

Arduino / ESP 32 Microcontrollers

ez_switch_lib Library

Quick Start Guide

R D Bentley (Stafford UK) April 2022

Arduino / ESP 32 Microcontrollers
ez_switch_lib Library - Quick Start Guide

R D Bentley (Stafford UK) - 2 - April 2022

Scope of Use
This Guide and any included material, code, sketches
or examples is in the public domain and may only be
used for non-commercial purposes without restriction
and without warranty.

Contents

Scope of Use .. 2

Purpose & Scope of this Guide ... 3

Introduction ... 4

Switch Wiring Schemes, Pin Modes & Debounce ... 5

Switch Wiring Schemes ... 5

pinMode Parameter Microcontroller Compatibility ... 5

Switch Debounce .. 5

Installing the ez_switch_lib Library .. 5

Arduino - Single Switch, Example 1 .. 6

Arduino - Notes & Circuit Design ... 6

Arduino - Single Switch, Example 1 - Sketch ... 7

Arduino - Four Switches, Example 2 ... 9

Arduino - Notes & Circuit Design ... 9

Arduino - Four Switches, Example 2 - Sketch .. 10

ESP 32 - Four Switches, Three Linked Outputs, Example 3 ... 12

ESP 32 - Notes & Circuit Design ... 12

ESP 32 - Four Switches, Three Linked Outputs Example 3 - Sketch ... 13

Serial Monitor Output from Example 3 ... 15

ESP 32 - Four Switches, Three Linked Outputs, One ISR, Example 4 .. 16

ESP 32 - Notes & Circuit Design ... 16

ESP 32 - Four Switches, Three Linked Outputs, One ISR Example 4 - Sketch 17

Serial Monitor Output from Example 4 ... 22

Conclusion .. 23

Arduino / ESP 32 Microcontrollers
ez_switch_lib Library - Quick Start Guide

R D Bentley (Stafford UK) - 3 - April 2022

Purpose & Scope of this Guide
This guide has been prepared to provide an incremental approach and instructions for anyone

wishing to explore and use the ez_switch_lib library for the configuration and control of switches,

either of type button (momentary) or toggle. There are many types of switch nut these will largely

fall into one of these two types – button or toggle.

The ez_switch_lib library is compatible with both Arduino and ESP 32 microcontrollers and is

capable of supporting a great number of switches which may be individually wired in any one of

three different wiring schemes.

The guide starts off small, with the configuration of a single switch (Example 1), but by the final

example (Example 4) the reader will have experience of using the library for developing multi-

switch applications and even how these may be linked to other digital outputs and even interrupt

service routines (ISRs).

A comprehensive appreciation and understanding of the full scope of the ez_switch_lib library may

be found by reference to the Arduino Project Hub ez_switch_lib article, including a User Guide

incorporating many examples and a Crib Sheet.

Note that version 2.0, or later, of the ez_switch_lib library is required for the examples used within

this Quick Guide. If you follow the download links provided then you will be assured of the

correct/latest versions.

https://create.arduino.cc/projecthub/ronbentley1/a-switch-library-for-arduino-esp-32-microcontrollers-dfbe40?ref=user&ref_id=1455180&offset=18
https://github.com/ronbentley1/eazy-switch-library/blob/main/extras/ez_switch_lib_user_guide.pdf
https://github.com/ronbentley1/eazy-switch-library/blob/main/extras/ez_switch_lib%20crib%20sheet.pdf

Arduino / ESP 32 Microcontrollers
ez_switch_lib Library - Quick Start Guide

R D Bentley (Stafford UK) - 4 - April 2022

Introduction
This guide provides example switch designs and corresponding sketches that will provide the

interested reader with a starting point for using switches with the ez_switch_lib library. The

ez_switch_lib library1 and examples contained in this guide are compatible for both Arduino and

ESP 32 microcontrollers.

The Guide offers four examples - the first example configures a single switch whilst the remaining

three examples configure four switches (2 x button and 2 x toggle), each wired in one of three

different wiring schemes (e.g. external pull down resistors, internal pull up resistors and/or internal

pull down resistors). However, the number of switches that can be configured is flexible, from a

single switch to many.

The ez_switch_lib library is a non-blocking design and therefore requires a sketch’s design to

ensure that switches are frequently read/tested, usually within the main loop. The examples show

the easiest and, perhaps, the best way to accomplish this, by constructing a main loop around

constant cycling (polling) of the ‘agnostic’ switch read function (read_switch2).

All examples may be used with both Arduino and ESP 32 microcontrollers, with suitable changes in

pin assignments according to the specific board you wish to use. To show this in operation, the first

two examples use an Arduino board and the final two an ESP 32 board. Each example has

extensive comments that provide help and guidance. In summary:

 Example 1 (Arduino): Configures a single button switch and provides switch processing in the

main loop which flips the internal built in LED to show actuation of the switch.

 Example 2 (Arduino): Configures 4 switches, 2 x button and 2 x toggle switches wired in

different schemes, and provides processing in the main loop which again flips the internal built

in LED to show actuation of a switch (note that the 4 switches flip the same in-built LED).

 Example 3 (ESP 32): This example is largely the same as Example 2, above, but introduces

linked output3 pins for 3 of the switches - switch GPIO pins 33, 32 and 25 have linked GPIO

pins 20, 21 and 22, respectively. Use of the serial monitor will be made to show the effects of

switch actuations and the status of their associated linked output pins. In addition, the in-built

LED is also flipped at each switch actuation as before.

