x> is the x coordinate of the center point for the circle

<y> is the y coordinate of the center point for the circle

<radius> is the radius in pixels

<color> is line color, either decimal 565 Color Value or Color Constant

cir 100,100,30,RED // renders a hollow Red circle with circle center at (100,100),

// a 30 pixel radius, a 61 pixel diameter, within boundary (70,70) to (130,130).

10 cirs 4 Draw a filled circle with specified radius and specified color

usage: cirs <x>,<y>,<radius>,<color>

<x> is the x coordinate of the center point for the circle

<y> is the y coordinate of the center point for the circle

<radius> is the radius in pixels

<color> is fill color, either decimal 565 Color Value or Color Constant

cir 100,100,30,RED // renders a filled Red circle with center at (100,100),

// a 30 pixel radius, a 61 pixel diameter, within boundary (70,70) to (130,130).

5 – Color Code Constants
No. Constant 565 Color Value Indicator Color

1 BLACK 0 Black

2 BLUE 31 Blue

3 BROWN 48192 Brown

4 GREEN 2016 Green

5 YELLOW 65504 Yellow

6 RED 63488 Red

7 GRAY 33840 Gray

8 WHITE 65535 White

Note: 16-bit 565 Colors are in decimal values from 0 to 65535

24-bit RGB 11011000 11011000 11011000

16-bit 565 11011 110110 11011

6 – System Variables
No. Name Meaning Example/Description

1 dp Current

Page ID

dp=1, n0.val=dp

 read: Contains the current page displayed as per the HMI design

write: change page to value specified (same effect as page command)

min 0, max # of highest existing page in the user’s HMI design.

2 dim

dims

Nextion

Backlight

dim=32, dims=100

 Sets the backlight level in percent

min 0, max 100, default 100 or user defined

Note: dim=32 will set the current backlight level to 32%.

using dims=32 will set the current backlight level to 32% and save this to be new power on

default backlight level, persisting until changed.

3 baud

bauds

Nextion

Baud Rate

baud=9600, bauds=9600

 Sets the Nextion Baud rate in bits-per-second

min 2400, max 921600, default 9600 or user defined

Valid values are: 2400, 4800, 9600, 19200, 31250, 38400, 57600, and 115200, 230400, 250000,

256000, 512000, and 921600

Note: baud=38400 will set the current baud rate to 38400

using bauds=38400 will set the current baud rate to 38400 and save this to be new power

on default baud rate, persisting until changed.

Note: on rare occasions bauds has become lost. With the addition of the Editor Program.s

feature, it is now recommended to specify your desired baud rate baud=9600 between

declarations and before the page0 instruction and no longer recommending inserting

bauds=9600 in the first page’s Preinitialization Event of the HMI.

4 spax

spay

Font

Spacing

spax=2, spay=2

 Sets the default rendering space for xstr:

horizontally between font characters with spax additional pixels and

vertically between rows (if multi-lined) with spay additional pixels.

min 0, max 65535, default 0

Note: Components now have their own individual .spax/.spay attributes that are now

used to determine spacing for the individual component.

5 thc Touch

Draw Brush

Color

thc=RED, thc=1024

 Sets the Touch Drawing brush color

min 0, max 65535, default 0

Valid choices are either color constants or the decimal 565 color value.

6 thdra Touch

Drawing

thdra=1 (on), thdra=0 (off)

 Turns the internal drawing function on or off.

min 0, max 1, default 0

When the drawing function is on, Nextion will follow touch dragging with the current

brush color (as determined by the thc variable).

7 ussp Sleep on

No Serial

ussp=30

 Sets internal No-serial-then-sleep timer to specified value in seconds

min 3, max 65535, default 0 (max: 18 hours 12 minutes 15 seconds)

Nextion will auto-enter sleep mode if and when this timer expires.

Note: Nextion device needs to exit sleep to issue ussp=0 to disable sleep on no serial,

otherwise once ussp is set, it will persist until reboot or reset.

8 thsp Sleep on

No Touch

thsp=30

 Sets internal No-touch-then-sleep timer to specified value in seconds

min 3, max 65535, default 0 (max: 18 hours 12 minutes 15 seconds)

Nextion will auto-enter sleep mode if and when this timer expires.

