
Arduino SevenSeg 1.2.1

Sigvald Marholm

18.04.2017

1

Disclaimer
I do not take any responsibility for the usage of my code (or additional material
such as this document). Although I’ve tested most of it, some parts may not
be working, and some information herein may not be correct. Updates and
backward/-forward compatibility are not guaranteed (but it may still happen).
Use it at your own risk. I do provide it free of charge.

Further on, I discovered after I started developing this library that there
already was a similar library at the Arduino playground called SevSeg v.2.0. I
decided to proceed, however, since that didn’t quite have the flexibility I wanted.
Admittedly, SevSeg was first.

Contributions and Acknowledgements
I would like to thank Sascha Brüchert for contributing with a keywords.txt
file to enable highlighting of library keywords. I would also like to thank those
who have contacted me with potential improvements. Most of these are now
implemented.

2

1 Introduction
SevenSeg is a flexible library for Arduino for outputting information to 7-
segment displays. The main focus is to be a library which gets you started
quickly while being flexible and cover most needs. That is, the most common
7-segment displays should be easily connected to an Arduino and information of
various kinds should be easily output to it. This library is intended for beginners
as well as more sophisticated users who just want something up and running.
It is not intended to be an extremely lightweight library. Key functionality
includes:

• Supports arbitrary number of digits and multiple displays

• Supports displays with decimal points, colon and apostrophe

• Supports common anode, common cathode and other hardware configu-
rations

• High level printing functions for easily displaying:

– Numbers (integers, fixed point and floating point)

– Text strings

– Time (hh:mm) or (mm:ss)

• Automatic multiplexing with adjustable refresh rate

• Adjustable brightness through duty cycle control

• Use of interrupt timers for multiplexing in order to release resources, al-
lowing the MCU to execute other code

• Leading zero suppression (e.g. 123 is displayed as 123 rather than 0123
when using 4 digits)

• No shadow artifact

Future releases may happen, so feel free to contact me with suggested im-
provements and corrections (marholm@marebakken.com). In future releases,
functionality and beauty of the code1 will likely be prioritized above for in-
stance backward compatibility.

How to Read This Document
Read the 2-page “Getting Started” section and you’re good to go! Then use this
as a look-up book for whenever you need to know how to do something.

1Today, parts of the code are clean an beautiful, while other parts are not. In the end I
just had to finish up the project before getting tired of it. I hope to provide a cleaner code in
future versions.

3

A

G

D

E C

F B

DP

Figure 1: Labelling of a 7-segment digit including a decimal point (DP)

2 Getting Started
Let’s start with a quick example to get most users up and running. We will
assume a 4-digit 7-segment common anode display. The segments in each digit
are labelled A to G in the standard way as depicted in Fig. 1. Some displays
also have an 8th segment for the decimal point (DP). This example assumes a
display without that segment (see Sec. 3.3 for how to use SevenSeg with decimal
points).

The schematics for a 4-digit common anode display is depicted in Fig. 2.
Each segment houses a LED light. All anodes (positive terminal) on a digit are
tied together into one pin which is hereinafter referred to as a digit pin (dig 1
to dig 4 on the schematic). The cathodes (negative terminals) of segments A to
G are tied together across the digits, and their pins are hereinafter referred to
as segment pins A to G.

For a common cathode display, it’s the other way around: the cathodes
are the digit pins, being connected together within each digit (hence the name
“common cathode”) while the anodes act as segment pins and are connected
across the digits. Fig. 3 shows a 4-digit common cathode display.

Nevertheless, the digit pins should be connected directly to available output
pins2 on the Arduino, while the segment pins should be connected to Arduino
output pins through appropriately dimensioned resistors (see Fig. 10). Make
sure the resistors are dimensioned such that neither the display nor the Arduino
is damaged. For dimensioning of resistors, see App. A.

Finally, an example code for making this work is shown below:
1 #include <SevenSeg.h>
2
3 SevenSeg disp (11,7,3,5,6,10,2);
4
5 const int numOfDigits =4;
6 int digitPins[numOfDigits]={12 ,9 ,8 ,13};
7
8 void setup() {
9

10 disp.setDigitPins(numOfDigits ,digitPins);
11
12 }

2Especially in the hobbyist environments I frequently see people connect resistors on the
digits pins instead of the segment pins. This is poor circuit design and I advise against it.
Please use a few extra resistors instead.