 Example 4 (ESP 32): In this final example we use the same sketch as in example 3, but in this

instance link (tie) three of the switches to a common linked output pin and then define this

common pin as an external interrupt pin which will be processed by a common ISR. Now,

when any of the linked switches are actuated, the ISR is triggered and interrupt processing is

then applied. Note that the ISR provided in this example can be taken as a generic ISR for use

by the ez_switch_lib library as it deals is capable of working with different switch types and

interrupt trigger types.

The examples include no functionality other than to demonstrate their scope and purpose and

should provide sufficient guidance to apply the ez_switch_lib library to your projects. However, the

library is capable of providing further and more sophisticated features than those referenced by the

examples in this guide – see the Arduino/ESP Switch Library article on the Arduino Project Hub

and the User Guide and Crib Sheet downloadable from github).

1
 ez_switch_lib library version 2.0 or later.

2
 The read_switch function will automatically determine the switch type referenced from the provided

switch id parameter – you do not need to specify the switch type.
3
 The ez_switch_lib library provides a feature that allows us to link a digital output pin to a switch such

that when the switch is actuated (button or toggle) the linked output pin status is flipped. That is, if the

linked pin is HIGH then the actuation of the associated switch will flip it LOW and vice versa. This feature

is microcontroller independent.

https://create.arduino.cc/projecthub/ronbentley1/a-switch-library-for-arduino-esp-32-microcontrollers-dfbe40?ref=user&ref_id=1455180&offset=18
https://github.com/ronbentley1/eazy-switch-library/blob/main/extras/ez_switch_lib_user_guide.pdf
https://github.com/ronbentley1/eazy-switch-library/blob/main/extras/ez_switch_lib%20crib%20sheet.pdf

Arduino / ESP 32 Microcontrollers
ez_switch_lib Library - Quick Start Guide

R D Bentley (Stafford UK) - 5 - April 2022

Switch Wiring Schemes, Pin Modes & Debounce
The switches referenced in the examples are wired and configured in one of several wiring

schemes. For easy reference, the wiring schemes and pin mode configurations are shown below:

Switch Wiring Schemes

Arduino + ESP Boards
pinMode parameter:
INPUT/circuit_C1

External pull down resistor

Arduino + ESP Boards
pinMode parameter:

INPUT_PULLUP/circuit_C2

Internal pull up resistor

ESP Boards ONLY
pinMode parameter:

INPUT_PULLDOWN/circuit_C3

Internal pull down resistor

pinMode Parameter Microcontroller Compatibility

For completeness and for your reference, the following table shows the valid pinMode parameters

for defining input pins for both Arduino and ESP 32 boards:

pinMode Parameters Compatibility
Notes

Native Value Synonym Value4 Arduino ESP 32

INPUT circuit_C1
Circuit requires an external pull
down resistor, e.g. 10k ohm

INPUT_PULLUP circuit_C2 No external resistor required

INPUT_PULLDOWN circuit_C3 No external resistor required

Switch Debounce
The ez_switch_lib library automatically applies a software debounce technique to all defined

switches. By default, the switch debounce interval/period is 10 milliseconds but this can be set to

any value required (in milliseconds). The sketch examples in this Guide reset the debounce period

to 50 milliseconds within the setup() functions. However, if it is that you experience ‘shaky’

results when using your switches it is most likely that this interval/period is still too short – the

noisier the switch the greater the period this should be set to. If you encounter this issue then

change the debounce interval accordingly.

Installing the ez_switch_lib Library
Before setting off, you will need to download the latest version of the ez_switch_lib library files.

This can be done using the Arduino IDE Library Manager or manually, as below.

For manual installation, on your pc create a directory under your “.../Arduino/libraries” directory

called “ez_switch_lib”, i.e. “...\Arduino\libraries\ez_switch_lib”

Now download each of the three library files: “ez_switch_lib.h”, “ez_switch_lib.cpp” and

“keywords.txt” from the Arduino Project Hub by following this link – ez_switch_lib library files and

locate them in the directory you have just created. Restart your IDE after the download.

4
 Note that “circuit_C1”, “circuit_C2” and “circuit_C3” are ez_switch_lib library reserved macros

and may be used in place of “INPUT”, “INPUT_PULLUP” and “INPUT_PULLDOWN”, respectively.

https://create.arduino.cc/projecthub/ronbentley1/a-switch-library-for-arduino-esp-32-microcontrollers-dfbe40?ref=user&ref_id=1455180&offset=18#code

Arduino / ESP 32 Microcontrollers
ez_switch_lib Library - Quick Start Guide

R D Bentley (Stafford UK) - 6 - April 2022

Arduino - Single Switch, Example 1

Arduino - Notes & Circuit Design
Objectives & Notes Circuit

Objectives:

 To wire a simple button switch with
an external 10k ohm resistor

 To understand the use of the
ez_switch_lib library – declarations,
structure and functions - declare the
library, instantiate the library’s class
for a single switch, define switch data
by adding a switch to the class, and
read the switch

 To witness the operation of the
switch by the flipping of the in-built
LED

Notes:

 Ensure that your IDE is configured
for the Arduino microcontroller you
will be using

 Download the Example 1 sketch

 For your future reference, if using a

pinMode parameter for a switch of

INPUT then always use an external

pull down resistor as shown in this
example for both Arduino and ESP
32 boards. However, if using an ESP
32 board then the resistor can be
dispensed with by changing the

pinMode parameter from INPUT to

INPUT_PULLDOWN.