Note: Nextion device needs to exit sleep to issue thsp=0 to disable sleep on no touch,

otherwise once thsp is set, it will persist until reboot or reset.

9 thup Auto Wake

on Touch

thup=0 (do not wake), thup=1 (wake on touch)

 Sets if Nextion should auto-wake from sleep when touch press occurs.

min 0, max 1, default 0

When value is 1 and Nextion is in sleep mode, the first touch will only trigger the auto

wake mode and not trigger a Touch Event.

thup has no influence on sendxy, sendxy will operate independently.

10 sendxy RealTime

Touch

Coordinates

sendxy=1 (start sending) sendxy=0 (stop sending)

 Sets if Nextion should send 0x67 and 0x68 Return Data

min 0, max 1, default 0

– Less accurate closer to edges, and more accurate closer to center.

Note: expecting exact pixel (0,0) or (799,479) is simply not achievable.

11 delay Delay delay=100

 Creates a halt in Nextion code execution for specified time in ms

min 0, max 65535

As delay is interpreted, a total halt is avoided. Incoming serial data is received and stored

in buffer but not be processed until delay ends. If delay of more than 65.535 seconds is

required, use of multiple delay statements required.

delay=-1 is max. 65.535 seconds.

12 sleep Sleep sleep=1 (Enter sleep mode) or sleep=0 (Exit sleep mode)

 Sets Nextion mode between sleep and awake.

min 0, max 1, or default 0

When exiting sleep mode, the Nextion device will auto refresh the page

(as determined by the value in the wup variable) and reset the backlight brightness (as

determined by the value in the dim variable). A get/print/printh/wup/sleep instruction

can be executed during sleep mode. Extended IO binding interrupts do not occur in sleep.

13 bkcmd Pass / Fail

Return Data

bkcmd=3

 Sets the level of Return Data on commands processed over Serial.

min 0, max 3, default 2

– Level 0 is Off – no pass/fail will be returned

– Level 1 is OnSuccess, only when last serial command successful.

– Level 2 is OnFailure, only when last serial command failed

– Level 3 is Always, returns 0x00 to 0x23 result of serial command.

Result is only sent after serial command/task has been completed, as such this provides

an invaluable status for debugging and branching. Table 2 of Section 7 Nextion Return

Data is not subject to bkcmd

14 rand Random

Value

n0.val=rand

 Readonly. Value returned by rand is random every time it is referred to.

default range is -2147483648 to 2147483647

range of rand is user customizable using the randset command

range as set with randset will persist until reboot or reset

15 sys0

sys1

sys2

Numeric

System

Variables

sys0=10 sys1=40 sys2=60 n0.val=sys2

 System Variables are global in nature with no need to define or create.

They can be read or written from any page. 32-bit signed integers.

min value of -2147483648, max value of 2147483647

Suggested uses of sys variables include

– as temporary variables in complex calculations

– as parameters to pass to click function or pass between pages.

16 wup Wake Up

Page

wup=2, n0.val=wup

 Sets which page Nextion loads when exiting sleep mode

min is 0, max is # of last page in HMI, or default 255

When wup=255 (not set to any existing page)

– Nextion wakes up to current page, refreshing components only

wup can be set even when Nextion is in sleep mode

17 usup Wake On

Serial Data

usup=0, usup=1

 Sets if serial data wakes Nextion from sleep mode automatically.

min is 0, max is 1, default 0

When usup=0, send sleep=0ÿÿÿ to wake Nextion

When usup=1, any serial received wakes Nextion

18 rtc0

rtc1

rtc2

rtc3

rtc4

rtc5

rtc6

RTC rtc0=2017, rtc1=8, rtc2=28,

rtc3=16, rtc4=50, rtc5=36, n0.val=rtc6

 Nextion RTC:

rtc0 is year 2000 to 2099, rtc1 is month 1 to 12, rtc2 is day 1 to 31,

rtc3 is hour 0 to 23, rtc4 is minute 0 to 59, rtc5 is second 0 to 59.

rtc6 is dayofweek 0 to 6 (Sunday=0, Saturday=6)

rtc6 is readonly and calculated by RTC when date is valid.