4

dig 1

A B C D E F G

dig 2 dig 3 dig 4

Figure 2: A 4-digit common anode display

A

dig 1

B C D E F G

dig 2 dig 3 dig 4

Figure 3: A 4-digit common cathode display

13
14 void loop() {
15
16 disp.write (1358);
17
18 }

First, a 7-segment display object disp is initialized in line 3. The arguments
of the constructor are simply the Arduino I/O pin numbers which the segment
pins are connected to, i.e. segment A is connected to pin 11, segment B to pin
7 and so on.

On line 6 an array digitPins is created, holding the I/O pin numbers which
the digit pins are connected to. I.e. the leftmost digit in the display is connected
to pin 12 and the rightmost to pin 13. By sending this array (or actually the
address to this array) to the member function setDigitPins() on line 10 you tell
the display object to use these pins as digit pins. Note that the array digitPins
must be kept in global scope3. The SevenSeg library assumes a common
anode display is used unless otherwise stated. If a common cathode display was
connected, it would suffice to insert disp.setCommonCathode(); on line 11.

Finally, the member function write() is run repetitively on line 16 in order
to write the number 1358. For other write-functions, to display clocks, and
decimal numbers, see Sec. 4.1.

If other, time-consuming tasks must be performed within loop(), consider
3Sorry about that. It’s global in order to allow an arbitrary number of digits while pre-

venting dynamic memory allocation.

5

using interrupt timers to free resources. See Sec. 4.4 for more details.

3 Hardware Setup
This section contain information about how to configure the SevenSeg-library
to the hardware. These member-functions are typically called in setup(){...}
except for the declaration of the SevenSeg-object which can be put in global scope
to make it accessible in loop(){..}.

3.1 Set Digit and Segment Pins
These member functions are used to configure the segment pins (labelled A-G)
and digit pins for the display (c.f. Sec. 2).

SevenSeg(int A,int B,int C,int D,int E,int F,int G);

Defines the segments A-G (c.f. Fig. 1) to be connected to the Arduino
I/O pins given by the variables with the same name. See Sec. 2 for
example.

void setDigitPins(int numOfDigits, int *pDigitPins);

Defines the number of digits to be numOfDigits and the digit pins
to be the elements of the array pDigitPins (assumed to be of length
numOfDigits). Keep in mind that pDigitPins must be stored outside
the SevenSeg-object. See Sec. 2 for example.

If it is a one-digit display, it is possible to tie the digit pin directly
to ground (in case of common cathode) or supply (in case of common
anode) to spare one Arduino I/O-pin. In this case setDigitPins()
should not be called.

3.2 Set Circuit Topology
void setCommonAnode();

Tells the library that the display connected is of common anode
type. That is the default so I can’t really think of a reason to call
this function.

void setCommonCathode();

Tells the library that the display connected is of common cathode
type.

void setActivePinState(int segActive, int digActive);

Configures whether the segment and digit pins should be active high
or low. As an example, a common cathode display has segment pins
that are active high, since the LEDs light up for high segment pins.
The digit pins, however, are active low, since only digits with a low
digit pin are on. Hence, calling setCommonCathode(); is equivalent to
calling setActivePinState(HIGH,LOW);.

6

dig 1 dig 2 dig 3 dig 4

A B C D E F G

Figure 4: A 4-digit common cathode display with cathode transistors. (Re-
member to put resistors on the gates of the transistors to limit the base current.
10 kΩ usually works.)

The setActivePinState()-function, however, allows for a wider range
of circuit topologies. Take for instance that you want to run more
current through the digit pins of a common cathode display than al-
lowed per Arduino I/O pin. A classic solution in this case would be to
add NPN-transistors at the digit pins as shown in Fig. 4. This, how-
ever, inverts the digit pins. For this topology, call setActivePinState
(HIGH,HIGH);.

3.3 Decimal Point (Comma)
void setDPPin(int DPPin);

Specifies that the digits have a decimal point (DP) as depicted in
Fig. 1, and that its segment is connected to DPPin. See Fig. 10 for an
example of a display with a decimal point.

3.4 Colon and Apostrophe
Colons and apostrophes are realized in many different ways in 7-segment dis-
plays. The SevenSeg library will try to cover the most frequently used im-
plementations. To do this, three main categories of displays are identified, all
assuming that no more than one colon and one apostrophe are present:

Additional segment pin for colon. Two separate LEDs are used for the up-
per and lower dot in the colon (UC and LC) as shown in Fig. 5. They
share an additional segment pin (labelled “colon”) for turning on/off colon.
They share digit pins with other digits. On some variants only one LED
(UC) is present (at least apparently). This is indicated by the dashed line.
These kind of displays are configured by setColonPin().