Wire up the circuit shown adjacent with the
components shown/below:

Components No.

Arduino microcontroller (e.g. UNO) 1

Breadboard, e.g. mini/half/full size 1

Button switch (momentary) 1

Wires 5

https://github.com/ronbentley1/eazy-switch-library/tree/main/examples/ez_switch_lib_Quick_Start_Example_1

Arduino / ESP 32 Microcontrollers
ez_switch_lib Library - Quick Start Guide

R D Bentley (Stafford UK) - 7 - April 2022

Arduino - Single Switch, Example 1 - Sketch
Comments Example Declarations and Code

Preamble

//

// A basic ez_switch_lib example - Quick Start, example 1

// A single switch sketch designed to flip the status of the in-built LED

// for Arduino this is on pin 13 (LED_BUILTIN) and for ESP 32 pin 2. This example is

// configured for an Arduino microcontroller

//

// Compatible for both Arduino and ESP 32 microcontrollers

//

// Add your own code where required, eg where you see '...'

//

// R D Bentley (Stafford UK)

//

// This example and code is in the public domain and may only be

// used for non-commercial purposes without restriction and

// without warranty.

Declare the ez_switch_lib library #include <ez_switch_lib.h>

Add your own specific declarations ...

We will be defining a single switch, so we will use
‘switch_id; to record its id assigned by the

add_switch function

#define LED LED_BUILTIN // built in LED on Arduino boards

int switch_id; // use to record switch id we add to the class

Add your own specific declarations ...

Instantiate the library’s class for a single switch Switches my_switch(1); // create class size for 1 switch

Add your own specific declarations ...

Use the setup() function to add your declared
switches to the library class using the

add_switch function.

Note the INPUT_PULLUP parameter of the

add_switch call – this is used for simply
connected switches without an external pull down
resistor as per circuit diagram. We could have

used “circuit_C2”, also.

Note also the ability to check for success or

otherwise - the add_switch function returns the

switch id assigned to the switch or an error value.

Once the configuration has been verified through
compilation and testing, the error checking can be
removed.

void setup(){

 // create switch with a 10k ohm external pull down resistor - INPUT pinMode parameter

 switch_id = my_switch.add_switch(button_switch,// switch type

 2, // pin switch connected to

 INPUT); // circuit type – pinMode

 if (switch_id < 0){// error reported – process error

 ...

 }

 my_switch.set_debounce(50); // set debounce to 50 millisecs

 pinMode(LED,OUTPUT); // internal built in LED

 ...

}

Arduino / ESP 32 Microcontrollers
ez_switch_lib Library - Quick Start Guide

R D Bentley (Stafford UK) - 8 - April 2022

Add any additional setup code as required.

Add your own specific code as required ...

Use this construct or a similar one to ensure that
the declared switch is regularly processed.

Note that we use the variable ‘switch_id’

assigned in the setup function to reference the
switch.

Add your own code as required.

void loop(){

 ...

 do {

 if (my_switch.read_switch(switch_id) == switched){

 // this switch (swith_id) has been actuated, so process it

 digitalWrite(LED, digitalRead(LED)^1); // flip status of in built LED to show

actuation

 ...

 }

 ...

 } while (true);

}

Arduino / ESP 32 Microcontrollers
ez_switch_lib Library - Quick Start Guide

R D Bentley (Stafford UK) - 9 - April 2022

Arduino - Four Switches, Example 2

Arduino - Notes & Circuit Design
Objectives & Notes Circuit

1. Objectives:

 To understand how we can extend
Example 1 to a four switch design, using
two different styles of switch (2 x button + 2
x toggle) wired and initialised in different

ways (pinMode settings)

 To compare how each switch is wired with

its corresponding pin initialisation pinMode

parameter (INPUT or INPUT_PULLUP) –

see circuit diagram switch labels text

 Witness the operation of the switches by
the flipping of the in-built LED

Notes:

 Ensure that your IDE is configured for the
Arduino microcontroller you will be using

 For multiple switches it is helpful to use a
multi-dimensional array to define all of the
data specific to each switch. In this, and
following examples, we shall use this
construct. Note that each row of the array
will correspond to the switch’s id, for
example row 2 will relate to switch id 2, etc.

 The switch row data defined is:

- Switch type (button_switch or

toggle_switch)

- Digital pin allocated to the switch,
- The switch circuit wiring scheme –

INPUT/circuit_C1,

INPUT_PULLUP/circuit_C2 or

INPUT_PULLDOWN/circuit_C3 (ESP

32 boards only)

 We shall use this same construct in all
subsequent examples

 Download the Example 2 sketch.

Wire up the circuit shown adjacent with the
components shown/below.

Components No.

