

Arduino/ESP 32
ez Switch Library User Guide

A Library Supporting the Reading of Multiple

Mixed-type Simple Switches & Circuits

Author: R D Bentley, Stafford, UK.

Date: March 2022

Version 2.00

ARDUINO/ESP 32 - Switch Library User Guide

A Library Supporting the Reading of Multiple, Mixed-type Simple Switches & Circuits

RDB Stafford, UK - 2 - v2.00, March 2022

Warranties & Exceptions
This document and its content are in the public

domain and may be used without restriction and

without warranty.

Change Record
Doc Ref/Version Date Change

1.02 March 2021 Initial version published

1.03 March 2021 Addition of new library variable (last_switched_id),

plus example of its use in sketch with multiple buttons all
linked to a single interrupt handler.

1.04 July 2021 Correction to Corollary ISR example.

2.00 March 2022 1. Constructor - switch control structure mapping (malloc
redefinition), and

2. changes to support ESP 32 boards – pinMode

parameter support for INPUT_PULLDOWN

3. print_switches output reformatted

ARDUINO/ESP 32 - Switch Library User Guide

A Library Supporting the Reading of Multiple, Mixed-type Simple Switches & Circuits

RDB Stafford, UK - 3 - v2.00, March 2022

Contents
Warranties & Exceptions ... 2

Change Record ... 2

Introduction.. 4

Overview ... 4

Design Objectives ... 5

Constraints & Limitations .. 5

Switch Types Supported ... 6

Common Switch Wiring Schemes ... 7

Using the <ez_switch_lib> Library ... 8

To Know... ... 8

Location of the <ez_switch_lib> Library .. 10

Steps to Successful Use ... 10

Specifications .. 15

Specifications – Switch Control Structure (SCS) .. 15

Specifications - Reserved Macro Definitions and Other Declarations .. 16

Other Declarations .. 16

Specifications - Switch Control Functions ... 17

add_switch ... 17

link_switch_to_output .. 18

num_free_switch_slots .. 19

read_switch .. 20

read_button_switch ... 20

read_toggle_switch ... 21

print_switch ... 21

print_switches ... 22

set_debounce ... 23

Example Sketches .. 24

Example 1.1 - Turning LED On/Off With a Button Switch, Directly Coded 25

Example 1.2 - Turning LED On/Off With a Button Switch, Indirectly Coded 27

Example 2.1 - Turning LED On/Off With a Toggle Switch, Directly Coded 29

Example 2.2 - Turning LED On/Off With a Toggle Switch, Indirectly Coded 31

Example 3.1 - Turning Multiple LEDs On/Off With Multiple Button & Toggle Switches, Directly

Coded .. 33

Example 3.2 - Turning Multiple LEDs On/Off With Multiple Button & Toggle Switches, Indirectly

Coded .. 36

Example 4 – Processing More Button & Toggle Switches .. 39

Example 5 – Using the Libraries Switch Structure Variables .. 45

Corollary .. 48

Switch Mismatching .. 48

Buttons as a Toggles .. 48

Many Switches, One Interrupt Service Routine (ISR) ... 49

ARDUINO/ESP 32 - Switch Library User Guide

A Library Supporting the Reading of Multiple, Mixed-type Simple Switches & Circuits

RDB Stafford, UK - 4 - v2.00, March 2022

Introduction
Implementing switches, of any type, can be troublesome as not all switches are equal!

Some are ‘fleeting’ or momentary, like button switches, and some are simply either on or off

until they are ‘flipped’ at their next actuation. Button switches are fairly standard in their

design, but toggle type switches are many varied – simple toggle, slide, tilt, rotary, etc. If

you are incorporating switches into your projects then issues such as switch design,

transition ‘noise’ and wiring schemes will all come into play at some point in a project’s

design.

The good news is that both types of switch can be brought to heel by the

<ez_switch_lib> library which provides a simple to use, no frills, software solution for

connecting a mix of switch types wired in a variety of circuit schemes. The end result is that,

by using the <ez_switch_lib>, the only components required are switches, connecting

wires and, if wished , 10k ohm pull down resistors. However, even the 10k ohm resistors

can be left out by choice of the right circuit (see below, Common Switch Wiring Schemes).

This User Guide (UG) describes the <ez_switch_lib> library for Arduino, detailing the

functions and definitions available to the end user for implementing switches of either style

and in a choice of wiring schemes - any number of switches of any style and of varying

common wiring designs may be configured, the only limitation being the number of digital

pins available.

However, before continuing, if you would like to understand a little about the issues

associated with switches have a look at the tutorial Understanding & Using Button Switches.

Although it is centred on the simple button switch, the basics are also common to toggle

switches.

Overview
This UG provides information and guidance that will prove helpful in understanding the

capabilities of the switch library, <ez_switch_lib>, in designing and implementing

projects using switches, single or multiple of varying types.

The UG gives information and explanations of:

 Design objectives what was sought.

 Constraints &
limitations

it is vitally important to understand any constraints and limitations that
the library imposes/suffers, as these may play a part in the way in
which you utilise the library.

 Types of switch
supported

there are many types of switch available. Those suitable for use with
the library are highlighted.

 Common wiring
schemes

again there are many ways in which a switch may be wired. The
library has been designed to support the two of the most common
wiring schemes to be used for any switch type. The approach is to
minimise any additional hardware components used.

 Using the library describes how the library should be (can be) incorporated into your
projects.

https://create.arduino.cc/projecthub/ronbentley1/understanding-and-using-button-switches-2ffe6c?ref=platform&ref_id=424_trending___&offset=26

ARDUINO/ESP 32 - Switch Library User Guide

A Library Supporting the Reading of Multiple, Mixed-type Simple Switches & Circuits

RDB Stafford, UK - 5 - v2.00, March 2022

 Declarations &
definitions

provides a list of all of the library’s switch macro definitions and
control struct(ure) available to the end user to incorporate into their
sketches.

 Function
specifications

each of the library’s functions is detailed with an example in its use.
Any specific points of note are also provided.

 Example
sketches

example sketches are provided, building from single button and
toggle switches to multiple switch types using both circuit schemes
and using different programming techniques to declare and use
switch data.

Hopefully, the UG will become a ‘one-stop-shop’ to help the end user supplement

understanding in the application of switches and the library’s capabilities.

Design Objectives
At the outset a number of key objectives were established for the design of the switch library,

these being a library that provided/supported:

 support for both Arduino and ESP 32 microcontrollers by a single library

 a simple, logical and straight forward design

 ease of end user project switch configuration, irrespective of type and number of

switches or how connected (wired)

 different switch types - the ubiquitous button switch and a variety of different types of

toggle switch

 support for common wiring schemes – simply connected with or without a 10k ohm pull

down resistor

 mixed switch/circuit implementations – support for a mix of switch types and wiring

schemes

 software auto-debounce of noisy switch transitions – removing from end user design

consideration issues relating to noisy switch transition by incorporating transparent

debounce features

 one switch read function irrespective of switch type or wiring scheme – providing a

simple to use function to read any and all switches

 allowing the optional linking of switches to a digital output such that auto-switching of the

output can occur without end user programmatic coding

 developing a user guide that is informative and such that it is easy to ‘dip’ into.

Constraints & Limitations
Nothing in this world is perfect and <ez_switch_lib> is far from that. Whilst it does

provide a set of useful capabilities to aid and assist Arduino/ESP 32 project developers

involving switches, there are several constraints and limitations in its design and use to be

aware of:

1. Every switch to be configured requires its own digital pin. Whilst this is not an issue for

say, a mega 2560 microcontroller/ESP 32s, lesser boards are more constraining in the

number of digital pins they support. Certainly for UNO microcontrollers and better, there

ARDUINO/ESP 32 - Switch Library User Guide

A Library Supporting the Reading of Multiple, Mixed-type Simple Switches & Circuits

RDB Stafford, UK - 6 - v2.00, March 2022

should not be a practical issue in mapping switches to digital pins for most switch hungry

projects.

2. Development of the library was limited to six switches (see ez_switch_lib Example 4)

 two x button switches wired with a 10k ohm pull down resistor (INPUT pinMode)

 one x button switches wired without a 10k ohm pull down resistor (INPUT_PULLUP

pinMode)

 two x toggle switches wired without a 10k ohm pull down resistor (INPUT_PULLUP

pinMode)

 one x toggle switches wired with a 10k ohm pull down resistor (INPUT pinMode)

but, there is no reason to believe that more could not be configured within the limits of
the chosen microcontroller.

3. For every switch configured, 12 bytes of free memory will be allocated at run time when

the <ez_switch_lib> class is initiated. This memory requirement is in addition to the

size of the compiled sketch.

4. The period of time defined for switch noise debounce is global and applicable to all

switches, irrespective of type. It is preset ‘out of the box’ (OOTB) to 10 milliseconds but

it may be programmatically adjusted by the end user code, as required (see function

set_debounce, below).

5. The library supports three simple and commonly seen switch wiring schemes each with a

specific pinMode setting – INPUT, INPUT_PULLUP, INPUT_PULLDOWN1 (see Common

Switch Wiring Schemes).

6. For switches to be responsive in something like real-time, they need to be tested

frequently and, for button switches particularly, processed when a switch cycle is

detected. However, toggle switches may have their current status examined at any point

and any time. A software design based on a switch polling loop should be an ideal

harness to ensure continuous switch testing and processing.

Switch Types Supported
There are so, so many switches available, many for specific purposes but most of a general

nature and suitable for the majority of needs.

The switch library was developed to support two types of common and general use switches

– button, or momentary switches, and toggle switches. Of course this latter type of switch,

toggle, itself comes in all kinds of designs, for example, simple single lever, pop-on pop-off,

rotary, slide, tilt, etc.

button/momentary

Button /
momentary

Slide

Toggle Rotary

Tilt

Examples of common types of switch

1
 INPUT_PULLDOWN is only relevant for ESP 32 boards and not supported by Arduino boards.

ARDUINO/ESP 32 - Switch Library User Guide

A Library Supporting the Reading of Multiple, Mixed-type Simple Switches & Circuits

RDB Stafford, UK - 7 - v2.00, March 2022

The principal distinction between button (momentary) and toggle type switches is that button

switches have a switch cycle of OFF-ON-OFF which signifies switch activation, whereas

toggle switches go through either OFF-ON or ON-OFF representing two distinct and

separate switch transitions. The status of toggle switches therefore persists after being

physically switched – they stay ON or OFF. <ez_switch_lib> automatically handles

these physical characteristics.

Common Switch Wiring Schemes
If you now appreciate the differences between switch types, it is necessary to understand

how they should be connected to the microcontroller and the differences between the two

commonly seen switch wiring schemes without hardware debounce. These are shown

below, as ‘circuit_C1’, ‘circuit_C2’ and ‘circuit_C3’:

Circuit_C1 – external pull down resistor

Circuit_C2 – internal pull up resistor

ARDUINO/ESP 32 - Switch Library User Guide

A Library Supporting the Reading of Multiple, Mixed-type Simple Switches & Circuits

RDB Stafford, UK - 8 - v2.00, March 2022

Circuit_C3 – internal pull up resistor

Either type of switch can be configured for any type of circuit, but the key to configuring

correctly lies in the way they are software configured via the pinMode function, as follows.