Additional digit pin for colon and apostrophe. On these kind of displays
a separate digit pin “symb” is used for symbols: apostrophe (AP) and
colon (UC and LC if split in two). The symbols share segment pins with
the usual segments A-G. See Fig. 6. These displays are configured by
setSymbPins().

7

dig 1

A B C D E F G

dig 2 dig 3

UC

Colon

dig 4

LC

Figure 5: A 4-digit common anode display with a separate segment pin for colon

dig 1

A B C D E F G

dig 2 dig 3 dig 4 symb

AP UC LC

Figure 6: A 4-digit common anode display with a separate symbol digit pin for
colon and apostrophe

Unterminated LEDs for colon and apostrophe. A third category of dis-
plays have both anodes and cathodes freely available without being tied
to anything. These displays must be hardwired into a configuration that
fits with one of the other two configurations.

void setColonPin(int colonPin);

Tells the SevenSeg-object that it has a colon available as an additional
segment on pin colonPin. Whether it is split in two (UC and LC)
or not is non-relevant. It is also non-relevant with which digits they
share the digit pin.

void setSymbPins(int digPin, int segUCPin, int segLCPin, int segAPin);

Tells the SevenSeg-object that it has a colon and an apostrophe avail-
able. The symbol pin is set to digPin and the apostrophe segment pin
is set to SegAPin (which will be the same as one of the segment pins
for segments A-G). In case of split colon, segUCPin and segLCPin are
the segment pins for the upper and lower colon LED, respectively.
In case of only one LED for colon, let segUCPin be equal to segLCPin.

For high-level printing functions, SevenSeg will automatically
take care of multiplexing properly through all digits, including the
symbol pin.

8

3.5 Example: 4-digit Display with Symbols
Finally, a more complex example. How to setup a 4-digit common cathode
display with decimal points, one unterminated LED for apostrophe, and one
unterminated LED for colon.

First, the cathodes of the apostrophe LED and the colon LED are tied
together and connected to Arduino I/O pin 1. This is the symbol pin. The
anode of the apostrophe LED is tied together with segment pin A and connected
to Arduino I/O pin 11 through a resistor. The anode of the colon LED is tied
together with segment pin B and connected to the Arduino I/O pin 7 through a
resistor. The other segment pins C-G are connected (through resistors) to I/O
pins 3, 5, 6, 10 and 2, respectively. The DP segment pin is connected to pin 4.
At last, the digit pins 1 to 4 (leftmost to rightmost) are connected to pins 12,
9, 8 and 13, respectively. Then, the code to initialize it would be:
1 #include <SevenSeg.h>
2
3 SevenSeg disp (11,7,3,5,6,10,2);
4
5 const int numOfDigits =4;
6 int digitPins[numOfDigits]={12 ,9 ,8 ,13};
7
8 void setup() {
9

10 disp.setDigitPins(numOfDigits ,digitPins);
11 disp.setCommonCathode ();
12 disp.setDPPin (4);
13 disp.setSymbPins (1,7,7,11);
14
15 }
16
17 void loop() {
18
19 // Printing functions here
20
21 }

3.6 Example: Multiple Displays
It is possible to have multiple displays controlled by different SevenSeg objects
although this requires particular attention. Consider for example a 4-digit and
a 2-digit common anode display. The displays should share segment pins, e.g.
segment A of both displays are connected to the same pin on the Arduino and
likewise for segments B to G. Remember that if you’re out of digital pins you
can also use analog pins, as is done in this example. The digit pins, of course,
are separate.