19 pio0

pio1

pio2

pio3

pio4

pio5

pio6

pio7

GPIO pio3=1, pio3=0, n0.val=pio3

 Default mode when power on: pull up input mode

Internal pull up resistor: 50K

GPIO is digital. Value of 0 or 1 only.

– refer to cfgpio command for setting GPIO mode

read if in input mode, write if in output mode

19 pwm4

pwm5

pwm6

pwm7

PWM Duty

Cycle

pwm7=25

 Value in percentage. min 0, max 100, default 50.

– refer to cfgpio command for setting GPIO mode

 supports pwm4, pwm5, pwm6 and pwm7

 supports only pwm6 and pwm7

21 pwmf PWM

Frequency

pwmf=933

 Value is in Hz. min value 1 Hz, max value 65535 Hz. default 1000 Hz

All PWM output is unified to only one Frequency, no independent individual settings are

allowed.

– refer to cfgpio command for setting GPIO mode

22 addr Address addr=257

 Advanced. Enables/disables Nextion’s two byte Address Mode

0, or min value 256, max value 2815. default 0

Setting addr will persist to be the new power-on default.

– refer to section 1.19

23 tch0

tch1

tch2

tch3

Touch

Coordinates

x.val=tch0, y.val=tch1

 Readonly. When Pressed tch0 is x coordinate, tch1 is y coordinate.

When released (not currently pressed), tch0 and tch1 will be 0.

tch2 holds the last x coordinate, tch3 holds the last y coordinate.

24 recmod Protocol

Reparse

recmod=0, recmod=1

 Advanced. Set passive or active Protocol Reparse mode.

min is 0, max is 1, default 0

When recmod=0, Nextion is in passive mode and processes serial data according to the

Nextion Instruction Set, this is the default power on processing. When recmod=1, Nextion

enters into active mode where the serial data waits to be processed by event code. Most

HMI applications will not require Protocol Reparse and should be skipped if not fully

understood.

25 usize Bytes in Serial

Buffer

n0.val=usize

 Advanced. Read Only. Valid in active Protocol Reparse mode.

min is 0, max is 1024

When Nextion is in active Protocol Reparse mode, usize reports the number of available

bytes in the serial buffer. Most HMI applications will not require Protocol Reparse and

should be skipped if not fully understood.

26 u[index] Serial Buffer

Data

n0.val=u[0]

 Advanced. Read Only. Valid in active Protocol Reparse mode.

min is 0, max is 255

When Nextion is in active Protocol Reparse mode, the u[index] array returns the byte at

position index from the serial buffer. Most HMI applications will not require Protocol

Reparse and should be skipped if not fully understood.

27 eql

eqm

eqh

Equalizer

Groupings

eqm=7

 Valid on Nextion Device, not supported in Debug Simulator.

min is 0, max is 15

eql: Bass (31Hz to 125Hz, eq0..eq2)

eqm: Midrange (250Hz to 2000Hz, eq3..eq6)

eqh: Treble (4000Hz to 1600Hz, eq7..eq9)

Setting to 7 is Balanced with no attenuation, no gain

Setting 0..6, the lower the value the higher the attenuation

Setting 8..15, the higher the value the higher the gain

NOTE: The base of the equalizer is operated according to eq0..eq9,

when a group is modified the corresponding individual bands are modified, however

modifying an individual band does not modify the group. (ie: setting eql=4 sets eq0, eq1

and eq2 to 4, but setting eq1=3 does not modify eql to 3, eq0 and eq2 remain at 4).

28 eq0

eq1

eq2

eq3

eq4

eq5

eq6

eq7

eq8

eq9

Equalizer

Individual

Bands

eq6=7

 Valid on Nextion Device, not supported in Debug Simulator.

min is 0, max is 15

eq0 (31Hz), eq1 (62Hz), eq2 (125Hz),

eq3 (250Hz), eq4 (500Hz), eq5 (1000Hz), eq6 (2000Hz),

eq7 (4000Hz), eq8 (8000Hz), eq9 (16000Hz)

Setting to 7 is Balanced with no attenuation, no gain

Setting 0..6, the lower the value the higher the attenuation

Setting 8..15, the higher the value the higher the gain

NOTE: The base of the equalizer is operated according to eq0..eq9,

when a group is modified the corresponding individual bands are modified, however

modifying an individual band does not modify the group. (ie: setting eql=4 sets eq0, eq1

and eq2 to 4, but setting eq1=3 does not modify eql to 3, eq0 and eq2 remain at 4).