Arduino microcontroller (e.g. UNO) 1

Breadboard, e.g. mini/half/full size 1

Button switch (momentary) 2

Toggle switches (e.g. two position) 2

10k ohm resistors 2

Wires 14

https://github.com/ronbentley1/eazy-switch-library/tree/main/examples/ez_switch_lib_Quick_Start_Example_2

Arduino / ESP 32 Microcontrollers
ez_switch_lib Library - Quick Start Guide

R D Bentley (Stafford UK) - 10 - April 2022

Arduino - Four Switches, Example 2 - Sketch
Comments Example Declarations and Code

Preamble

//

// A basic ez_switch_lib example - Quick Start, example 2

// A sketch configured for four switches sketch to flip the status of the in-built LED

// for Arduino this is on pin 13 (LED_BUILTIN) and for ESP 32 pin 2. This example is

// configured for an Arduino microcontroller

//

// Compatible for both Arduino and ESP 32 microcontrollers

//

// Add your own code where required, eg where you see '...'

//

// R D Bentley (Stafford UK)

//

// This example and code is in the public domain and may only be

// used for non-commercial purposes without restriction and

// without warranty.

Declare the ez_switch_lib library #include <ez_switch_lib.h>

Add your own specific declarations ...

(For multiple switches it is helpful to use a multi-
dimensional array to define the data specific to
each switch. Each row of the array will
correspond to the switch’s id, for example row 2
will relate to switch id 2, etc, as far as the
ez_switch_lib library functions are concerned. We
shall use this same construct in all subsequent
examples.)
Declare your specific needs for switches, e.g.
number of switches, and for each switch:
switch type, GPIO pin number and circuit

type/pinMode setting

#define LED LED_BUILTIN // built in LED on Arduino boards

#define max_switches 4

uint8_t My_Switches[max_switches][3]{

button_switch, 2, INPUT, // switch 0

toggle_switch, 3, INPUT, // switch 1

button_switch, 4, INPUT_PULLUP, // switch 2

toggle_switch, 5, INPUT_PULLUP}; // switch 3

Add your own specific declarations ...

Instantiate the library’s class
Switches my_switches(max_switches); // instantiate the class for the required number of

switches

Add your own specific declarations ...

Use the setup() function to add your declared
switches to the library class using the

add_switch function. Note the ability to check

for success or otherwise.
Once the configuration has been verified through
compilation and testing, the error checking can be
removed.

void setup(){

 int result;

 for(uint8_t sw = 0;sw < max_switches;sw++){

 result = my_switches.add_switch(My_Switches[sw][0], //switch type

 My_Switches[sw][1], //pin switch connected to

 My_Switches[sw][2]);//circuit type – pinMode

 if (result < 0){// error reported – process error

 ...

Arduino / ESP 32 Microcontrollers
ez_switch_lib Library - Quick Start Guide

R D Bentley (Stafford UK) - 11 - April 2022

Add any additional setup code as required. }

 }

 my_switches.set_debounce(50); // set debounce to 50 millisecs

 pinMode(LED, OUTPUT); // internal built in LED

 ...

}

Add your own specific code as required ...

Use this construct or a similar one to ensure that
all declared switches are regularly processed. Add

your own code as required.

void loop(){

 ...

 do {

 for (uint8_t sw = 0;sw < max_switches;sw++){

 if (my_switches.read_switch(sw) == switched){

 // this switch (sw) has been actuated, so process it

 digitalWrite(LED, digitalRead(LED)^1); // flip status of in built LED to show

actuation

 ...

 }

 ...

 }

 ...

 } while (true);

}

Arduino / ESP 32 Microcontrollers
ez_switch_lib Library - Quick Start Guide

R D Bentley (Stafford UK) - 12 - April 2022

ESP 32 - Four Switches, Three Linked Outputs, Example 3

ESP 32 - Notes & Circuit Design
Objectives & Notes Circuit

Objectives:
This example builds on Example 2 but uses
an ESP 32 microcontroller and introduces the
concept of switch linking to output pins.

 To note that the example introduces a

pinMode parameter of INPUT_PULLDOWN

which is not available on Arduino boards.

The use of this pinMode initialisation

parameter means that we are able to
dispense with external pull down resistors
making the wiring simpler – notice that the
circuit diagram does not include any pull
down resistors

 To explore how we can link switches to

outputs - three switches will be defined as

having a linked output using the function

link_switch_to_output.

This feature allows us to automatically
invert/flip the output pin linked to a switch
whenever the switch is actuated. This
function is in addition to the normal switch
actuation handling found in the main loop

 To extend our Example 2 switch data to
reference linked outputs

 To witness the operation of the switches
by the flipping of the in-built LED and the
use of the serial monitor to show the
inversions/flipping of the linked output pins
associated with the switches

Notes:

 Ensure that your IDE is configured for the
ESP 32 microcontroller you will be using

 Set the serial monitor to 115200 baud

 Note that we have ‘lost’ the 10k ohm
resistors

 Note that not all ESP 32 GPIO pins have a
pull_up/pull_down capability5.

 Download the Example 3 sketch

 Why not introduce external LEDs on the
breadboard linking these to each of the
three linked output pins? You will see that
the LEDs will operate without any code
being introduced to the sketch.

Wire up the circuit shown adjacent with the
components shown/below.

Components No.