 The pinMode setting for initialising circuit_C1 is pinMode(<pin>, INPUT). This

has the effect of setting the digital pin <pin> to 0v, representing ‘off’. The 10k ohm pull

down resistor is essential and ensures that the pin stays at 0v until switched, otherwise

the input pin will be susceptible to spurious firing from extraneous fields. When the

switch is actuated the input rises to +5v which will be detected as the switch transitioning

to ‘on’.

 For circuit_C2 the pinMode setting is pinMode(<pin>, INPUT_PULLUP). This

brings into play an internal microcontroller pull up resistor resulting in the digital pin

floating at 5v, representing ‘off’. No external resistor is required and when the switch is

actuated the pin will be brought to 0v which will be detected as the switch transitioning to

‘on’.

 circuit_C3 is only relevant for ESP 32 boards, with a pinMode setting of

pinMode(<pin>, INPUT_PULLDOWN). The INPUT_PULLDOWN option causes the

ESP 32 to apply a pull down resistor to the defined pin, thereby obviating a need for an

external pull down resistor. The switch’s behaviour is therefore the same as that above

for circuit_C1.

 Take note of the different voltages of the two microcontrollers – Arduino operates at a

level of +5v, whilst the ESP 32 operates at a level of 3.3v.

Using the <ez_switch_lib> Library

To Know...

The switch reading functions of the library <ez_switch_lib> are functions that read the

microcontroller’s digital pins as inputs. At the heart of these functions lies the use of the

general digitalRead function. So, if that is the case, why do we need other functions to

read digital pins?

ARDUINO/ESP 32 - Switch Library User Guide

A Library Supporting the Reading of Multiple, Mixed-type Simple Switches & Circuits

RDB Stafford, UK - 9 - v2.00, March 2022

Well, there are several reasons:

 not all switches are the same, there is a difference between how button and toggle

switches behave

 when switches transition to on/off, off/on (toggle switches) or off/on/off (button switches)

they do so in a small finite time during which they will often generate ‘noise’ which can be

read as a spurious signal and confuse the calling code logic

 switches may be wired in different ways which can reverse the logical understanding

what the meaning of LOW and HIGH is.

In short, and as previously stated, switches can be troublesome for the uninitiated! The

<ez_switch_lib> library switch read functions deal with all of the above issues, so we

can concentrate purely on what we want switches to do for us.

Both the digitalRead and the <ez_switch_lib> library switch read functions test a

digital pin at a point in time and in a non-blocking way (they have a ‘quick look’ and

immediately move on – returning back to the calling code). The downside of non-blocking

functionality means that digital pins with switches connected must be regularly tested if

switch actuations are not to be missed. In fact, they should all be tested at every

opportunity. If you look at the example Sketches, they are all designed to constantly poll

every switch at every main loop cycle. It is in this way that we are able to ensure the code

can keep up with what is happening in the real world, without missing a switch actuation.

There are three <ez_switch_lib> library functions we can use to read a switch, once it is

declared to the library class. These are:

 read_button_switch

 read_toggle_switch

 read_switch

All have the same single parameter (switch id) and return values (see Specifications - Switch

Control Functions).

The first two functions are obvious in their purpose. The third function, read_switch, is

‘agnostic’ and may be used without regard to what type of switch is connected. It should be

the principal read function in use in your sketch.

All of these functions return a value of switched or !switched (not switched), a little like

the digitalRead return values of HIGH and LOW.

However, the <ez_switch_lib> library functions provide additional information that is

useful to the programmer:

 For button switches, the programmer can access a library variable that will indicate if a

button switch is in transition (off-on-off cycle active and pending completion). The library

variable is <class name>.switches[switch_id].switch_pending, where

<class name> is the name you have given to the library’s Switches class when you

declared/initiated it. The permissible values of this variable are either true or false.

ARDUINO/ESP 32 - Switch Library User Guide

A Library Supporting the Reading of Multiple, Mixed-type Simple Switches & Circuits

RDB Stafford, UK - 10 - v2.00, March 2022

For example:

my_switches.read_switch(button_id); // test switch

if (my_switches.switches[button_id].switch_pending == true){

 // switch is in transition, so take it as on until not pending...

}

 For toggle switches, we also have access to the same switch pending variable as above,

but also an additional one. Recall that toggle switches are either one state (on/off) or the

other until they are actuated (flipped). We therefore need to be able to test what the

current/now setting of a toggle switch may be, that is, its current status. We may

similarly do this as follows:

my_switches.read_switch(toggle_id); // test switch

if (my_switches.switches[toggle_id].switch_status == on){

 // switch is currently on...

}

The permissible values of this variable are on or !on (off).

See Example 5 which shows a sketch employing the above to implement a routine to

increment hours and minutes of an external clock/timer, working both in single-shot and

continuous advance modes.

Finally, the other two <ez_switch_lib> library functions - read_button_switch and

read_toggle_switch, will operate in the same way as read_switch but specifically for

each type of switch only. In addition, if you use these two read functions and your switches

have linked outputs then these outputs will not be processed. Only the read_switch

function will process any linked switch output (see Specifications - Switch Control
Functions).

Hopefully, you are now better informed to make good use of the <ez_switch_lib> library

and its data structures and functions, all of which are documented below – see

Specifications and Example Sketches.

Location of the <ez_switch_lib> Library

The switch library files should be installed within a directory called ‘ez_switch_lib’ under

the Arduino libraries directory - ...\Arduino\libraries\.

The <ez_switch_lib> directory will comprise four files:

1. ez_switch_lib.h ... header file

2. ez_switch_lib.cpp ... C++ functions

3. keywords.txt ... keyword file to highlight <ez_switch_lib> keywords

4. ez_switch_lib_user_guide.pdf ... this document, or file elsewhere if required

5. ez_switch_lib crib sheet.pdf ... an easy reference for key library data/functions, or file

 elsewhere if required

Steps to Successful Use

Before ‘flighting to task’, it is recommended to think carefully about what it is you wish to

achieve, how switches are incorporated into your project and how <ez_switch_lib> can

be utilised.

ARDUINO/ESP 32 - Switch Library User Guide

A Library Supporting the Reading of Multiple, Mixed-type Simple Switches & Circuits

RDB Stafford, UK - 11 - v2.00, March 2022

The principal considerations are:

1. Decide how many switches and of what type these will be.

2. For each switch decide –

a. which digital pin will be used?

b. how will the switch be wired, circuit_C1, circuit_C2 or circuit_C3?

c. do we wish to create a link from the switch to another digital output pin and, if so,

what state should the output pin be initialised to at creation time?

3. What will happen when each switch is activated? This step is beyond this UG and is the

purpose of your project.

If you are implementing many switches then it may be helpful to make a note of their

configurations as once you start wiring and coding things can get a bit muddled up! The

following template may be helpful to fill out at the start of your planning and for you to refer to

into the development stage (it is also a useful documentation aid post implementation):

Project Name: Date:

Switch Configs Linked Outputs
Notes

Pin
Switch Type Circuit Type

Pin
Initial Value

Button Toggle C1 C2 C3 LOW HIGH

(add more rows as needed)

For example, Example 4, below, configures the following switches, pins, circuits and links:

Project Name: LEDs & Relays Date: 4 March 2021

Switch Configs Linked Outputs
Notes

Pin
Switch Type Circuit Type

Pin
Initial Value

Button Toggle C1 C2 C3 LOW HIGH

2 X X 8 X Relay 1 - no switching coding

3 X X 9 X Led 1 - no switching coding

4 X X Led 3 - needs switching coding

5 X X

Produces switch status report to serial
monitor

6 X X 10 X Relay 2 - no switching coding

7 X X 11 X Led 2 - no switching coding

Having got to grips with what switches, pins and circuit schemes your project will be

designed around it is necessary to understand how <ez_switch_lib> can be used. As

with all libraries there are a number of points to consider:

1. We need to ensure our sketch references the library

2. We need to create an instance of the library class, and

3. We need to understand how to correctly use the library’s capabilities (e.g. functions and

data).

There are a number of steps to be followed –

ARDUINO/ESP 32 - Switch Library User Guide

A Library Supporting the Reading of Multiple, Mixed-type Simple Switches & Circuits

RDB Stafford, UK - 12 - v2.00, March 2022

Step 1

To start, we need to declare the <ez_switch_lib> library. At the top level of your sketch

include the following statements:

#include <Arduino.h>

#include <ez_switch_lib.h>

Step 2

Then, prior to setup(), declare how many switches your sketch will be configured for (e.g.

#define num_switches 6, or unit8_t num_switches = 6; etc) together with your

switch configuration data (as per the above template?). How you wish to declare this data is

very much up to your personal preference. The example sketches, below, show several

approaches that you may find instructive.

Step 3

Again, prior to your sketch setup() function and after your switch data declarations, add the

following class instantiation statement:

Switches my_switches(num_switches);

Where ‘my_switches’ is the name you wish to use for the class you have initiated – this

can be anything, but ‘my_switches’ is a pretty good name.

Step 4

Okay, we’re off and running? Not quite, before we can plough on and start reading switches

we need to declare them to the library along with their attributes. We do this by using the

function add.switch. This function will add a specified switch to the library’s table of active

switches such that when it is read (tested) by the read function(s) it will know how it is to be

handled. Therefore for each switch you wish to configure you will need to add it to the

library’s active switch table; for this we use the add.switch function:

int switch_id;

switch_id = my_switches.add.switch(button_switch,4,circuit_C2);

or equivalently:

int switch_id;

switch_id = my_switches.add.switch(button_switch,4,INPUT_PULLUP);

Things to notice:

 the add.switch function call is preceded with the name we have given to the

Switches class, in this example ‘my_switches’. This is required to access any

resource within the class

 ‘button_switch’ ,‘circuit_C2’ and ‘INPUT_PULLUP’ are reserved keywords and are

highlighted in blue. They each define the switch and circuit type, respectively. There are

a number of reserved words you may use throughout your sketch, see Specifications -

Reserved Macro Definitions and Switch Control Functions add.switch to understand

the possible parameters and return values/conditions

ARDUINO/ESP 32 - Switch Library User Guide

A Library Supporting the Reading of Multiple, Mixed-type Simple Switches & Circuits

RDB Stafford, UK - 13 - v2.00, March 2022

 the function provides a return value. If the addition is successful, this value is the

reference you should use whenever you use any of the library resources where switch

reference is a required parameter. How you retain this is very much up to your design,

but see the example sketches below which should prove helpful. See Specifications -

Switch Control Functions add.switch to understand the possible return

values/conditions.

The best place to add/create your switches is in the setup()function, but it can be done

anywhere so long as it is only done once and is in scope of the library class statement.

Step 5

Now that is done we can start to read the switches.

The simplest way to read a switch is to use the function read_switch. This function is

agnostic to switch type and has a single parameter - the id of the switch we wish to read. It

will return either ‘switched’ or ‘!switched’ (again reserved library macros), the meaning

being obvious. For example:

if(my_switches.read_switch(switch_id) == switched)

{

...do something;

}

There are other resources available from the library and these are described below.

Example - to recap the steps (five) in order of application/use are:

Step Example
1 #include <Arduino.h>

#include <ez_switch_lib.h>

// plus any other libraries

2 #define num_switches 1 // number of switches to be added, 1 in this example

// define your switch data

int switch_id;

byte button_pin = 4;

...

3 // create switch class instance

Switches my_switches(num_switches);

...

4 void setup(){

 ...