In order to make the library multiplex all n = 6 digits at once, the write
functions for both displays are executed consecutively in loop(){...}. However,
after writing to one display, all segments must be set inactive by calling clearDisp
(). Otherwise the last digit written will influence the first digit written to the
next display. See the example below:
1 #include <SevenSeg.h>
2
3 SevenSeg disp1 (10,11,13,A2,A1 ,12,A0);
4 SevenSeg disp2 (10,11,13,A2,A1 ,12,A0);

9

5
6 const int numOfDigits1 = 4;
7 const int numOfDigits2 = 2;
8 int digitPins1[numOfDigits1]={9,8,7,A4};
9 int digitPins2[numOfDigits2]={6 ,5};

10
11 void setup() {
12
13 disp1.setDigitPins(numOfDigits1 ,digitPins1);
14 disp1.setDigitDelay (1667);
15
16 disp2.setDigitPins(numOfDigits2 ,digitPins2);
17 disp2.setDigitDelay (1667);
18
19 }
20
21 void loop() {
22
23 disp1.write (1234);
24 disp1.clearDisp ();
25
26 disp2.write (56);
27 disp2.clearDisp ();
28
29 }

Moreover, since the two objects are unaware of each other both running in
loop(){...}, the refresh rate will not be 100 Hz which is default. The function
setRefreshRate() also do not work. When multiplexing several displays the time
to spend (in microseconds) on each digit must be manually calculated and spec-
ified using setDigitDelay(). For this example the time is calculated as follows
(assuming a refresh rate of f = 100 Hz which is usually a good number):

Tdigit =
1

nf
=

1

6 · 100 Hz
≈ 1667µs (1)

Unfortunately, it is not possible for several displays to share segment pins
while using interrupt timers.

4 Writing to the Display
The printing functions usually goes into loop(){...} and are divided into two
categories; low-level functions which are rather basic but gives the programmer
full control of the display, and high-level functions which are easier, more in-
telligent and should be suitable for most needs. For the low-level functions the
programmer will have to handle multiplexing and parsing himself, whereas the
high-level functions does this for you. The example in Sec. 2 uses the high-level
printing function write().

4.1 High-level Printing Functions
The high-level printing functions takes care of parsing and displaying numbers,
text strings, etc. for you as long as they are run in an endless loop (i.e. loop()
{...}). If you cannot afford to run them in an endless loop, consider using the
built-in support for interrupt timers as described in Sec. 4.4. void write(long
num);

10

Writes the number num on the display. See Sec. 2 for an example.
Supports signed integers. If the numbers are out of range they

are trimmed to the largest positive or negative number the display
can show. I.e. write(1234) will output 1234 on a 4-digit display but
99 on a 2-digit display. write(-50) will print -9 on a 2-digit display
and -50 on displays with at least three digits.

void write(long num, int point);

Similar to write(long num) except that this one writes a fixed point
decimal. The integer point tells how many digit should be treated as
decimals. Example: write(1234,2) outputs “12.34”. As for the above
function num will be trimmed if outside the range of what the display
can handle.

void write(double num);

Writes the (positive or negative) floating point number num. Exam-
ple: writeFloat(123.45) yields “123.5” on a 4-digit display (note the
round-off4). Numbers are trimmed if out-of-range. Uses as many
decimals as can fit the display.

void write(double num, int point);

Same as above, but number of decimals to print are specified by
point.

void write(char *str);

Writes the null-terminated text string pointed to by str. Example:
write("open") displays the text “open”.

Valid characters are a-z, A-Z, 0-9, minus (-), space (), decimal
point (.), and degree (◦). Small and capital letters are displayed
equally. The degree-symbol should probably be written as the es-
caped character ’\370’. I.e. to print "24◦C" you should write write
("24\370C"). Note that this "24\370C" is actually a four character
string.

void write(String str);

Same as above but uses the String object rather than null-terminated
string.

void writeClock(int mm,int ss,char c);

Writes the time in the format mm:ss if c==’:’, mm.ss if c==’.’ or
simply mmss if c==’_’. mm and ss suggests using it for minutes and
seconds but it could, of course, also be used for hours and minutes.

void writeClock(int mm,int ss);

4Most people would agree that 0.5 is rounded up to 1, but it is not so clear which way
-0.5 is rounded. To 0 or to -1? The thing is that “rounding” is not a well-defined operation so
both could be correct. This library uses the convention of rounding -0.5 to -1 for no particular
reason.

11

Same as above but automatically uses colon if it exists, decimal point
if not or simply nothing if the display has neither colon nor decimal
points. See Sec. 3 for configuration of decimal points and colons.

void writeClock(int ss,char c);

This writes the time in the format mm:ss, mm.ss or mmss depending
on whether c is ’:’, ’.’ or ’_’. The minutes are derived from the sec-
onds. Example: writeClock(72,’:’) outputs 01:12 since 72 seconds
is 1 minute and 12 seconds.

void writeClock(int ss);

Same as above but automatically uses colon if it exists, decimal point
if not or simply nothing if the display has neither colon nor decimal
points. See Sec. 3 for configuration of decimal points and colons.