ESP 32 microcontroller 1

Breadboard, e.g. mini/half/full size 1

Button switch (momentary) 2

Toggle switches 2

Wires 12

5 ESP 32 GPIO pins 34-39 – these can only be set as input mode and do not have software

enabled pullup or pulldown functions. (Source: espessif)

https://github.com/ronbentley1/eazy-switch-library/tree/main/examples/ez_switch_lib_Quick_Start_Example_3

Arduino / ESP 32 Microcontrollers
ez_switch_lib Library - Quick Start Guide

R D Bentley (Stafford UK) - 13 - April 2022

ESP 32 - Four Switches, Three Linked Outputs Example 3 - Sketch
Comments Example Declarations and Code

Preamble

//

// A basic ez_switch_lib example - Quick Start, example 3

// A sketch configured for four switches sketch. The sketch will:

// 1. flip the status of the in-built LED for all switch actuations

// 2. flip the linked output pins defined for 3 of the switches. The serial

// monitor is used to show that the linked pins are flipped each time

// its associated switch is actuated.

//

// For Arduino this is on pin 13 (LED_BUILTIN) and for ESP 32 pin 2. This example is

// configured for an ESP 32 microcontroller

//

// Compatible for both Arduino and ESP 32 microcontrollers

//

// Add your own code where required, eg where you see '...'

//

// R D Bentley (Stafford UK)

//

// This example and code is in the public domain and may only be

// used for non-commercial purposes without restriction and

// without warranty.

Declare the ez_switch_lib library #include <ez_switch_lib.h>

Add your own specific declarations ...

Declare your specific needs for switches, e.g.
number of switches, and for each switch:

- switch type,
- GPIO pin number,
- circuit type/pinMode setting.
If switch linked:
- GPIO output pin to be linked to and the

linked pin’s initial setting (LOW or HIGH)

Otherwise, if not linked:
- 0, 0

#define LED 2 // this is the pin of the internal built LED on ESP 32

#define max_switches 4

uint8_t My_Switches[max_switches][5] {

 button_switch, 23, INPUT_PULLDOWN, 21, LOW, // switch 0, start with linked pin LOW

 toggle_switch, 22, INPUT_PULLUP, 19, HIGH, // switch 1, start with linked pin HIGH

 button_switch, 25, INPUT_PULLUP, 0, 0, // switch 2, no linked pin on this switch

 toggle_switch, 26, INPUT_PULLDOWN, 18, LOW // switch 3, start with linked pin LOW

};

Add your own specific declarations ...

Instantiate the library’s class
Switches my_switches(max_switches); // instantiate the class for the required number of

switches

Add your own specific declarations ...

Use the setup() function to add your declared
switches to the library class using the

add_switch function. Note the ability to check

for success or otherwise.

void setup() {

 int result;

 for (uint8_t sw = 0; sw < max_switches; sw++) {

 result = my_switches.add_switch(My_Switches[sw][0], //switch type

Arduino / ESP 32 Microcontrollers
ez_switch_lib Library - Quick Start Guide

R D Bentley (Stafford UK) - 14 - April 2022

Once the configuration has been verified through
compilation and testing, the error checking can be
removed.

Add any additional setup code as required.

 My_Switches[sw][1], //GPIO pin switch connected to

 My_Switches[sw][2]);//circuit type – pinMode

 if (result < 0) { // error reported – process error

 //...

 }

 if (My_Switches[sw][3] != 0) { // there is an output pin to be linked

 result = my_switches.link_switch_to_output(sw, // id of switch to be linked

 My_Switches[sw][3], // GPIO link

 My_Switches[sw][4]);// initial setting of link

 if (result < 0) { // error reported – process error

 //...

 }

 }

 }

 my_switches.set_debounce(50); // set debounce to 50 millisecs

 pinMode(LED, OUTPUT); // internal built in LED

 Serial.begin(115200); // open serial monitor

 //...

}

Add your own specific code as required ...

Use this construct or a similar one to ensure that
all declared switches are regularly processed. Add

your own code as required.

void loop() {

 //...

 do {// keep reading switches each loop

 for (uint8_t sw = 0; sw < max_switches; sw++) {

 if (my_switches.read_switch(sw) == switched) {

 // this switch (sw) has been actuated, so process it

 // flip status of in built LED to show actuation for all switches

 // but report switch status to the serial monitor also

 digitalWrite(LED, digitalRead(LED) ^ 1); // flip in-built LED

 // now report status of this sw(itch) which has been actuated

 Serial.print("switch ");

 Serial.print(sw);

 Serial.print(" (");

 if (My_Switches[sw][0] == button_switch)Serial.print("button switch)"); else

 Serial.print("toggle switch)");

 Serial.print(" actuated on pin ");

 Serial.print(My_Switches[sw][1]); // the pin this sw(itch) is connected to

 uint8_t linked_pin = My_Switches[sw][3]; // the pin this sw(itch) is linked to

 if (linked_pin != 0) {

 // this switch has a linked output so read that pins current status

 // and report

 bool pin_status = digitalRead(linked_pin);

 Serial.print(", linked pin is ");

 Serial.print(linked_pin);

 Serial.print(", current status is ");

Arduino / ESP 32 Microcontrollers
ez_switch_lib Library - Quick Start Guide

R D Bentley (Stafford UK) - 15 - April 2022

 if (pin_status == HIGH)Serial.println("HIGH"); else Serial.println("LOW");

 } else {

 Serial.println(", no linked pin");

 }

 Serial.flush();

 //...

 }

 //...

 }

 //...