 // declare your switches to the library, for example:

 switch_id = my_switches.add.switch(button_switch, button_pin,circuit_C2);

 // validate return value...

}

5 void loop(){

do{

 if(my_switches.read_switch(switch_id) == switched)

 {

 ...do something;

 } while (true);

}

Additionally to note:

If you need to reference any of the library’s class resources (except macros definitions) then

you must prefix them with the name you have given to the class when you

ARDUINO/ESP 32 - Switch Library User Guide

A Library Supporting the Reading of Multiple, Mixed-type Simple Switches & Circuits

RDB Stafford, UK - 14 - v2.00, March 2022

created/instantiated it. For example, if we instantiated the class with the name

‘my_switches’ then we can access the SCS variables, other variables and functions thus:

my_switches.switches[switch_id].switch_type

my_switches.switches[2].switch_status

my_switches.switches[toggle_id3].switch_pending

my_switches.add_switch(button_switch,12,circuit_C2)

my_switches.num_free_switch_slots()

my_switches.set_debounce(25)

my_switches.read_switch(my_switch_data[sw])

switch_id = my_switches.last_switched_id

etc.

ARDUINO/ESP 32 - Switch Library User Guide

A Library Supporting the Reading of Multiple, Mixed-type Simple Switches & Circuits

RDB Stafford, UK - 15 - v2.00, March 2022

Specifications

Specifications – Switch Control Structure (SCS)

At the heart of the <ez_switch_lib> library lies a struct(ure) ‘table’ - the switch control

structure (SCS), that is used to hold the data attributes for all declared/defined switches.

At instantiation of the class, the SCS is created from free memory using a malloc call of

sufficient size to match the number of switches the class is being defined for. Thereafter, it

may be populated with switches by use of the add_switch function (see below) up to the

maximum number of switches declared for the class.

The SCS has the following construction and layout:

struct switch_control {

 byte switch_type; // type of switch connected

 byte switch_pin; // digital input pin assigned to the switch

 byte switch_circuit_type; // the type of circuit wired to the switch

 bool switch_on_value; // used for BUTTON SWITCHES only –

 // defines what ‘on’ means

 bool switch_pending; // records if switch in transition or not

 long unsigned int switch_db_start;// records debounce start time

 // when associated switch starts transition

 bool switch_status; // used for TOGGLE SWITCHES only – current

 // state of toggle switch.

 byte switch_out_pin; // the digital pin mapped to this switch,

 // if any

 bool switch_out_pin_status;// the status of the mapped pin

}

Members of the SCS may be directly accessed from the end user sketch, as required, see

above. Of particular interest will be:

For button and toggle switches -

my_switches.switches[switch_id].switch_pending

indicating if a given switch is in transition and for toggle switches only –

my_switches.switches[2].switch_status

indicating if the given toggle switch is on or off (!on).

ARDUINO/ESP 32 - Switch Library User Guide

A Library Supporting the Reading of Multiple, Mixed-type Simple Switches & Circuits

RDB Stafford, UK - 16 - v2.00, March 2022

Specifications - Reserved Macro Definitions and Other Declarations

The table below documents the library’s reserved macro definitions. These are available for

use by a sketch simply by referencing their name (column 1 and no prefix required), see

example sketches. When used they will be coloured in red to show that they are reserved

words.

#define -

Macro Definitions
Values Significance / Comments

button_switch 1 differentiates switch type, this being of type
‘button’

toggle_switch 2 differentiates switch type, this being of type
‘toggle’

circuit_C1’ INPUT switch circuit configured with an external pull
down 10k ohm resistor

circuit_C2 INPUT_PULLUP switch circuit configured without an external pull

up/down resistor and the pin held HIGH by the

microcontroller
circuit_C3 INPUT_PULLDOWN switch circuit configured without an external pull

up/down resistor and the pin held LOW by the

microcontroller
switched true A value returned by read_switch,

read_button_switch &

read_toggle_switch functions.

Signifies switch has been pressed and switch

cycle complete, otherwise !switched
on true used for toggle switch status. Off is !on
not_used true ‘not used’ indicator – marks if a field in the switch

control structure is used or not
bad_params -2 A value returned by add_switch function -

invalid parameters
add_failure -1 A value returned by add_switch function - could

not insert a given switch, i.e. no slots left
link_success 0 A value returned by link_switch_to_output

function - output pin successfully linked to a switch
link_failure -1 A value returned by link_switch_to_output

function - output pin could not be linked to a
switch

none_switched 255 last_switched_id variable initialised to this

value until first switch is actuated

Other Declarations

The library supports a useful variable, accessible to the end user developer, that records the

id of the switch that has last been actuated, i.e. switched. This variable is declared and

initialised as follows:

byte last_switched_id = none_switched;

And may be referenced as follows (example):

my_switches.last_switched_id

See the example of its use in the Corollary section below.

ARDUINO/ESP 32 - Switch Library User Guide

A Library Supporting the Reading of Multiple, Mixed-type Simple Switches & Circuits

RDB Stafford, UK - 17 - v2.00, March 2022

Specifications - Switch Control Functions

Type int Name add_switch

Parameters byte sw_type, byte sw_pin, byte circ_type

parameter choices are:

sw_type - is either ‘button_switch’ or ‘toggle_switch’,

sw_pin - is the digital pin assigned to the switch,

circ_type - is either ‘circuit_C1’, ‘circuit_C2’ or ‘circuit_C3’

Purpose /
functionality

This function will add (create) the specified switch (parameters) to the switch
control structure, if possible.

There are three possible outcomes from an add_switch call:

1. Successful addition of switch. In this case the return value is >= 0 and

represents the physical slot (location ‘switch_id/token’) of the switch in the
switch control structure. This should be retained by the calling code/design.

2. No further slots available in the switch control structure, all are used.
3. The supplied parameters are ‘bad’.

The results of an add_switch call are as below.

Return values Return values are:

>= 0 success, switch added to switch control struct(ure) - the switch control

structure entry number is returned (switch_id/token) for the switch added,

-1 add_failure - no slots available in the switch control structure,

-2 bad_params - given parameter(s) for switch are not valid.

Example

void create_my_switches() {

 for (int sw = 0; sw < num_switches; sw++) {

 int switch_id =

 my_switches.add_switch(my_switch_data[sw][0], // switch type

 my_switch_data[sw][1], // digital pin number

 my_switch_data[sw][2]);// circuit type

 if (switch_id < 0)

 { // There is a data compatibility mismatch (-2),

 // or no room left to add switch (-1).

 Serial.print("Failure to add a switch:\nswitch entry:");

 Serial.print(switch_id);

 Serial.print(", data line = ");

 Serial.print(my_switch_data[sw][0]);

 Serial.print(", ");

 Serial.print(my_switch_data[sw][1]);

 Serial.print(", ");

 Serial.println(my_switch_data[sw][2]);

 Serial.println("!! PROGRAMME TERMINATED !!");

 Serial.flush();

 exit(1);

 } else {

 // 'switch_id' is the switch control slot entry for this switch (sw),

 // so we can use this, if required, to know where our switches are

 // in the control structure by keeping a note of them against their

 // my_switch_data config settings.

 my_switch_data[sw][3] = switch_id;

 }

 }

} // End create_my_switches

ARDUINO/ESP 32 - Switch Library User Guide

A Library Supporting the Reading of Multiple, Mixed-type Simple Switches & Circuits

RDB Stafford, UK - 18 - v2.00, March 2022

Type int Name link_switch_to_output

Parameters byte switch_id, byte output_pin, bool HorL

Purpose /
functionality

This function will link the given digital pin (output_pin) to an already

created/defined switch (switch_id) and initialise it according to the specified
parameter, as follows:

pinMode(output_pin, HorL), where HorL is either LOW or HIGH

Once linked, the output pin will be flipped between LOW/HIGH or HIGH/LOW

each time the associated switch is read (tested) by the read_switch function

and found to have been actuated (switched).

Note that:
1. This feature allows simple digital output pin switching without any

requirement for end user coding.

2. The output can be initialised at either LOW or HIGH level.

3. Automatic output pin flipping only occurs via use of the read_switch

function. If switches have a linked output and they need to be read without

automatic output pin flipping then use read_button_switch /

read_toggle_switch, instead. These functions will not flip associated

switch output levels.
4. Redefining a linked switch output - existing defined switch linked outputs

can be redefined, as required, by further calls to the switch link function.
5. Removing a linked switch output - if a switch has a linked output defined

and it is necessary to remove it then this can be done by a call to

link_switch_to_output with an output pin value of 0. The output level will

be set according to the HorL parameter. For example:

link_result = my_switches.link_switch_to_output(

 switch_id,

 0,

 LOW);// set output level to low

However, if the output level is to remain unaltered then set the HorL

parameter to:

my_switches.switches[switch_id].switch_out_pin_status,

 where ‘my_switches’ is the name of your class for the Switches class.

For example:

link_result = my_switches.link_switch_to_output(

 switch_id,

 0,

 my_switches.switches[switch_id].

 switch_out_pin_status);//don’t change

Return values 0, link_success – linkage was successful

-1, link_failure – linkage failed, switch_id not in range of defined

 switches

Example

Example 1:

 // Link/associate this switch to the in-built led (normally pin 13)

 // with the switch we have just installed/created so that every

 // time the switch is actuated the built in LED will be automatically

 // flipped. Start with LED at LOW setting.

ARDUINO/ESP 32 - Switch Library User Guide

A Library Supporting the Reading of Multiple, Mixed-type Simple Switches & Circuits

RDB Stafford, UK - 19 - v2.00, March 2022

Type int Name add_switch

 int link_result = my_switches.link_switch_to_output(

 switch_id,

 LED_BUILTIN,

 LOW);

 if (link_result == link_failure) {

 // linking failed, invalid switch id

 Serial.begin(9600);

 Serial.println(F("Failure to link an output to a switch"));

 Serial.println(F("!!PROGRAM TERMINATED!!"));

 Serial.flush();

 exit(2);

 }

Example 2:

 // Link/associate this switch to the relay output pin

 // with the switch we have just installed/created so that every

 // time the switch is actuated the relay will be automatically

 // flipped. Start with relay at HIGH setting.

 int link_result = my_switches.link_switch_to_output(

 switch_id,

 relay_1,

 HIGH);

 if (link_result == link_failure) {

 // linking failed, invalid switch id

 Serial.begin(9600);

 Serial.println(F("Failure to link an output to a switch"));

 Serial.println(F("!!PROGRAM TERMINATED!!"));

 Serial.flush();

 exit(2);

 }

Type int Name num_free_switch_slots

Parameters none

Purpose /
functionality

Returns the number of free slots available in the switch control structure.

Return values 0 to the maximum number of switches defined

Example

Serial.print("\nNumber of free switch slots in the SCS = ");

Serial.println(my_switches.num_free_switch_slots());

ARDUINO/ESP 32 - Switch Library User Guide

A Library Supporting the Reading of Multiple, Mixed-type Simple Switches & Circuits

RDB Stafford, UK - 20 - v2.00, March 2022

Type bool Name read_switch

Parameters byte switch_id

Purpose /
functionality

Function will read the given switch returning a result as below.

Note that:

1. The switch_id parameter is the switch entry number in the switch control

structure of the switch to be read. This is the returned value from the

add_switch function call.

2. If an invalid switch_id is given the read function exits with a return value

of !switched.