4.2 Low-level Printing Functions
void clearDisp();

Clears the display.

void changeDigit(int digit);

Activates the digit given by digit (and deactivates the others). I.e.
changeDigit(1) makes the leftmost digit the active one. Each time
changeDigit() is called all the segments are cleared. Hence, the fol-
lowing (erroneous) code will leave digit 2 empty:
1 writeDigit (4); // Activates segments in ’4’
2 changeDigit (2); // Error: clears all segments
3 delay (5);

while this code will print the number 4 on digit 2:
1 changeDigit (2);
2 writeDigit (4);
3 delay (5);

The reason for this behaviour is to prevent shadows5. The purpose
of the delay is to leave the segment on for some milliseconds before
changing digit again. Immediately changing digits will make the
digits be on for only a brief moment (as long as it takes to process
the code) before the changeDigit() clears the digit again resulting in
a very dim light.

void changeDigit(char digit);

changeDigit(’’) (with a white space as argument) deactivates all dig-
its (same as clearDisp()) while changeDigit(’s’) activates the symbol
digit. The symbol digit is a separate digit used for representing
colon and apostrophe. See Sec. 3.4 for more about the symbol digit.
When the symbol digit is activated, the SevenSeg-library remembers
which segments should be active and not. See setColon(), clearColon
(), setApos() and clearApos().

5The shadow effect: If the digit 1 displays “4” and digit 2 is activated without clearing the
segments first, the digit 4 would show up for a short moment until the segments are cleared,
leaving a weakly visible shadow of the number “4” on digit 2.

12

void writeDigit(int digit);

Writes the number digit to the active digit. See changeDigit() for an
example of how to use it.

void writeDigit(char digit);

Outputs the character digit to the active digit. The following ex-
ample outputs the string “-3F”:
1 changeDigit (1);
2 writeDigit(’-’);
3 delay (5);
4 changeDigit (2);
5 writeDigit(’3’);
6 delay (5);
7 changeDigit (3);
8 writeDigit(’F’);
9 delay (5);

Valid characters are a-z, A-Z, 0-9, minus (-), space (), and degree (◦).
Small and capital letters are displayed equally. The degree-symbol
should probably be written as an escaped character, i.e writeDigit(’
\370’).

void setDP();

Activates the decimal point (comma) on the active digit. Example
of writing “3.” on digit 2:
1 changeDigit (2);
2 writeDigi (3);
3 setDP ();
4 delay (5);

The decimal point is automatically reset when calling changeDigit()
in order to prevent shadowing.

void clearDP();

Deactivates the decimal point on the active digit.

void setColon();

Turns on the colon segment(s). See Sec. 3.4 for how colons are
implemented in hardware. If colon utilizes an additional segment
pin, this function behaves similar to setDP() in that it is cleared on
each changeDigit(). If a separate digit pin for symbols is used instead,
setColon() means that colon segment should be automatically turned
on each time the symbol pin is activated using changeDigit(’s’). To
clear it, you must call clearColon().

void clearColon();

Clears colon. This happens automatically if colon is implemented
in hardware by using an additional segment pin. If a symbol digit
pin is used, however, this must be called manually or the library will
remember it each time changeDigit(’s’) is called upon. See setColon
().

13

void setApos();

Sets the apostrophe. Behaves in the same way as setColon().

void clearApos();

Clears the apostrophe. Behaves in the same way as clearColon().

4.3 Multiplexing
The high-level printing functions (c.f. Sec. 4.1) automatically parses and mul-
tiplexes6 the data to be displayed. The functions in this subsection allows the
user to tweak parameters of the multiplexing.
void setRefreshRate(int freq);

Sets the refresh rate used for the display for high-level printing func-
tions. I.e. setRefreshRate(150) means that the whole display (all
digits) updates 150 times each second.