 } while (true);

}

Serial Monitor Output from Example 3
Actuating each of the switches produces the following output, note the automatic changing of each of the linked output pins. Compare the output pin status with

the value initially assigned :

switch 0 (button switch) actuated on pin 23, linked pin is 21, current status is HIGH

switch 1 (toggle switch) actuated on pin 22, linked pin is 19, current status is LOW

switch 1 (toggle switch) actuated on pin 22, linked pin is 19, current status is HIGH

switch 2 (button switch) actuated on pin 25, no linked pin

switch 3 (toggle switch) actuated on pin 26, linked pin is 18, current status is HIGH

switch 3 (toggle switch) actuated on pin 26, linked pin is 18, current status is LOW

switch 0 (button switch) actuated on pin 23, linked pin is 21, current status is LOW

switch 1 (toggle switch) actuated on pin 22, linked pin is 19, current status is LOW

switch 1 (toggle switch) actuated on pin 22, linked pin is 19, current status is HIGH

switch 2 (button switch) actuated on pin 25, no linked pin

switch 3 (toggle switch) actuated on pin 26, linked pin is 18, current status is HIGH

switch 3 (toggle switch) actuated on pin 26, linked pin is 18, current status is LOW

Arduino / ESP 32 Microcontrollers
ez_switch_lib Library - Quick Start Guide

R D Bentley (Stafford UK) - 16 - April 2022

ESP 32 - Four Switches, Three Linked Outputs, One ISR, Example 4

ESP 32 - Notes & Circuit Design
Objectives & Notes Circuit

Objectives:

 This example builds on Example 3, again
using an ESP 32 microcontroller, and
introduces the concept of switch linking to a
common output pin to which we shall attach
an external interrupt handling routine (ISR).

 To link out switches to a common output pin
- three switches will be defined as having a
linked output using the function

link_switch_to_output.

 To understand the constraints in using
multiple common output pins with a common
ISR - switch data will be declared as for the
previous examples but take careful note of
the sketch’s comments relating to the initial
settings of the linked output pin with respect
to the interrupt trigger type

 To understand how we are able to define an
ISR within the setup process - the sketch will

define an ISR, using attachInterrupt to

handle interrupts on the common output pin
which may be triggered by any of the three
switches

 To see that whenever one of the three linked
switches is actuated, the associated
common ISR is triggered before the switch
can be handled by the main loop (the calling
switch read function). Post ISR, processing
of the actuating switch may then be applied
as required in the main loop

 The ISR included within the sketch can be
taken as a standard/generic ISR for this
library as it deals with button switches,
toggle switches switched to ‘on’ and toggle
switches switched to ‘off’

 Like Example 3, to witness switch actuations
and ISR triggering by the use of the in-built
LED, an ISR counter and the serial monitor

Notes:
1. Ensure that your IDE is configured for the

ESP 32 microcontroller you will be using
2. Note that we are using the same circuit

design as for Example 3. The difference
here is that the ESP 32 linked pin outputs
are configured for the same pin

3. Download the Example 4 sketch.

Wire up the circuit shown adjacent with the
components shown/below.

Components No.

ESP 32 microcontroller 1

Breadboard, e.g. mini/half/full size 1

Button switch (momentary) 2

Toggle switches 2

Wires 12

https://github.com/ronbentley1/eazy-switch-library/tree/main/examples/ez_switch_lib_Quick_Start_Example_4

Arduino / ESP 32 Microcontrollers
ez_switch_lib Library - Quick Start Guide

R D Bentley (Stafford UK) - 17 - April 2022

ESP 32 - Four Switches, Three Linked Outputs, One ISR Example 4 - Sketch
Comments Example Declarations and Code

Preamble

//

// A basic ez_switch_lib example - Quick Start, example

// A sketch configured for four switches sketch. The sketch will

// demonstrate how we are able to use external interrupt routines (ISRs)

// by linking switches to output pins such that when a switch is actuated

// the associated ISR is triggered.

// The in-built LED is used to indicate a switch actuation, plus the serial

// monitor is also used to confirm that the ISR is entered for any switch

// for which a linked output is defined.

//

// For Arduino this is on pin 13 (LED_BUILTIN) and for ESP 32 pin 2. This example is

// configured for an ESP 32 microcontroller

//

// Compatible for both Arduino and ESP 32 microcontrollers

//

// Add your own code where required, eg where you see '...'

//

// R D Bentley (Stafford UK)

//

// This example and code is in the public domain and may only be

// used for non-commercial purposes without restriction and

// without warranty.

Declare the ez_switch_lib library #include <ez_switch_lib.h>

Add your own specific declarations ...

Declare:

 The GPO pin to be used for the external

interrupt pin – common_interrupt_pin

 Your specific needs for switches, e.g. number
of switches, and for each switch:

- switch type,
- GPIO pin number,
- circuit type/pinMode setting.
If switch linked:
- GPIO output pin to be linked to and the

linked pin’s initial setting (LOW or HIGH)
Otherwise, if not linked:
- 0, 0

#define LED 2 // this is the pin of the internal built LED on ESP 32

#define common_interrupt_pin 21 // external (common) interrupt GPIO pin that all linked

 // switches will use

#define max_switches 4

// This array (My_Switches)includes all of the configuration data for the switch(es)

// to be defined. Switch types and wiring schemes may be mixed. Each row

// of the array references the configuration data for each switch to be defined.