3. If a switch has a linked output pin associated with it then this function will

flip the current output pin level, i.e. from LOW to HIGH, or from HIGH to LOW.

See add_switch and link_switch_to_pin for further information.

Return values switched or !switched

Example

Example 1:

 // the switch does not have and output pin linked to it, so we

 // need to handle the flipping of the LED

 do {

 if (my_switches.read_switch(switch_id) == switched) {

 led_level = HIGH - led_level; // flip between HIGH and LOW each cycle

 digitalWrite(LED_BUILTIN, led_level);

 }

 } while (true);

Example 2:

 // the switch has been defined with a linked/associated output pin

 // connected to a LED.

 // We therefore have nothing to do but keep reading the switch and the

 // LED will be automatically flipped for us.

 do {

 my_switches.read_switch(switch_id);

 } while (true);

Type bool Name read_button_switch

Parameters byte switch_id

Purpose /
functionality

This is used by the read_switch function and deals specifically with reading

momentary button style switches.

The function can be used by end user code, but note:

1. Remember that the switch_id parameter is the switch entry number in

the switch control structure of the switch to be read.
2. If the switch has a linked/associated output pin then it will not be

processed.

Return values switched or !switched

Example

if (my_switches.read_button_switch(switch_id) == switched){

 // button switch pressed

 ...

}

ARDUINO/ESP 32 - Switch Library User Guide

A Library Supporting the Reading of Multiple, Mixed-type Simple Switches & Circuits

RDB Stafford, UK - 21 - v2.00, March 2022

Type bool Name read_toggle_switch

Parameters byte switch_id

Purpose /
functionality

This is used by the read_switch function and deals specifically with reading

toggle style switches.

The function can be used by end user code, but note:

1. Remember that the switch_id parameter is the switch entry number in

the switch control structure of the switch to be read.
2. If the switch has a linked/associated output pin then it will not be

processed.

Return values switched or !switched

Example

if (my_switches.read_toggle_switch(switch_id) == switched){

 // toggle switch switched

 ...

}

Type void Name print_switch

Parameters byte switch_id

Purpose /
functionality

The function prints the switch parameters of the switch defined at slot

switch_id in the switch control structure to the serial monitor.

It can be helpful in the debugging phase and removed thereafter.

Return values none

Example

my_switches.print_switch(3);

Example ESP 32 output: a toggle switch, configured as circuit_C3 and occupying slot 3

(switch_id = 3)in the switch control structure:

sw_id: = 3

sw_type = TOGGLE SWITCH sw_pin = 33 circ_type = INPUT_PULLDOWN/circuit_C3/9

on_value = HIGH sw_status = OFF pending = NO db_start = 0 msecs

Linked output pin = 20 linked pin status = HIGH

ARDUINO/ESP 32 - Switch Library User Guide

A Library Supporting the Reading of Multiple, Mixed-type Simple Switches & Circuits

RDB Stafford, UK - 22 - v2.00, March 2022

Type void Name print_switches

Parameters none

Purpose /
functionality

The function prints the switch parameters of ALL switches held in the switch
control structure to the serial monitor.

It can be helpful in the debugging phase and removed thereafter.

Return values none

Example

my_switches.print_switches();

Example output for 6 defined switches - 3 x button & 3 x toggle, configured as either

circuit_C1 or circuit_C2, with and without linked output pins:

Declared & configured switches:

sw_id: = 0

sw_type = BUTTON SWITCH sw_pin = 34 circ_type = INPUT/circuit_C1/0

on_value = HIGH sw_status = n/a pending = NO db_start = 0 msecs

Linked output pin = 20 linked pin status = HIGH

sw_id: = 1

sw_type = TOGGLE SWITCH sw_pin = 35 circ_type = INPUT/circuit_C1/0

on_value = HIGH sw_status = OFF pending = NO db_start = 0 msecs

Linked output pin = 20 linked pin status = HIGH

sw_id: = 2

sw_type = BUTTON SWITCH sw_pin = 32 circ_type = INPUT_PULLUP/circuit_C2/2

on_value = LOW sw_status = n/a pending = NO db_start = 0 msecs

*** No linked output pin

sw_id: = 3

sw_type = TOGGLE SWITCH sw_pin = 33 circ_type = INPUT_PULLUP/circuit_C2/2

on_value = LOW sw_status = OFF pending = NO db_start = 0 msecs

Linked output pin = 20 linked pin status = HIGH

sw_id: = 4

sw_type = BUTTON SWITCH sw_pin = 25 circ_type = INPUT_PULLUP/circuit_C2/2

on_value = LOW sw_status = n/a pending = NO db_start = 0 msecs

*** No linked output pin

sw_id: = 5

sw_type = TOGGLE SWITCH sw_pin = 26 circ_type = INPUT_PULLUP/circuit_C2/2

on_value = LOW sw_status = OFF pending = NO db_start = 0 msecs

Linked output pin = 20 linked pin status = HIGH

switch read, switch id = 3, ISR_count = 0

sw_id: = 3

sw_type = TOGGLE SWITCH sw_pin = 33 circ_type = INPUT_PULLUP/circuit_C2/2

on_value = LOW sw_status = ON pending = NO db_start = 0 msecs

Linked output pin = 20 linked pin status = LOW

ARDUINO/ESP 32 - Switch Library User Guide

A Library Supporting the Reading of Multiple, Mixed-type Simple Switches & Circuits

RDB Stafford, UK - 23 - v2.00, March 2022

Type void Name set_debounce

Parameters int period

Purpose /
functionality

The function may be used to set the debounce period, in milliseconds, for
switch reading functions.

Note that:

1. the debounce value is set to 10 milliseconds, by default
2. the debounce setting is global and applies to ALL defined switches
3. the parameter value must be >= 0. Negative values are ignored.

Return values none

Example

my_switches.set_debounce(20); // set debounce for 20 msecs

ARDUINO/ESP 32 - Switch Library User Guide

A Library Supporting the Reading of Multiple, Mixed-type Simple Switches & Circuits

RDB Stafford, UK - 24 - v2.00, March 2022

Example Sketches
What follows are a number of Arduino examples in the use of the <ez_switch_lib>

library. These are provided to aid understanding in how the <ez_switch_lib> can be

applied to your projects. All examples cite an Arduino microcontroller, but they are equally

suitable for an ESP 32 board with a change in the defined digital pins (GPIOs).

Each example sketch may be copied and pasted directly into the Arduino IDE from the

github links provided for each example sketch, compiled and uploaded without any further

coding – just ensure that you have downloaded the <ez_switch_lib> library files first.

Any additional components beyond an Arduino microcontroller, connecting wires and a

breadboard are indicated for each sketch.

The example sketches are:

1. Example 1.1 - turning on and off the in-built LED of the Arduino microcontroller (normally

on pin 13) using a single button switch using direct coding.

2. Example 1.2 – as for example 1.1 but using the function link_switch_to_output to

flip the in-built LED using indirect coding.

3. Example 2,1 - turning on and off the in-built LED of the Arduino microcontroller (normally

on pin 13) using a single toggle switch using direct coding.

4. Example 2.2 – as for example 2.1 but using the function link_switch_to_output to

flip the in-built LED using indirect coding.

5. Example 3.1 - four switches, two button and two toggle, wired in different schemes, with

each switch turning on and off an associated LED using direct coding.

6. Example 3.2 - as for example 3.1 but using the function link_switch_to_output to

flip each of the associated LEDs using indirect coding.

7. Example 4 - six switches, three button and three toggle, wired in different schemes, with

each switch being processed by its own switch-case statement. The sketch incorporates

a mix of direct coding and use of the function link_switch_to_output to control the

effects of the switches, using the serial monitor, LEDs and relays.

8. Example 5 – one toggle switch and two button switches used to provide time adjustment

capability for hours and minutes (24 hour clock). This example demonstrates the use of

the library’s internal switch control struct(ure) variables and settings directly to achieve

the required functionality.

All of the sketches can be accessed from github - follow the specific github link with each

example. Alternatively, the main <ez_switch_lib> github page can be found at this link.

https://github.com/ronbentley1/switch_lib-Arduion-Library

ARDUINO/ESP 32 - Switch Library User Guide

A Library Supporting the Reading of Multiple, Mixed-type Simple Switches & Circuits

RDB Stafford, UK - 25 - v2.00, March 2022

Example 1.1 - Turning LED On/Off With a Button Switch, Directly Coded

This example sketch uses a button switch and will turn the Arduino in-built led on and off

with each press. The switch is wired for circuit_C1.

Note that a led state change will only occur when the button switch is released, that is after

the completion of the switching cycle.

The switch mappings and outputs are:

Project Name: Example 1.1 – button switch, no linking Date: 4 March 2021

Switch Configs Linked Outputs
Notes

Pin
Switch Type Circuit Type

Pin
Initial Value

Button Toggle C1 C2 LOW HIGH

2 X X
No linked output, button will flip in-built LED
by direct coding

Components required Circuit schemes

1 x button switch circuit_C1

The sketch can be also accessed from github, here.

/*

 Ron D Bentley, Stafford, UK

 Mar 2021

 %%%

 - Example of use of the ez_switch_lib library -

 Example 1.1

 Reading single button switch to turn built in led on/off.

 When the button switch is actuated, the in-built led

 (LED_BUILTIN), will be flipped ON/OFF etc by using suitable

 coding in the sketch's main loop.

 %%%

 This example and code is in the public domain and

 may be used without restriction and without warranty.

*/

#include <Arduino.h>

#include <ez_switch_lib.h> // ez_switch_lib .h & .cpp files are stored under

...\Arduino\libraries\ez_switch_lib\

int switch_id;

bool led_level = LOW; // start with led off

#define num_switches 1 // only a single switch in this sketch example

// Declare/define the switch instance of given size

Switches my_switches(num_switches);

void setup() {

 // Attach a button switch to digital pin 2, with

 // an external pull down resistor, circuit_C1,

 // and store the switch's id for later use.

 switch_id = my_switches.add_switch(

 button_switch,

 2,

https://github.com/ronbentley1/eazy-switch-library/blob/main/examples/general%20examples/single_button_and_LED.ino

ARDUINO/ESP 32 - Switch Library User Guide

A Library Supporting the Reading of Multiple, Mixed-type Simple Switches & Circuits

RDB Stafford, UK - 26 - v2.00, March 2022

 circuit_C1);

 // validate the return

 if (switch_id < 0) {

 // Error returned - there is a data compatibility mismatch (-2, bad_params),

 // or no room left to add switch (-1, add_failure).

 Serial.begin(9600);

 Serial.println(F("Failure to add a switch"));

 if (switch_id == add_failure) {

 Serial.println(F("add_switch - no room to create given switch"));

 } else {

 // Can only be that data for switch is invalid

 Serial.println(F("add_switch - one or more parameters is/are invalid"));

 }

 Serial.println(F("!!PROGRAM TERMINATED!!"));

 Serial.flush();

 exit(1);

 }

 // Initialise built in led and turn to off

 pinMode(LED_BUILTIN, OUTPUT);

 digitalWrite(LED_BUILTIN, LOW);

}

void loop() {

 // Keep reading the switch we have created and toggle the built in

 // led on/off for each press.

 do {

 if (my_switches.read_switch(switch_id) == switched) {

 // Flip between HIGH and LOW each cycle

 led_level = HIGH - led_level;

 digitalWrite(LED_BUILTIN, led_level);

 }

 } while (true);

}

ARDUINO/ESP 32 - Switch Library User Guide

A Library Supporting the Reading of Multiple, Mixed-type Simple Switches & Circuits

RDB Stafford, UK - 27 - v2.00, March 2022

Example 1.2 - Turning LED On/Off With a Button Switch, Indirectly Coded

This example sketch uses a button switch to turn the Arduino in-built led on and off with each

press, indirectly, by using the link_switch_to_output function. Compare this sketch

with example 1.1 sketch and note the differences – the button switch is linked to an output

pin and no code exists in the sketch to flip the output pin (in-built LED). The switch is wired

for circuit_C1.