If you have n digits and a refresh rate of f (in Hz) the display
will spend Tdigit = 1/(nf) seconds per digit7. The limit for when
flickering becomes visible lies at under 50 Hz8 (or perhaps somewhat
higher if the display is vibrating or moving with respect to the ob-
server). The SevenSeg-library has a default refresh rate of 100 Hz
to ensure smooth operation by default.

void setDigitDelay(long int delay)

Rather than setting the refresh rate you can also set the quantity
Tdigit to delay (in microseconds) directly. See setRefresRate().

void setDutyCycle(int dc);

The brightness of the display can be controlled by adjusting the duty
cycle. As mentioned for setRefreshRate(), the time spent per digit is
Tdigit = 1/(nf). The duty cycle determines for how large part of
this time the digits will actually be on. I.e. setDutyCycle(40) means
that each digit will be on only 40% of its assigned time Tdigit and off
for the rest of it9. dc should be a number (in percent) in the range
[0, 100]. The default value is 100% (max brightness). See App. A
for details about calculating the brightness.

6Multiplexing is the process of showing one digit at a brief time before showing the next
digit and so on. Doing this repetitively and at a sufficiently fast refresh rate makes it appear
as if all digits light up at the same time.

7If you have for instance a 4-digit display with a separate symbol digit for apostrophe and
colon then n also includes the symbol pin; n = 5. See Sec. 3.4.

8That’s why old CRT TVs has a refresh rate of 50Hz (in Europe at least).
9Technically, it might be more correct to say that dc/n is the duty cycle rather than dc,

since that’s the percentage of the time each digit is on. I.e. if you set dc = 100% and have
n = 4 digits then, technically, each digit is on only 25% of the time, not 100%. Nevertheless, I
find the definition used herein more convenient, since its easier and maps directly to brightness
without depending on the number of digits.

14

4.4 Using Interrupt Timers
NB: Interrupt timers are currently only supported on ATmega 168 and 328
microcontrollers.

Running the printing functions in an endless loop to perform multiplexing
is not always an ideal way to do things. Outputting information to a 7-segment
display is not a computationally intensive task, but due to the delay used for
multiplexing, the microcontroller just sits there and waits for most of the time.
Sure, you can insert commands taking little time in a loop together with the
printing functions, but if they are slightly time-consuming, the display will halt
or flicker. For this purpose it is possible to use SevenSegalong with interrupt
timers. Then, you can do whatever you want inside loop(){...}, and simply
run a high-level printing function only when you want to change what’s on the
display. The microcontroller will automatically be interrupted just briefly to
update the display as needed. You can still change the refresh rate and the
duty cycle like normal, the SevenSeg-library will take care of configuring the
timers for you.

Let’s begin with an example of how to get started with timers:
1 #include <SevenSeg.h>
2
3 SevenSeg disp (11,7,3,5,6,10,2);
4
5 const int numOfDigits =4;
6 int digitPins[numOfDigits]={12 ,9 ,8 ,13};
7
8 void setup() {
9

10 disp.setDigitPins(numOfDigits ,digitPins);
11
12 disp.setTimer (2);
13 disp.startTimer ();
14
15 }
16
17 void loop() {
18
19 for(int i=1;i<=10;i++){
20 disp.write(i);
21 delay (1000); // Or other time -consuming tasks
22 }
23
24 }
25
26 ISR(TIMER2_COMPA_vect){
27 disp.interruptAction ();
28 }

Timer 2 is initiated in the setup(){...} section. At the bottom of the file is an
Interrupt Service Routine (ISR) which is called whenever timer 2 interrupts the
controller. What needs to be done when this happens is taken care of by the
function interruptAction(). Finally, run the high-level printing functions such as
write() like before. But notice how there’s a delay of one second after it’s called.
This, however, will not disturb the display. The delay could be as long as you
wish, or other time-consuming code could be executed. write() only needs to be
executed when you need to change the value on the display.

Beware that there’s a big caveat with using interrupt timers in Arduino; the

15

Arduino platform uses the interrupt timers internally for its built-in functions
such as delay(), tone(), for serial communications, etc. delay() for instance uses
timer 0. Hence in order for delay() to work, you can not use timer 0 for SevenSeg
(or other purposes).
void setTimer(int timerID);

Tells the library that timer number timerID is to be used for mul-
tiplexing. timerID can be ’0’, ’1’ or ’2’. Timers 3, 4 and 5 are not
supported yet.

void clearTimer();

Clears the timer settings from the SevenSeg-object such that the ob-
ject can again multiplex in the default way.

void interruptAction();

This function is to be put in ISR(TIMER0_COMPA_vect){...}, ISR(TIMER1_COMPA_vect
){...} or ISR(TIMER2_COMPA_vect){...} for using SevenSeg together with
timer 0, 1 or 2, respectively.

void startTimer();

This function is called to start the timer (automatically configures
the timer for correct use with SevenSeg).

void stopTimer();

This function is called to stop the timer from running.