// My_Switches array - rows are defined as:

// [row][0] - switch type, either 'button_switch' or 'toggle_switch', these are

// reserved library macros and may be used without declaration

// [row][1] - digital pin assigned to the switch

// [row][2] - circuit type switch is wired as and initialised for via a pinMode call:

// This parameter must take one of three values:

// 1. INPUT, or circuit_C1. This requires an external 10k ohm pull down

resistor

Arduino / ESP 32 Microcontrollers
ez_switch_lib Library - Quick Start Guide

R D Bentley (Stafford UK) - 18 - April 2022

 The interrupt trigger type, either RISING,
FALLING or CHANGE. Note that LOW and
HIGH are not supported)

// to be wired in the switch circuit

// 2. INPUT_PULLUP, or circuit_C2. NO external pull up resistor is required

// 3. INPUT_PULLDOWN, or circuit_C3. NO external pull down resistor is required

//

// Note: INPUT, INPUT_PULLUP, INPUT_PULLDOWN, circuit_C1, circuit_C2 &

circuit_C3

// are all library reserved macros and may be used without any declaration

//

// [row][3] - digital pin number of any linked output pin to this switch

// [row][4] - If a switch has a linked output pin, this is the value for the pin

// to be initialised with (HIGH or LOW) when linked via the function

// link_switch_to_output.

// NOTE:

// 1. this parameter must be the SAME for ALL switches

// linked to the SAME common interrupt pin

// 2. if the interrupt is triggered on

// a. RISING, then this value must be set LOW

// b. FALLING, then this value must be set HIGH

// c. CHANGE, then this parameter can be either LOW or HIGH

volatile uint8_t My_Switches[max_switches][5] {

 button_switch, 23, INPUT_PULLDOWN, common_interrupt_pin, HIGH,// switch 0

 toggle_switch, 22, INPUT_PULLUP, common_interrupt_pin, HIGH,// switch 1

 button_switch, 25, INPUT_PULLUP, 0, 0,// switch 2, no linked pin

for switch

 toggle_switch, 26, INPUT_PULLDOWN, common_interrupt_pin, HIGH // switch 3

};

volatile const uint8_t interrupt_trigger_type = CHANGE; // can be RISING, FALLING or

CHANGE

volatile uint16_t ISR_count = 0; // used to show the ISR is being entered

Add your own specific declarations ...

Instantiate the library’s class
Switches my_switches(max_switches); // instantiate the class for the required number of
switches

Add your own specific declarations ...

Use the setup() function to add your declared
switches to the library class using the

add_switch function and make the defined

linkages to the declared GPIO output pins using

link_switch_to_output function. Note the

ability to check for success or otherwise.

Once the configuration has been verified through

void setup() {

 int result;

 for (uint8_t sw = 0; sw < max_switches; sw++) {

 result = my_switches.add_switch(My_Switches[sw][0], //switch type

 My_Switches[sw][1], //GPIO pin switch connected to

 My_Switches[sw][2]);//circuit type – pinMode

 if (result < 0) { // error reported – process error

 //...

Arduino / ESP 32 Microcontrollers
ez_switch_lib Library - Quick Start Guide

R D Bentley (Stafford UK) - 19 - April 2022

compilation and testing, the error checking can be
removed.

Add any additional setup code as required.

 }

 if (My_Switches[sw][3] != 0) { // there is an output pin to be linked

 result = my_switches.link_switch_to_output(sw, // id of switch to be linked

 My_Switches[sw][3], // GPIO link

 My_Switches[sw][4]);// initial setting of link

 if (result < 0) { // error reported – process error

 //...

 }

 }

 attachInterrupt(digitalPinToInterrupt(common_interrupt_pin),

 switch_ISR,// name of the sketch's ISR handler for switch interrupts

 interrupt_trigger_type);// how the interrupt will be triggered

 }

 my_switches.set_debounce(50); // set debounce to 50 millisecs

 pinMode(LED, OUTPUT); // internal built in LED

 Serial.begin(115200);

 //...

}

//...

Add your own specific code as required ...

Use this construct or a similar one to ensure that
all declared switches are regularly processed. Add

your own code as required.

//...

void loop() {

 //...

 do {// keep reading switches each loop

 for (uint8_t sw = 0; sw < max_switches; sw++) {

 if (my_switches.read_switch(sw) == switched) {

 // this switch (sw) has been actuated, so process it

 // flip status of in built LED to show actuation for all switches

 // but report switch status to the serial monitor also

 digitalWrite(LED, digitalRead(LED) ^ 1); // flip in-built LED

 // now report status of this sw(itch) which has been actuated

 Serial.print("switch ");

 Serial.print(sw);

 Serial.print(" (");

 if (My_Switches[sw][0] == button_switch)Serial.print("button switch)");

 else Serial.print("toggle switch)");

 Serial.print(" actuated on pin ");

 Serial.print(My_Switches[sw][1]); // the pin this sw(itch) is connected to

 uint8_t linked_pin = My_Switches[sw][3]; // the pin this sw(itch) is linked to

 if (linked_pin != 0) {

 // this switch has a linked output that triggered its ISR

 // so display the ISR count

 Serial.print(", ISR linked pin is ");

 Serial.print(linked_pin);

Arduino / ESP 32 Microcontrollers
ez_switch_lib Library - Quick Start Guide

R D Bentley (Stafford UK) - 20 - April 2022

 Serial.print(", ISR counter = ");

 Serial.println(ISR_count);

 } else Serial.println();

 Serial.flush();

 //...