Note that a led state change will only occur when the button switch is released, that is after

the completion of the switching cycle.

The switch mappings and outputs are:

Project Name: Example 1.2 – button switch, with linking Date: 4 March 2021

Switch Configs Linked Outputs
Notes

Pin
Switch Type Circuit Type

Pin
Initial Value

Button Toggle C1 C2 LOW HIGH

2 X X 13 X
LED_BUILTIN – no direct coding needed
to flip the LED

Components required Circuit schemes

1 x button switch circuit_C1

The sketch can be accessed from github here.

/*

 Ron D Bentley, Stafford, UK

 Mar 2021

 %%%

 - Example of use of the ez_switch_lib library -

 Example 1.2

 Reading single button switch to turn built in led on/off, but

 in this example we shall link the switch to an output pin

 (LED_BUILTIN) using a ez_switch_lib function, so that when

 actuated, the output pin will be automatically flipped

 HIGH-LOW etc each time the button switch is pressed WITHOUT

 any further coding.

 %%%

 This example and code is in the public domain and

 may be used without restriction and without warranty.

*/

#include <Arduino.h>

#include <ez_switch_lib.h> // ez_switch_lib .h & .cpp files are stored under

...\Arduino\libraries\ez_switch_lib\

int switch_id;

#define num_switches 1 // only a single switch in this sketch example

// Declare/define the switch instance of given size

Switches my_switches(num_switches);

void setup() {

 // Attach a button switch to digital pin 2, with

https://github.com/ronbentley1/eazy-switch-library/blob/main/examples/general%20examples/single_button_with_linked_LED.ino

ARDUINO/ESP 32 - Switch Library User Guide

A Library Supporting the Reading of Multiple, Mixed-type Simple Switches & Circuits

RDB Stafford, UK - 28 - v2.00, March 2022

 // an external pull down resistor, circuit_C1,

 // and store the switch's id for later use.

 switch_id = my_switches.add_switch(

 button_switch,

 2,

 circuit_C1);

 // validate the return

 if (switch_id < 0) {

 // Error returned - there is a data compatibilty mismatch (-2, bad_params),

 // or no room left to add switch (-1, add_failure).

 Serial.begin(9600);

 Serial.println(F("Failure to add a switch"));

 if (switch_id == add_failure) {

 Serial.println(F("add_switch - no room to create given switch"));

 } else {

 // can only be that data for switch is invalid

 Serial.println(F("add_switch - one or more parameters is/are invalid"));

 }

 Serial.println(F("!PROGRAM TERMINATED!!"));

 Serial.flush();

 exit(1);

 }

 // Link/associate this switch to the in-built led (normally pin 13)

 // with the switch we have just installed/created so that every

 // time the switch is actuated the built in LED will be automatically

 // flipped. Start with LED at low setting.

 int link_result = my_switches.link_switch_to_output(

 switch_id,

 LED_BUILTIN,

 LOW);

 if (link_result == link_failure) {

 // linking failed, invalid switch id

 Serial.begin(9600);

 Serial.println(F("Failure to link an output to a switch"));

 Serial.println(F("!!PROGRAM TERMINATED!!"));

 Serial.flush();

 exit(2);

 }

}

void loop() {

 do {

 // just keep reading, LED_BUILTIN will automatically be flipped for us

 // so we dont need to do anything else

 my_switches.read_switch(switch_id);

 }

 while (true);

}

ARDUINO/ESP 32 - Switch Library User Guide

A Library Supporting the Reading of Multiple, Mixed-type Simple Switches & Circuits

RDB Stafford, UK - 29 - v2.00, March 2022

Example 2.1 - Turning LED On/Off With a Toggle Switch, Directly Coded

This example sketch uses a toggle switch and will turn the Arduino in-built led on and off with

each actuation. The sketch is essentially the same as example 1.1, the difference being that

a toggle switch type is declared instead of a button type. The switch is wired for

circuit_C1.

Note that a led state change occurs at each position of the toggle switch.

The switch mappings and outputs are:

Project Name: Example 2.1 – toggle switch, no linking Date: 4 March 2021

Switch Configs Linked Outputs
Notes

Pin
Switch Type Circuit Type

Pin
Initial Value

Button Toggle C1 C2 LOW HIGH

2 X X
No linked output, toggle will flip in-built LED
by direct coding

Components required Circuit schemes

1 x toggle switch circuit_C1

The sketch can be accessed from github here.

/*

 Ron D Bentley, Stafford, UK

 Mar 2021

 %%%

 - Example of use of the ez_switch_lib library -

 Example 2.1

 Reading single toggle switch to turn built in led on/off.

 When the toggle switch is activated, the in-built led

 (LED_BUILTIN), will be flipped ON/OFF etc by using suitable

 coding in the sketch's main loop.

 %%%

 This example and code is in the public domain and

 may be used without restriction and without warranty.

*/

#include <Arduino.h>

#include <ez_switch_lib.h> // ez_switch_lib .h & .cpp files are stored under

...\Arduino\libraries\ez_switch_lib\

int switch_id;

bool led_level = LOW;

#define num_switches 1 // only a single switch in this sketch example

// Declare/define the switch instance of given size

Switches my_switches(num_switches);

void setup() {

 // Attach a toggle switch to digital pin 2, with

 // an external pull down resistor, circuit_C1,

 // and store the switch's id for later use.

 switch_id = my_switches.add_switch(

https://github.com/ronbentley1/eazy-switch-library/blob/main/examples/general%20examples/single_toggle_and_LED.ino

ARDUINO/ESP 32 - Switch Library User Guide

A Library Supporting the Reading of Multiple, Mixed-type Simple Switches & Circuits

RDB Stafford, UK - 30 - v2.00, March 2022

 toggle_switch,

 2,

 circuit_C1);

 // Validate the return

 if (switch_id < 0) {

 // Error returned - there is a data compatibilty mismatch (-2, bad_params),

 // or no room left to add switch (-1, add_failure).

 Serial.begin(9600);

 Serial.println(F("Failure to add a switch"));

 if (switch_id == add_failure) {

 Serial.println(F("add_switch - no room to create given switch"));

 } else {

 // Can only be that data for switch is invalid

 Serial.println(F("add_switch - one or more parameters is/are invalid"));

 }

 Serial.println(F("!!PROGRAM TERMINATED!!"));

 Serial.flush();

 exit(1);

 }

 // Initialise built in led and turn to off

 pinMode(LED_BUILTIN, OUTPUT);

 digitalWrite(LED_BUILTIN, LOW);

}

void loop() {

 // keep reading the switch we have created and toggle the built in

 // led on/off for each press.

 do {

 if (my_switches.read_switch(switch_id) == switched) {

 // flip between HIGH and LOW each cycle

 led_level = HIGH - led_level;

 digitalWrite(LED_BUILTIN, led_level);

 }

 } while (true);

}

ARDUINO/ESP 32 - Switch Library User Guide

A Library Supporting the Reading of Multiple, Mixed-type Simple Switches & Circuits

RDB Stafford, UK - 31 - v2.00, March 2022

Example 2.2 - Turning LED On/Off With a Toggle Switch, Indirectly Coded

This example sketch uses a toggle switch to turn the Arduino in-built led on and off,

indirectly, by using the link_switch_to_output function. It is essentially the same

sketch as in example 2.1, above. Compare this sketch with example 2.1 sketch and note the

differences – the toggle switch is linked to an output pin and no code exists in the sketch to

flip the output pin (in-built LED).

Note that a led state change occurs at each position of the toggle switch.

The switch mappings and outputs are:

Project Name: Example 2.2 – toggle switch, with linking Date: 4 March 2021

Switch Configs Linked Outputs
Notes

Pin
Switch Type Circuit Type

Pin
Initial Value

Button Toggle C1 C2 LOW HIGH

2 X X 13 X
LED_BUILTIN – no direct coding needed
to flip the LED

Components required Circuit schemes

1 x toggle switch circuit_C1

The sketch can be accessed from github here.

/*

 Ron D Bentley, Stafford, UK

 Mar 2021

 %%%

 - Example of use of the ez_switch_lib library -

 Example 2.2

 Reading single toggle switch to turn built in led on/off.

 Toggle switch is associated with an output pin (LED_BUILTIN)

 using a ez_switch_lib function, so that when activated, the

 output pin will be automatically flipped, HIGH-LOW etc each

 time the toggle switch is actuated WITHOUT any further coding.

 %%%

 This example and code is in the public domain and

 may be used without restriction and without warranty.

*/

#include <Arduino.h>

#include <ez_switch_lib.h> // ez_switch_lib .h & .cpp files are stored under

...\Arduino\libraries\ez_switch_lib\

int switch_id;

#define num_switches 1 // only a single switch in this sketch example

// Declare/define the switch instance of given size

Switches my_switches(num_switches);

void setup() {

 // Attach a toggle switch to digital pin 2, with

 // an external pull down resistor, circuit_C1,

 // and store the switch's id for later use.

https://github.com/ronbentley1/eazy-switch-library/blob/main/examples/general%20examples/single_toggle_with_linked_LED.ino

ARDUINO/ESP 32 - Switch Library User Guide

A Library Supporting the Reading of Multiple, Mixed-type Simple Switches & Circuits

RDB Stafford, UK - 32 - v2.00, March 2022

 switch_id = my_switches.add_switch(

 toggle_switch,

 2,

 circuit_C1);

 // Validate the return

 if (switch_id < 0) {

 // Error returned - there is a data compatibilty mismatch (-2, bad_params),

 // or no room left to add switch (-1, add_failure).

 Serial.begin(9600);

 Serial.println(F("Failure to add a switch"));

 if (switch_id == add_failure) {

 Serial.println(F("add_switch - no room to create given switch"));

 } else {

 // Can only be that data for switch is invalid

 Serial.println(F("add_switch - one or more parameters is/are invalid"));

 }

 Serial.println(F("!!PROGRAM TERMINATED!!"));

 Serial.flush();

 exit(1);

 }

 // Link/associate the LED_BUILT digital pin (normally pin 13)

 // with the switch we have just installed/created

 // so that every time the switch is activated the built in

 // LED will be automatically be flipped. Start with LED at HIGH setting.

 int link_result = my_switches.link_switch_to_output(

 switch_id,

 LED_BUILTIN,

 HIGH);

 if (link_result == link_failure) {

 // Linking failed, invalid switch id

 Serial.begin(9600);

 Serial.println(F("Failure to link an output to a switch"));

 Serial.println(F("!!PROGRAM TERMINATED!!"));

 Serial.flush();

 exit(2);

 }

}

void loop() {

 do {

 if (my_switches.read_switch(switch_id) == switched) {

 // just keep reading, LED_BUILTIN will automatically be flipped for us

 // so we dont need to do anything else

 }

 } while (true);

}

ARDUINO/ESP 32 - Switch Library User Guide

A Library Supporting the Reading of Multiple, Mixed-type Simple Switches & Circuits

RDB Stafford, UK - 33 - v2.00, March 2022

Example 3.1 - Turning Multiple LEDs On/Off With Multiple Button & Toggle

Switches, Directly Coded

In this example we build on previous examples and see how we can implement and manage

a number of button and toggle switches with ease by defining our switch and associated

switching output (LED) parameters in an orderly way – we shall use a struct(ure) data type to

keep everything we need together.