Version History
v1.0 (12.07.2013) Initial version

v1.1 (02.06.2015)

• writeFloat(float) changed to write(double).
• write(String) created to support String objects (previously only char-

acter arrays was supported).
• Maximum number of digits increased from 4 to 9 (changed int to

long int several places).
• User guide now includes example of how to control multiple display

objects (also possible with v1.0 library).
• Leading zero suppression implemented (e.g. 123 is displayed as 123

and not 0123 on a 4-digit display).
• write(double,int) implemented.

v1.2 (08.06.2015) – Bug fix: Error in leading zero suppression. Numbers ’0.02’
would show as ’ . 2’ (and similar).

1.2.1 (18.04.2017) – Bug fixes. Updated library according to Arduino IDE 1.5
library specification.

16

V cc

R

IFn

VF

Figure 7: Forward biased diode with current limiting resistor. The order of the
diode and the resistor is insignificant.

A Current Calculations

A.1 Basic LED Current Calculation
Consider first a simple forward biased10 Light Emitting Diode (LED) as shown
in Fig. 7. LEDs are current controlled devices, and the easiest way to control the
current through an LED is by limiting it with a resistor. The way to dimension
the resistor is to first choose the forward current IF through the LED, then,
determine the voltage drop VF over the LED, and finally you compute the
resistance R of the resistor.

As an example, we’ll assume the diode 17-21USRC from Everlight. Some
selections from the datasheet are included in Fig. 8 and Fig. 9. We see that
the diode has a maximum forward current of 25mA, but according to the curve
of luminous intensity IV versus forward current, the diode should still light up
relatively well at smaller currents (for more about luminous intensity, see Avago
Application Brief D-004). Besides, we should have some margin to account for
component tolerances and round-off errors in selection of components. For now
we’ll just choose the forward current somewhere in the mid-range: IF = 10 mA.
Next, the IF vs. VF curve shows that the voltage will be approx. VF = 1.8V .
If Vcc is the output of an Arduino then Vcc = 5V (when the output is high) and
the voltage across the resistor is

VR = Vcc − VF = 3.2 V (2)

The current through the resistor must be IF and using Ohm’s law the resistance
must be

R =
VR
IF

=
3.2 V

10 mA
= 320 Ω ≈ 330 Ω (E12) (3)

The resistance was approximated to 330 Ω since not all values of resistors are
commonly available. 330 Ω is a standard value in the E12-series of resistors.

10Forward biased simply means that plus is connected to the diodes anode and minus/-
ground to its cathode such that the current flows in the forward direction. Diodes prevent
currents from flowing in the reverse direction. For 7-segment displays this is utilized for
multiplexing by letting only one digit be forward biased at a time.

17

Figure 8: Absolute maximum characteristics for Everlight 17-21USRC. Note
that they may deviate from these values at temperatures other than T =
25 degC.

18

Figure 9: IV vs. IF (left) and IF vs. VF (right) for Everlight 17-21USRC. Notice
how the dashed line is for higher currents than maximum DC-rated IF . This
region can only be utilized if multiplexing sufficiently fast.

This increased resistance will make the forward current slightly smaller, but
visually not notably different.

Sometimes datasheet lack information. A typical dirty way to do it is to
simply assume IF to 5 or 10 mA and VF = 2V , but you should make sure you’re
not overriding the absolute maximum characteristics which always should be in
the datasheet.

A.2 The Current of Multiplexed Segments
For an n-digit multiplexed 7-segment display, you must connect the limiting
resistors as shown in Fig. 10 (the example circuit is only 2 digits). The digit
pins are multiplexed, such that only one digit is on at a time, before switching
to the next digit. This happens fast enough to not be seen.

Due to this multiplexing, the average current through each segment will be

Iavg = (dc/n) · IF (4)

where dc is the duty cycle as defined for the function setDutyCycle(). If setDutyCycle
() is not used dc = 1 (= 100%). Hence to have the same average current in the
case of multiplexing a seven-segment display as for a constantly forward biased
LED like above you should dimension R like before but for n times higher IF .
Even though the average forward current is equal, it may be that the luminous
intensity is not, due to what is called the relative efficiency of the LED (Avago
Application Brief D-004 is highly recommended for more information about this
topic). However, it usually is not that big an error to say that the peak current
IF through an LED should be n times higher that it would’ve been for a single
non-multiplexed LED since our eyes are not sensitive to an error of a couple of
tens of percent. When choosing IF , however, you should make sure the following
criteria are met such that nothing is damaged:

19

1. IF should not override the maximum value in the datasheet, typically
20-30 mA.

2. The maximum reverse voltage VR for the segment LEDs should be higher
than Arduinos I/O pin voltage Vcc = 5V since multiplexing 7-segment
displays imply reverse biasing some segments LEDs.