29 volume Audio Volume volume=60

 Valid on Nextion Device, not supported in Debug Simulator.

min is 0, max is 100

volume persists and sets the power-on default setting for the audio volume

30 audio0

audio1

Audio Channel

Control

audio0=0// stop channel 0 audio playback

min is 0, max is 2

0 (stop), 1 (resume), 2 (pause).

Notes: The play instruction is used to configure and start audio playback. audio0 and

audio1 are only used to control the channel. Only if the channel is paused can it be

resumed, if the channel is stopped then the play instruction is required to start it again.

Audio playback is global and playback continues after leaving and changing pages, if you

want the channel to stop on leaving the page, you must do so in the page leave event

31 crcval CRC Value x.val=crcval

 Readonly. Holds the current CRC accumulated value.

Use crcrest to reset and initialize

Use crcputs, crcputh or crcputu to accumulate

7 – Format of Nextion Return Data
Return Codes dependent on bkcmd value being greater than 0

No. Byte bkcmd len Meaning Format/Description

1 0x00 2,3 4 Invalid

Instruction

0x00 0xFF 0xFF 0xFF

Returned when instruction sent by user has failed

2 0x01 1,3 4 Instruction

Successful

0x01 0xFF 0xFF 0xFF

Returned when instruction sent by user was successful

3 0x02 2,3 4 Invalid

Component ID

0x02 0xFF 0xFF 0xFF

Returned when invalid Component ID or name was used

4 0x03 2,3 4 Invalid Page ID 0x03 0xFF 0xFF 0xFF

Returned when invalid Page ID or name was used

5 0x04 2,3 4 Invalid Picture

ID

0x04 0xFF 0xFF 0xFF

Returned when invalid Picture ID was used

6 0x05 2,3 4 Invalid Font ID 0x05 0xFF 0xFF 0xFF

Returned when invalid Font ID was used

7 0x06 2,3 4 Invalid File

Operation

0x06 0xFF 0xFF 0xFF

Returned when File operation fails

8 0x09 2,3 4 Invalid CRC 0x09 0xFF 0xFF 0xFF

Returned when Instructions with CRC validation fails their CRC check

9 0x11 2,3 4 Invalid Baud

rate Setting

0x11 0xFF 0xFF 0xFF

Returned when invalid Baud rate was used

10 0x12 2,3 4 Invalid

Waveform ID

or Channel #

0x12 0xFF 0xFF 0xFF

Returned when invalid Waveform ID or Channel # was used

11 0x1A 2,3 4 Invalid

Variable name

or attribute

0x1A 0xFF 0xFF 0xFF

Returned when invalid Variable name or invalid attribute was used

12 0x1B 2,3 4 Invalid

Variable

Operation

0x1B 0xFF 0xFF 0xFF

Returned when Operation of Variable is invalid. ie: Text assignment t0.txt=abc

or t0.txt=23, Numeric assignment j0.val=”50″ or j0.val=abc

13 0x1C 2,3 4 Assignment

failed to

assign

0x1C 0xFF 0xFF 0xFF

Returned when attribute assignment failed to assign

14 0x1D 2,3 4 EEPROM

Operation

failed

0x1D 0xFF 0xFF 0xFF

Returned when an EEPROM Operation has failed

15 0x1E 2,3 4 Invalid

Quantity of

Parameters

0x1E 0xFF 0xFF 0xFF

Returned when the number of instruction parameters is invalid

16 0x1F 2,3 4 IO Operation

failed

0x1F 0xFF 0xFF 0xFF

Returned when an IO operation has failed

17 0x20 2,3 4 Escape

Character

Invalid

0x20 0xFF 0xFF 0xFF

Returned when an unsupported escape character is used

18 0x23 2,3 4 Variable name

too long

0x23 0xFF 0xFF 0xFF

Returned when variable name is too long. Max length is 29 characters: 14 for

page + “.” + 14 for component.