For the purposes of this example we shall connect two button and two toggle switches, each

connected with each type of circuit.

The switch mappings and outputs are:

Project Name: 3.1 mixed switches, no linking Date: 4 March 2021

Switch Configs Linked Outputs
Notes

Pin
Switch Type Circuit Type

Pin
Initial Value

Button Toggle C1 C2 LOW HIGH

2 X X
No linked output, button will flip in-built
LED by direct coding

3 X X
No linked output, button will flip in-built
LED by direct coding

4 X X
No linked output, toggle will flip in-built
LED by direct coding

5 X X
No linked output, toggle will flip in-built
LED by direct coding

Components required Circuit schemes

1 x button switch circuit_C1

1 x button switch circuit_C2

1 x toggle switch circuit_C1

1 x toggle switch circuit_C2

2 x 10k ohm resistors 1 each for each circuit_C1

4 x LEDs Standard wiring scheme for
connected LED 4 x 220 ohm resistors

ARDUINO/ESP 32 - Switch Library User Guide

A Library Supporting the Reading of Multiple, Mixed-type Simple Switches & Circuits

RDB Stafford, UK - 34 - v2.00, March 2022

Components required Circuit schemes

The sketch can be accessed from github here.

/*

 Ron D Bentley, Stafford, UK

 Mar 2021

 %%%

 - Example of use of the ez_switch_lib library -

 Example 3.1

 Reading multiple button & toggle switches wired with

 different circuit types with each switch turning associated

 leds on/off.

 This example uses a struct(ure) data type to define the

 switch and led data.

 %%%

 This example and code is in the public domain and

 may be used without restriction and without warranty.

*/

#include <Arduino.h>

#include <ez_switch_lib.h> // ez_switch_lib .h & .cpp files are stored under

...\Arduino\libraries\ez_switch_lib\

#define not_configured 255 // used to indicate if a switch_control data entry

has be configured

#define num_switches 4

// We will use a struct(ure) data type to keep our switch/LED

// data tidy and readily accessible

struct switch_control { // struct member meanings:

 byte sw_type; // type of switch connected

 byte sw_pin; // digital input pin assigned to the switch

 byte sw_circuit_type; // the type of circuit wired to the switch

 byte sw_id; // holds the switch id given by the add.switch function

for this switch

 byte sw_led_pin; // digital pin connecting the LED for this switch

 bool sw_led_status; // current status LOW/HIGH of the LED connected to this

switch

} btl[num_switches] = { // 'btl' = buttons, toggles & LEDs

 //.................switch data.............> <led data, initial setting level>

 button_switch, 2, circuit_C1, not_configured, 8, HIGH,

 button_switch, 3, circuit_C2, not_configured, 9, LOW,

 toggle_switch, 4, circuit_C1, not_configured, 10, HIGH,

 toggle_switch, 5, circuit_C2, not_configured, 11, LOW

};

// Declare/define the switch instance of given size

Switches my_switches(num_switches);

void setup() {

 // Attach each switch to its defined digital pin/circuit type

 // and store the switch's id back in its struct entry for later use.

 for (byte sw = 0; sw < num_switches; sw++) {

 int switch_id = my_switches.add_switch(

 btl[sw].sw_type,

 btl[sw].sw_pin,

 btl[sw].sw_circuit_type);

https://github.com/ronbentley1/eazy-switch-library/blob/main/examples/general%20examples/multiple_switches_and_LEDs.ino

ARDUINO/ESP 32 - Switch Library User Guide

A Library Supporting the Reading of Multiple, Mixed-type Simple Switches & Circuits

RDB Stafford, UK - 35 - v2.00, March 2022

 // Validate the return

 if (switch_id < 0) {

 // Error returned - there is a data compatibility mismatch (-2, bad_params),

 // or no room left to add switch (-1, add_failure).

 Serial.begin(9600);

 Serial.println(F("Failure to add a switch"));

 if (switch_id == add_failure) {

 Serial.println(F("add_switch - no room to create given switch"));

 } else {

 // Can only be that data for switch is invalid

 Serial.println(F("add_switch - one or more parameters is/are invalid"));

 }

 Serial.println(F("!!PROGRAM TERMINATED!!"));

 Serial.flush();

 exit(1);

 }

 btl[sw].sw_id = switch_id; // store given switch id for this sw for use later

 // Now initialise the switch's associated LED and turn on/off according to

preset

 pinMode(btl[sw].sw_led_pin, OUTPUT);

 digitalWrite(btl[sw].sw_led_pin, btl[sw].sw_led_status);

 }

}

void loop() {

 // Keep reading the switches we have created and flip their

 // associated LEDs on/off

 do {

 for (byte sw = 0; sw < num_switches; sw++) {

 if (my_switches.read_switch(btl[sw].sw_id) == switched) {

 // Flip between HIGH and LOW each cycle

 btl[sw].sw_led_status = HIGH - btl[sw].sw_led_status;

 digitalWrite(btl[sw].sw_led_pin, btl[sw].sw_led_status);

 }

 }

 } while (true);

}

ARDUINO/ESP 32 - Switch Library User Guide

A Library Supporting the Reading of Multiple, Mixed-type Simple Switches & Circuits

RDB Stafford, UK - 36 - v2.00, March 2022

Example 3.2 - Turning Multiple LEDs On/Off With Multiple Button & Toggle

Switches, Indirectly Coded

In this example we build on the previous example 3.1 and see how we can implement and

manage a number of button and toggle switches without direct coding for the outputs. In the

example sketch we remove the direct coding that deals with the switching of the LED outputs

and, instead, we use the function link_switch_to_output to associate each switch to

an LED output pin. It is essentially the same sketch as in example 3.1, above. Compare

this sketch with example 3.1 sketch and note the differences.

For the purposes of this example we shall connect two button and two toggle switches, each

connected with each type of circuit.

The switch mappings and outputs are:

Project Name: 3.2 mixed switches, with linking Date: 4 March 2021

Switch Configs Linked Outputs
Notes

Pin
Switch Type Circuit Type

Pin
Initial Value

Button Toggle C1 C2 LOW HIGH

2 X X 8 X
LED to flip – no direct coding needed to flip
the LED

3 X X 9 X
LED to flip – no direct coding needed to flip
the LED

4 X X 10 X
LED to flip – no direct coding needed to flip
the LED

5 X X 11 X
LED to flip – no direct coding needed to flip
the LED

Components required Circuit schemes

1 x button switch circuit_C1

1 x button switch circuit_C2

1 x toggle switch circuit_C1

1 x toggle switch circuit_C2

2 x 10k ohm resistors 1 each for each circuit_C1

4 x LEDs Standard wiring scheme for
connected LED 4 x 220 ohm resistors

ARDUINO/ESP 32 - Switch Library User Guide

A Library Supporting the Reading of Multiple, Mixed-type Simple Switches & Circuits

RDB Stafford, UK - 37 - v2.00, March 2022

Components required Circuit schemes

The sketch can be accessed from github here.

/*

 Ron D Bentley, Stafford, UK

 Mar 2021

 %%%

 - Example of use of the ez_switch_lib library -

 Example 3.2

 Reading multiple button & toggle switches wired with

 different circuit types with each switch linked to an

 output pin using a ez_switch_lib function, so that when

 activated, the associated switch output pin will be

 automatically flipped, HIGH-LOW etc each time the switch

 is actuated WITHOUT any further coding.

 To demonstrate, the switch associated outputs are connected

 to leds.

 %%%

 This example and code is in the public domain and

 may be used without restriction and without warranty.

*/

#include <Arduino.h>

#include <ez_switch_lib.h> // ez_switch_lib .h & .cpp files are stored under

...\Arduino\libraries\ez_switch_lib\

#define not_configured 255 // used to indicate if a switch_control data entry

has be configured

#define num_switches 4

// We will use a struct(ure) data type to keep our switch/LED

// data tidy and readily accessible

struct switch_control { // struct member meanings:

 byte sw_type; // type of switch connected

 byte sw_pin; // digital input pin assigned to the switch

 byte sw_circuit_type; // the type of circuit wired to the switch

 byte sw_id; // holds the switch id given by the add.switch function

for this switch

 byte sw_output_pin; // digital pin to associate switch to

 bool sw_output_level; // define the status level of the defined output pin on

set up

} btl[num_switches] = { // 'btl' = buttons, toggles & LEDs

 //.................switch data...............> <output pin initial setting

level>

 button_switch, 2, circuit_C1, not_configured, 8, HIGH,

 button_switch, 3, circuit_C2, not_configured, 9, LOW,

 toggle_switch, 4, circuit_C1, not_configured, 10, HIGH,

 toggle_switch, 5, circuit_C2, not_configured, 11, LOW

};

// Declare/define the switch instance of given size

Switches my_switches(num_switches);

void setup() {

 // Attach each switches to its defined digital pin/circuit type

 // and store the switch's id back in its struct entry for later use.

https://github.com/ronbentley1/eazy-switch-library/blob/main/examples/general%20examples/multiple_switches_with_linked_LEDs.ino

ARDUINO/ESP 32 - Switch Library User Guide

A Library Supporting the Reading of Multiple, Mixed-type Simple Switches & Circuits

RDB Stafford, UK - 38 - v2.00, March 2022

 for (byte sw = 0; sw < num_switches; sw++) {

 int switch_id = my_switches.add_switch(

 btl[sw].sw_type,

 btl[sw].sw_pin,

 btl[sw].sw_circuit_type);

 // Validate the return

 if (switch_id < 0) {

 // Error returned - there is a data compatibility mismatch (-2, bad_params),

 // or no room left to add switch (-1, add_failure).

 Serial.begin(9600);

 Serial.println(F("Failure to add a switch"));

 if (switch_id == add_failure) {

 Serial.println(F("add_switch - no room to create given switch"));

 } else {

 // Can only be that data for switch is invalid

 Serial.println(F("add_switch - one or more parameters is/are invalid"));

 }

 Serial.println(F("!!PROGRAM TERMINATED!!"));

 Serial.flush();

 exit(1);

 }

 btl[sw].sw_id = switch_id; // store given switch id for this sw for use later

 // Now associate the defined out for this switch so that every time the switch

 // is activated the associated output will be automatically be flipped.