3. The current IF will flow through the segment pins. Hence IF should be
lower than the maximum current handled by the Arduino I/O pin, which
is 40 mA. You should probably stay well below this due to tolerances, etc.,
say, not more than 20-30 mA.

4. 7IF will flow through the digit pin while displaying the number ’8’. Hence
7IF should also be lower than what can handled by the Arduino IF pin;
40 mA or preferrably not more than 20-30 mA. Note that some displays
have more than 7 segments per digit, i.e. if there is a decimal point (see
Fig. 10) or colon (see Fig. 5). In that case, you need to multiply IF by 8
or whatever number of segments are present per digit.

As a design procedure, you could start by assuming that you want Iavg =
3 mA of average current through each segment and calculate the resistors ac-
cordingly. You make sure all the above criteria are met, and test it (without
using setDutyCycle()). From there on, experiment with different values of re-
sistors until you are satisfied. If you want to utilize the adjustable brightness
feature this will now be the maximum brightness. This is it! If you have troubles
overriding the above listed criteria, go on reading the next two subsections.

A.2.1 Higher Currents Than Rated for the Display

Sometimes, you may want to put more current through the segments than the
display can handle. For instance, you may want Iavg = 10 mA of average current
through each digit, but since you have 4 digits and the maximum rating is
IF = 20 mA you can’t get more than Iavg = 5 mA. If you increase the IF
beyond the maximum, the display is damaged by the excess heat generated
internally in the semiconductor. This only takes a few milliseconds, so even if
the average current is below the maximum IF there is a danger of damaging
the display if you don’t know what you’re doing. If the display is switched on
and off fast enough, however, the semiconductor does not heat up quick enough
to be damaged. To do this, you typically need to increase the refresh rate of
the multiplexing to 1000 Hz or more by calling setRefreshRate(). The datasheet
often contain information about this; in Fig. 8 you see that the (peak) forward
current of our example LED can be increased to 160 mA if the refresh rate is
1000 Hz, and the true duty cycle dc/n is not more than 10%. This yields an
average current of maximally IF = 16 mA. You must, of course, set dc with
setDutyCycle() to not override the 10% requirement. Let’s take an example, you
run the following code in setup(){...}:
1 setRefreshRate (1000);
2 setDutyCycle (40); // dc = 10% * 4 digits = 40%

20

dig 1

A B C D E F G DP

dig 2

Figure 10: A 2-digit common anode digit with resistors (and a decimal point)

A.2.2 Higher Currents Than Rated for Arduino I/O Pins

On the other hand, you might need to put more current through a digit or
segment pin to get the brightness you want than allowed by the Arduino. In
that case you can add a transistor to the pin which you need to put more current
through and use the function setActivePinState() to adapt the SevenSeg-library
to your circuit. How to design such circuitry, however, is outside the scope of
this text, but you can see an example in Fig. 4.

A.3 Dimming Through Duty Cycle Control
The power dissipated in an LED is proportional til dc. I.e. if the duty cycle is
reduced to 50% the power consumed by the LED is also reduced to 50% and
the luminous intensity is accordingly reduced to approximately 50%. This does
not, however, imply that the LED will look half as bright. According to Weber-
Fechner’s law, our sight is a logarithmic function. A doubling (or halving) of
luminous intensity is barely distinguishable except, perhaps, by direct compar-
ison. Thence to create what appears to be a linear increase in brightness you
should step up the duty cycle in accordance with either Weber-Fechner’s law
or Stevens’ power law (which is slightly less accepted than Weber-Fechner’s law
but seems to be easier to implement).

Resources about this topic:
http://forum.arduino.cc/index.php?topic=147818.10;wap2
Avago Application Brief D-004
Avago Application Note 1005
http://en.wikipedia.org/wiki/Weber%E2%80%93Fechner_law
http://en.wikipedia.org/wiki/Stevens%27_power_law

Maybe I’ll add more about this later.

21