Return Codes not affected by bkcmd value, valid in all cases

No. Byte length Meaning Format/Description

19 0x00 6 Nextion

Startup

0x00 0x00 0x00 0xFF 0xFF 0xFF

Returned when Nextion has started or reset

20 0x24 4 Serial Buffer

Overflow

0x24 0xFF 0xFF 0xFF

Returned when a Serial Buffer overflow occurs

Buffer will continue to receive the current instruction, all previous

instructions are lost.

21 0x65 7 Touch Event 0x65 0x00 0x01 0x01 0xFF 0xFF 0xFF

Returned when Touch occurs and component’s

corresponding Send Component ID is checked

in the users HMI design.

0x00 is page number, 0x01 is component ID,

0x01 is event (0x01 Press and 0x00 Release)

data: Page 0, Component 1, Pressed

22 0x66 5 Current Page

Number

0x66 0x01 0xFF 0xFF 0xFF

Returned when the sendme command is used.

0x01 is current page number

data: page 1

23 0x67 9 Touch

Coordinate

(awake)

0x67 0x00 0x7A 0x00 0x1E 0x01 0xFF 0xFF 0xFF

Returned when sendxy=1 and not in sleep mode

0x00 0x7A is x coordinate in big endian order,

0x00 0x1E is y coordinate in big endian order,

0x01 is event (0x01 Press and 0x00 Release)

(0x00*256+0x71,0x00*256+0x1E)

data: (122,30) Pressed

24 0x68 9 Touch

Coordinate

(sleep)

0x68 0x00 0x7A 0x00 0x1E 0x01 0xFF 0xFF 0xFF

Returned when sendxy=1 and exiting sleep

0x00 0x7A is x coordinate in big endian order,

0x00 0x1E is y coordinate in big endian order,

0x01 is event (0x01 Press and 0x00 Release)

(0x00*256+0x71,0x00*256+0x1E)

data: (122,30) Pressed

25 0x70 Varied String Data

Enclosed

0x70 0x61 0x62 0x31 0x32 0x33 0xFF 0xFF 0xFF

Returned when using get command for a string.

Each byte is converted to char.

data: ab123

26 0x71 8 Numeric Data

Enclosed

0x71 0x01 0x02 0x03 0x04 0xFF 0xFF 0xFF

Returned when get command to return a number

4 byte 32-bit value in little endian order.

(0x01+0x02*256+0x03*65536+0x04*16777216)

data: 67305985

27 0x86 4 Auto Entered

Sleep Mode

0x86 0xFF 0xFF 0xFF

Returned when Nextion enters sleep automatically

Using sleep=1 will not return an 0x86

28 0x87 4 Auto Wake

from Sleep

0x87 0xFF 0xFF 0xFF

Returned when Nextion leaves sleep automatically

Using sleep=0 will not return an 0x87

29 0x88 4 Nextion Ready 0x88 0xFF 0xFF 0xFF

Returned when Nextion has powered up

and is now initialized successfully

30 0x89 4 Start microSD

Upgrade

0x89 0xFF 0xFF 0xFF

Returned when power on detects inserted microSD

Contact us

Where to Buy

Affiliate

DOWNLOAD AND DOCUMENT

Nextion Editor

Editor Guide

Instruction Set

Product Datasheets

Library

CONTACT INFO

Address: 8F, Building No.9, Banri wowi, Tongsha Road

No.32 , Nanshan Dist., Shenzhen, GD, China

Postal Code: 518000 China

Telephone: +86-755-27955416

Upgrade Returned when power on detects inserted microSD

and begins Upgrade by microSD process

31 0xFD 4 Transparent

Data Finished

0xFD 0xFF 0xFF 0xFF

Returned when all requested bytes of Transparent

Data mode have been received, and is now leaving transparent data mode

(see 1.16)

32 0xFE 4 Transparent

Data Ready

0xFE 0xFF 0xFF 0xFF

Returned when requesting Transparent Data

mode, and device is now ready to begin receiving

the specified quantity of data (see 1.16)

© Copyright 2011 - 2021 ITEAD STUDIO All Right Reserved " # $

https://www.facebook.com/iteadstudio/
https://twitter.com/Iteadstudio
https://www.youtube.com/channel/UCIiO6ag7O3vSFFGONQGySvg