 // set the output level to whatever is defined in the initialisation data.

 int link_result = my_switches.link_switch_to_output(

 switch_id,

 btl[sw].sw_output_pin,

 btl[sw].sw_output_level);

 if (link_result == link_failure) {

 // Linking failed, invalid switch id

 Serial.begin(9600);

 Serial.println(F("Failure to link an output to a switch"));

 Serial.println(F("!!PROGRAM TERMINATED!!"));

 Serial.flush();

 exit(2);

 }

 }

}

void loop() {

 do {

 for (byte sw = 0; sw < num_switches; sw++) {

 if (my_switches.read_switch(btl[sw].sw_id) == switched) {

 // Just keep reading, the read function will automatically

 // flip the associated switch output pins for us so we

 // dont need to do anything else

 }

 }

 } while (true);

}

ARDUINO/ESP 32 - Switch Library User Guide

A Library Supporting the Reading of Multiple, Mixed-type Simple Switches & Circuits

RDB Stafford, UK - 39 - v2.00, March 2022

Example 4 – Processing More Button & Toggle Switches

In this example we shall build on the previous examples by implementing six switches –

three button and three toggle, to show how we are able to keep adding switches of different

wiring schemes. This time we shall incorporate outputs to the serial monitor, LEDs and

relays, as follows:

The sketch is configured for 6 switches, 3 x toggle and 3 x button with switches performing

the following actions:

 toggle 1 switches a relay, without direct coding, using output linking

 toggle 2 switches a led, without direct coding, using output linking

 toggle 3 also switches a led by direct coding , i.e. not via switch linking

 button 1 produces a switch report using a <ez_switch_lib> function

 button 2 switches a relay, without direct coding, using output linking

 button 3 switches a led, without direct coding, using output linking

The mappings for switches and outputs are:

Project Name: Example 4 - LEDs & Relays Date: 4 March 2021

Switch Configs Linked Outputs
Notes

Pin
Switch Type Circuit Type Pin Initial Value

Button Toggle C1 C2 LOW HIGH

2 X X 8 X Relay 1 - no switching coding

3 X X 9 X Led 1 - no switching coding

4 X X Led 3 - needs switching coding

5 X X Output switch report to serial monitor

6 X X 10 X Relay 2 - no switching coding

7 X X 11 X Led 2 - no switching coding

The switches are polled in succession and processing occurs via a switch-case set of control

statements.

We shall also see how we are able to refer to the status of toggle switches outside of them

being read by the read_switch function and show their status by using a button switch.

To note is that in this example we use a multidimensional array to hold our switch data,

rather than a struct(ure) as in example 3.1/3.2 – you decide with approach is best. You will

also see that a switch-case series of statements are used to process the switches once

triggered.

Make sure to open the serial monitor once the sketch is compiled and uploaded and set to

9600 baud and note the switch circuit schemes are changed from previous set ups, just to

further mix things up!

Components required Circuit schemes

2 x button switch circuit_C2

1 x button switch circuit_C1

2 x toggle switch circuit_C1

ARDUINO/ESP 32 - Switch Library User Guide

A Library Supporting the Reading of Multiple, Mixed-type Simple Switches & Circuits

RDB Stafford, UK - 40 - v2.00, March 2022

Components required Circuit schemes

1 x toggle switch circuit_C2

3 x 10k ohm resistors 1 each for each

circuit_C1

3 x LEDs Standard wiring scheme
for connected LED

3 x 220 ohm resistors

2 x 5v relays

Serial monitor 9600 baud

The sketch can be accessed from github here.

/*

 Ron D Bentley, Stafford, UK

 Mar 2021.

 %%%

 - Example of use of the ez_switch_lib library -

 Example 4

 Reading multiple switches (6) of different types and of mixed wiring

 schemes. Additionally, some switches are linked to a digital

 output such that when they are actuated the linked output level

 is flipped (HIGH->LOW, or LOW->HIGH) automatically without the

 need for any end user coding.

 Switch data in this example is preset in a two dimension array

 and may be varied as appropriate.

 The sketch is configured for 6 switches, 3 toggle and 3 button

 with switches performing the following actions:

 toggle 1 switches a relay, without direct coding, using output linking

 toggle 2 switches a led, without direct coding, using output linking

 toggle 3 also switches a led, but not via switch linking

 button 1 produces a switch report using a ez_switch_lib function

 button 2 switches a relay, without direct coding, using output linking

 button 3 switches a led, without direct coding, using output linking

 The switches are polled in succession and processing occurs

 via a switch-case set of control statements.

 %%%

 This example and code is in the public domain and

 may be used without restriction and without warranty.

*/

#include <Arduino.h>

#include <ez_switch_lib.h> // ez_switch_lib .h & .cpp files are stored under

...\Arduino\libraries\ez_switch_lib\

// %%%

// Declare/define specific 'my_data' for 'my_project'

// %%%

#define num_switches 6

// Switch to Pin Macro Definition List:

https://github.com/ronbentley1/eazy-switch-library/blob/main/examples/general%20examples/multiple_switches_with_linked_multiple_processes.ino

ARDUINO/ESP 32 - Switch Library User Guide

A Library Supporting the Reading of Multiple, Mixed-type Simple Switches & Circuits

RDB Stafford, UK - 41 - v2.00, March 2022

#define my_toggle_pin_1 2 // digital pin number

#define my_toggle_pin_2 3 // etc

#define my_toggle_pin_3 4

#define my_button_pin_1 5

#define my_button_pin_2 6

#define my_button_pin_3 7

// Digital output pins for linking to switches:

#define relay_1 8 // output pin for relay 1

#define relay_2 9 // output pin for relay 2

#define led_1 10 // output pin for led 1

#define led_2 11 // output pin for led 2

#define led_3 12 // output pin for led 3

#define not_configured 255 // used to indicate if the my_switch_data switch output

pin is to be configured

// Establish type of switch, assigned digital pin and circuit type

// for each switch we are connecting. Until we present each

// switch entry to the add.switch function it will not be

// recorded as configured, hence the use of the final column.

//

// Array row definitions are:

// [sw][0] = switch type, button or toggle

// [sw][1] = digital input pin for the switch

// [sw][2] = how the switch is wired/connected

// [sw][3] = this stores the switch_id returned from add.switch function

// to be used in all calls to the library's functions where

// switches are referenced

// [sw][4] = the digital output pin linked to this switch, if defined

// [sw][5] = the level the output pin is to be set to at initialisation (linking),

// if a linked output is configured - must be LOW or HIGH

//

// Note that:

// ‘on’, ‘switched’, 'button_switch', 'toggle_switch', 'circuit_C1'

// and 'circuit_C2' are reserved library defined macros.

byte my_switch_data[num_switches][6] =

{

 // <................switch data..............> <.output pin data.>

 toggle_switch, my_toggle_pin_1, circuit_C1, 0, relay_1, HIGH,// linked to relay_1

 toggle_switch, my_toggle_pin_2, circuit_C2, 0, led_1, LOW,// linked to led_1

 toggle_switch, my_toggle_pin_3, circuit_C1, 0, not_configured, 0,// not linked,

flip led_3 by direct code

 button_switch, my_button_pin_1, circuit_C2, 0, not_configured, 0,// not linked,

produces switch report

 button_switch, my_button_pin_2, circuit_C1, 0, relay_2, HIGH,// linked to relay_2

 button_switch, my_button_pin_3, circuit_C2, 0, led_2, LOW // linked to led_2

};

// Declare/define the switch instance of given size

Switches my_switches(num_switches);

//

// Set up connected switches as per 'my_switch_data' configs

//

void setup()

{

 Serial.begin(9600);

 // Create/install the defined switches...

 create_my_switches();

 // Set debounce for 20 msecs

 my_switches.set_debounce(20);

 // initialise the output pin for led_3, as we will deal with

 // flipping this led by direct coding

ARDUINO/ESP 32 - Switch Library User Guide

A Library Supporting the Reading of Multiple, Mixed-type Simple Switches & Circuits

RDB Stafford, UK - 42 - v2.00, March 2022

 pinMode(led_3, OUTPUT);

 digitalWrite(led_3, LOW);

}

void loop()

{

 do {

 // Poll all switches - examine each connected switch in turn and, if switched,

 // process its associated purpose.

 for (int sw = 0; sw < num_switches; sw++) {

 byte switch_id = my_switch_data[sw][3]; // extract the switch id for this

switch, sw

 if (my_switches.read_switch(switch_id) == switched) {

 // This switch ('switch_id') has been pressed, so process via its switch-

case code

 if (my_switches.switches[switch_id].switch_type == button_switch) {

 Serial.print(F("\nbutton switch on digital pin "));

 } else {

 Serial.print(F("\ntoggle switch on digital pin "));

 }

 byte my_switch_pin = my_switches.switches[switch_id].switch_pin;

 Serial.print(my_switch_pin);

 Serial.println(F(" triggered"));

 // Move to switch's associated code section

 switch (my_switch_pin)

 {

 case my_toggle_pin_1:

 // toggle switch 1 triggers a relay (1) which is a linked output

 // so nothing to do here to process the relay

 Serial.print(F("relay 1 switched"));

 break;

 case my_toggle_pin_2:

 // toggle switch 2 flips a led (1) which is a linked output

 // so nothing to do here to process the relay

 Serial.print(F("led 1 switched"));

 break;

 case my_toggle_pin_3:

 // direct coding to flip led_3 following switch actuation (toggle 3)

 static bool led_3_status = LOW; // static because we need to retain

current state between switching

 led_3_status = HIGH - led_3_status; // flip led status

 digitalWrite(led_3, led_3_status);

 Serial.print(F("led 3 switched "));

 break;

 case my_button_pin_1:

 // button switch 1 used to reveal the current status of the switch

control structure

 // members, number of free switch control slots and the on/off status

of all

 // all toggle switches as their status is maintained

 my_switches.print_switches(); // confirm we are set up correctly

 // Report number of free switch slots remaining

 Serial.print(F("\nNumber of free switch slots remaining = "));

 Serial.println(my_switches.num_free_switch_slots());

 // Report on the current status of the toggle switches

 print_toggle_status();

 Serial.flush();

 break;

 case my_button_pin_2:

 // button switch 2 triggers a relay (2) which is a linked output

 // so nothing to do here to process the relay

 Serial.print(F("relay 2 switched"));

 break;

 case my_button_pin_3:

 // button switch 3 flips a led (2) which is a linked output

 // so nothing to do here to process the relay

 Serial.print(F("led 2 switched"));

 break;

 default:

 // Spurious switch index! Should never arise as this is controlled

ARDUINO/ESP 32 - Switch Library User Guide

A Library Supporting the Reading of Multiple, Mixed-type Simple Switches & Circuits

RDB Stafford, UK - 43 - v2.00, March 2022

 // by the for loop within defined upper bound

 break;

 }

 Serial.flush(); // flush out the output buffer

 }

 }

 }

 while (true);

}

//

// Print the current status/setting of each toggle switch configured.

// We scan down my_switch_data to pick out toggle switches and if they are

// configured access their status.

//

void print_toggle_status() {

 Serial.println(F("\nToggle switches setting: "));

 for (byte sw = 0; sw < num_switches; sw++) {

 if (my_switch_data[sw][0] == toggle_switch) {

 Serial.print(F("toggle switch on digital pin "));

 Serial.print(my_switch_data[sw][1]);

 Serial.print(F(" is "));

 byte switch_id = my_switch_data[sw][3]; // this is the position in the switch

control struct for this switch

 if (my_switches.switches[switch_id].switch_status == on) {

 Serial.println(F("ON"));

 } else {

 Serial.println(F("OFF"));

 }

 }

 }

}

//

// Create a switch entry for each wired up switch, in accordance

// with 'my' declared switch data.

// add_switch params are - switch_type, digital pin number and circuit type.