 }

 //...

 }

 //...

 } while (true);

}

Use this ISR function as a framework to add your
own specific to purpose code. Note that it deals
with both button (momentary) switches and toggle
switches, so you will be able to deal explicitly with
which switch has triggered the interrupt and, if it is
a toggle, if it is in the on or off state.

The last part of the ISR is housekeeping and
should not be modified.

//

// A common ISR associated with defined switches with linked outputs (standard

// feature of the ez_switch_ib library).

// Note that this ISR is a common framework that can be used for all uses

// of the ez_switch_lib library where switches are linked to output(s) that are

// configured as external interrupts. The ISR indicates where end user code

// should be inserted, depending on the switch type triggering the ISR.

//

void switch_ISR() {

 ISR_count++; //increment ISR counter, for demo only

 uint8_t switch_id = my_switches.last_switched_id; // switch id of switch currently

switched

 if (my_switches.switches[switch_id].switch_type == button_switch) {

 // this was a button switch triggering the interrupt

 // *** Button switch processing

 // *** Put end user code here to deal with this event

 //...

 } else {

 // this was a toggle switch triggering the interrupt

 // determine if the switch transitioned to 'on' or 'off'

 // and process accordingly

 if (my_switches.switches[switch_id].switch_status == on) {

 // *** Toggle switch processing for switch being 'on'

 // *** Put end user code here to deal with this event

 //...

 } else {

 // *** Toggle switch processing for switch being 'off'

 // *** Put end user code here to deal with this event

 //...

 }

 }

 // Finish up, with housekeeping tasks...

 if (interrupt_trigger_type != CHANGE) {

Arduino / ESP 32 Microcontrollers
ez_switch_lib Library - Quick Start Guide

R D Bentley (Stafford UK) - 21 - April 2022

 // not CHANGE, so we need to reset the interrupt pin

 bool level;

 // Deal with the switch control structure data first:

 // reset interrupt pin (linked output pin) status back to previous value

 // (i.e. invert it), ready for next read if interrupt trigger type is

 // RISING or FALLING. If it is CHANGE, then we leave it as is.

 if (interrupt_trigger_type == RISING)level = LOW; else level = HIGH;

 my_switches.switches[switch_id].switch_out_pin_status = level;

 // Now deal with the physical interrupt pin (linked output pin) level:

 // if the attachInterrupt function trigger parameter is:

 // "RISING" then the common interrupt pin must be reset to LOW

 // "FALLING" then the common interrupt pin must be reset to HIGH

 // "CHANGE" then we DO NOT reset the common interrupt pin

 digitalWrite(my_switches.switches[switch_id].switch_out_pin, level);

 } else {

 // trigger type is CHANGE, which the code here is a bit more involved!

 uint8_t ISR_pin = My_Switches[switch_id][3]; // pin defined for this interrupt

 bool level = my_switches.switches[switch_id].switch_out_pin_status;

 for (uint8_t sw = 0; sw < max_switches; sw++) {

 if (my_switches.switches[sw].switch_out_pin != 0) {

 // linked output pin associated with this switch, but only

 // perform update if it is the same pin number as the one

 // that triggered this interrupt

 if (my_switches.switches[sw].switch_out_pin == ISR_pin) {

 // make this switch (sw) same level as the actual switch

 // that triggered the interrupt

 my_switches.switches[sw].switch_out_pin_status = level;

 }

 }

 }

 }

} // End of switch_ISR

Arduino / ESP 32 Microcontrollers
ez_switch_lib Library - Quick Start Guide

R D Bentley (Stafford UK) - 22 - April 2022

Serial Monitor Output from Example 4
Actuating each of the switches produces the following output, note the automatic ISR count generated by the ISR:

switch 0 (button switch) actuated on pin 23, ISR linked pin is 21, ISR counter = 1

switch 1 (toggle switch) actuated on pin 22, ISR linked pin is 21, ISR counter = 2

switch 1 (toggle switch) actuated on pin 22, ISR linked pin is 21, ISR counter = 3

switch 2 (button switch) actuated on pin 25

switch 3 (toggle switch) actuated on pin 26, ISR linked pin is 21, ISR counter = 4

switch 3 (toggle switch) actuated on pin 26, ISR linked pin is 21, ISR counter = 5

switch 0 (button switch) actuated on pin 23, ISR linked pin is 21, ISR counter = 6

switch 1 (toggle switch) actuated on pin 22, ISR linked pin is 21, ISR counter = 7

switch 1 (toggle switch) actuated on pin 22, ISR linked pin is 21, ISR counter = 8

switch 2 (button switch) actuated on pin 25

switch 3 (toggle switch) actuated on pin 26, ISR linked pin is 21, ISR counter = 9

switch 3 (toggle switch) actuated on pin 26, ISR linked pin is 21, ISR counter = 10

Arduino / ESP 32 Microcontrollers
ez_switch_lib Library - Quick Start Guide

R D Bentley (Stafford UK) - 23 - April 2022

Conclusion
Hopefully, you have enjoyed working with and through this Quick Start Guide. If you have not

already done so and would like to explore further examples and capabilities of the ez_switch_lib

library then have a look at the Arduino Project Hub ez_switch_lib article, User Guides, associated

examples and Crib Sheet (links) above.