// Return values from add_switch are:

// >= 0 the switch control structure entry number ('switch_id') for the switch

added,

// -1 no slots available in the switch control structure,

// -2 given parameter(s) for switch are not valid.

void create_my_switches() {

 for (int sw = 0; sw < num_switches; sw++) {

 int switch_id =

 my_switches.add_switch(

 my_switch_data[sw][0], // switch type

 my_switch_data[sw][1], // digital pin number

 my_switch_data[sw][2]);// circuit type

 if (switch_id < 0)

 { // There is a data compatibilty mismatch (-2, bad_params),

 // or no room left to add switch (-1, add_failure).

 Serial.print(F("Failure to add a switch:\nSwitch entry:"));

 Serial.print(sw);

 Serial.print(F(", data line = "));

 Serial.print(my_switch_data[sw][0]);

 Serial.print(F(", "));

 Serial.print(my_switch_data[sw][1]);

 Serial.print(F(", "));

 Serial.println(my_switch_data[sw][2]);

 Serial.println(F("!!PROGRAM TERMINATED!!"));

 Serial.flush();

 exit(1);

 } else {

 // 'switch_id' is the switch control slot entry for this switch (sw),

 // so we can use this to know where our switches are

 // in the control structure by keeping a note of them in their

 // my_switch_data config settings.

ARDUINO/ESP 32 - Switch Library User Guide

A Library Supporting the Reading of Multiple, Mixed-type Simple Switches & Circuits

RDB Stafford, UK - 44 - v2.00, March 2022

 my_switch_data[sw][3] = switch_id;

 // Now deal with any linked output requirement

 if (my_switch_data[sw][4] != not_configured) {

 // there is an output defined for this switch, so link it

 int link_result =

 my_switches.link_switch_to_output(

 switch_id, // id of switch to link output to

 my_switch_data[sw][4], // digital output pin number

 my_switch_data[sw][5]); // initial level, HIGH or LOW

 if (link_result == link_failure) {

 // linking failed, invalid switch id

 Serial.println(F("Failure to link an output to a switch"));

 Serial.println(F("!!PROGRAM TERMINATED!!"));

 Serial.flush();

 exit(2);

 }

 }

 }

 }

} // End create_my_switches

ARDUINO/ESP 32 - Switch Library User Guide

A Library Supporting the Reading of Multiple, Mixed-type Simple Switches & Circuits

RDB Stafford, UK - 45 - v2.00, March 2022

Example 5 – Using the Libraries Switch Structure Variables

In this final example we see how we can extend the use of switches by accessing their

internal control data and develop a sketch that will allow the hours and minutes of an

external timer display to be altered independently of each other.

In this sketch we use one toggle switch to ‘activate’ the time change cycle, with a linked

output to a LED that will automatically illuminate/extinguish on toggle switching, and two

button switches, each allowing hours and minutes to be advanced independently.

The code will also allow the button switches to operate in one of two modes – ‘single-shot’

with each rapid button push advancing the time by +1 (hour or minute) or continuous

advance by keeping the button switch pressed.

The external time display is simulated by the sketch with confirmation of <hour:minute>

being written to the serial monitor.

The mappings for switches and outputs are:

Project Name: Example 4 – Timer Adjustment Sketch Date: 4 March 2021

Switch Configs Linked Outputs
Notes

Pin
Switch Type Circuit Type Pin Initial Value

Button Toggle C1 C2 LOW HIGH

10 X X 2 X
Brings adjust code active, LED on when
active

11 X X Hour adjust button

12 X X Minute adjust button

Components required Circuit schemes

1 x toggle switch circuit_C2

2 x button switch circuit_C2

1 x LEDs Standard wiring scheme for

connected LED

1 x 220 ohm resistors

The sketch can be accessed from github here.

https://github.com/ronbentley1/eazy-switch-library/blob/main/examples/general%20examples/time_adjust.ino

ARDUINO/ESP 32 - Switch Library User Guide

A Library Supporting the Reading of Multiple, Mixed-type Simple Switches & Circuits

RDB Stafford, UK - 46 - v2.00, March 2022

/*

 Ron D Bentley, Stafford, UK

 Mar 2021

 %%

 - Example of use of the ez_switch_lib library -

 Example 5 - time adjustment sketch

 This example shows the use of button and toggle switches to

 adjust an external time display.

 To implement this successfully we need to use button switches

 to adjust hours and minutes individually. We implement this as

 follows:

 Toggle switch - when on, this will activate the time

 adjustment process bringing the two button switches active.

 When active,

 1 button switch will advance the hours

 1 button switch will advance minutes.

 In this implementation, we wish to advance the times as follows:

 a. if a button is pressed and released immediately, then

 the hour/minute will be advanced by 1, respectively, for

 each press/release

 b. if a button is pressed and kept pressed, then the hour/minute

 will be continually advanced, respectively, automatically

 until it is released.

 To accomplish a)and b) we use the standard read_switch function

 for the button switches, but we examine their transition

 status, as we are not interested in a return of 'switched' or not.

 This is an internal flag that is set to true when a button

 switch is pressed until the time it is released. The specific

 switch flag is 'switches[switch_id].switch_pending'.

 This is true when in transition (pending), false otherwise.

 By using this flag we are able to utilise the button switches

 in either single 'shot mode' or continuous mode for time advancement.

 This is an additional feature of the capabilities of the

 ez_switch_lib library, and is one that can be used in many

 similar applications.

 As a final feature, the design links the timer adjust toggle switch

 to a LED such that the LED is illuminated when the timer adjust

 mode is active, ie the toggle switch actuated. This linking is

 configured using the ez_switch_lib function 'link_switch_to_output'.

 %%

 This example and code is in the public domain and

 may be used without restriction and without warranty.

*/

#include <Arduino.h>

#include <ez_switch_lib.h>

#define adjust_led 2 // LED illuminated when adjust switch on

#define hour_adjust_switch 10 // a physical button switch, masquerading as a

toggle switch

#define min_adjust_switch 11 // physical button switch, masquerading as a

toggle switch

#define adjust_switch 12 // actual toggle switch

int hour_id, min_id, adjust_id; // used to record switch ids when declared to

ez_switch_lib

int hour = 0; // initial hour setting

int min = 0; // initial minute setting

int now_time = 0; // to decide if there has been a time adjustment change

int prev_time = 0; // ditto

ARDUINO/ESP 32 - Switch Library User Guide

A Library Supporting the Reading of Multiple, Mixed-type Simple Switches & Circuits

RDB Stafford, UK - 47 - v2.00, March 2022

#define sensitivity 250 // msecs - used to provide a short delay between switch

reading during adjustments

Switches my_switches(3); // only 3 switches to be declared

void setup() {

 Serial.begin(9600); // we will use the serial monitor to demonstrate

adjustment process

 // declare the switches we wish to use

 adjust_id = my_switches.add_switch(toggle_switch, adjust_switch, circuit_C2);

 // link adjust switch to LED for auto flipping to show switch is on/off

 my_switches.link_switch_to_output(adjust_id, adjust_led, LOW);

 hour_id = my_switches.add_switch(button_switch, hour_adjust_switch, circuit_C2);

 min_id = my_switches.add_switch(button_switch, min_adjust_switch, circuit_C2);

}

void loop() {

 // keep polling the adjust switch and action if on

 do {

 my_switches.read_switch(adjust_id); // establish switch status

 if (my_switches.switches[adjust_id].switch_status == on) {

 adjust_time(); // adjust switch is on so process any time adjustments

 }

 } while (true);

}

// %%%

// Adjust the hours and minutes settings whilst

// the time adjust switch is on

// %%%

void adjust_time() {

 do {

 // While the time adjust switch is set,

 // adjust time according to hour/min switches

 my_switches.read_switch(hour_id);

 if (my_switches.switches[hour_id].switch_pending == true) {

 // hour switch is pressed and in transition

 hour = (hour + 1) % 24;

 now_time = hour * 60 + min; // minutes since 00:00 hours

 }

 my_switches.read_switch(min_id);

 if (my_switches.switches[min_id].switch_pending == true) {

 // minute switch is pressed and in transition

 min = (min + 1) % 60;

 now_time = hour * 60 + min; // minutes since 00:00 hours

 }

 if (now_time != prev_time) {

 // Either hour button or minute button, or both,

 // have been pressed, so update any external display

 // here with hours/mins.

 // In the absence of an external display, we use the

 // serial monitor to show te adjustments

 if (hour < 10) {

 Serial.print("0"); // leading 0

 }

 Serial.print(hour);

 Serial.print(":");

 if (min < 10) {

 Serial.print("0"); // leading 0

 }

 Serial.println(min);

 prev_time = now_time;

 delay(sensitivity); // wait a short time between switch presses

 }

 my_switches.read_switch(adjust_id); // establish current adjust switch status

 } while (my_switches.switches[adjust_id].switch_status == on); // keep going

until deselected

}

ARDUINO/ESP 32 - Switch Library User Guide

A Library Supporting the Reading of Multiple, Mixed-type Simple Switches & Circuits

RDB Stafford, UK - 48 - v2.00, March 2022

Corollary
The <switch_lib> library’s functions allow switches of different types, wired in different

wiring schemes to be simply read. At their native level they return if a switch has

‘switched’ or ‘!switched’. This simple binary result is okay for many applications and

uses, however, there are occasions when a little more sophistication and flexibility may be

needed. Example 5, above, illustrates how it is possible to make use the library’s switch

data struct(ure) elements to design advantage; but there are other possibilities!

This section of the User Guide explores some of the deeper <ez_switch_lib> capabilities

available to the end user developer.

Switch Mismatching

We add switches into the library’s active switch control structure using the add_switch

function. This allows us to specify a switch type (button_switch or toggle_switch),

the digital pin associated with the switch and how the switch is wired (circuit_C1,

circuit_C2 or circuit_C3). Ordinarily, we will correctly match the physical switch with

the switch type we declare using add_switch.

However, if we mismatch the physical switch type with the declared switch type we can use

this to our advantage.

Recap the normal operation of both type of switches:

 button switch – it is considered to have been switched when it goes through the cycle

OFF-ON-OFF. That is, if we press and release the switch we will read one switching

event. At rest it will be OFF

 toggle switch – it is considered to have been switched when it goes through either

OFF-ON or ON-OFF. That is, if we flip the switch up and down we will read two

switching events. At rest it will be either OFF or ON.

Buttons as a Toggles

Let’s look at using a button switch masquerading as a toggle switch. That is, we physically

connect a button switch but declare it using the add_switch function as a toggle switch.

What is the result?

The switch is initially OFF. We now press it and release it. As far as the library is concerned

this is a toggle switch that has just been flipped up and down (i.e. switched to ON and then

to OFF). We therefore get two switched events, one for the ON event and one for the OFF

event. No surprises there.

So, how can this be useful? Well, have a look at the ‘Buttons & Lights’ game on github

(link). This game uses four button switches each associated/linked to a different coloured

LED. The objective of the game is to re-enter a random sequence of lights in the correct

order using the button switches.

What we want to achieve is for each button press to illuminate a linked LED for the duration

of the press only (i.e. for the LED to be turned on when the button is pressed and turned off

when released) and for that button guess to be recorded only after the button’s release.

We achieve the game’s central requirement by:

https://github.com/ronbentley1/eazy-switch-library/blob/main/examples/general%20examples/ez_switch_lib_Buttons_and_Lights_Game.ino

ARDUINO/ESP 32 - Switch Library User Guide

A Library Supporting the Reading of Multiple, Mixed-type Simple Switches & Circuits

RDB Stafford, UK - 49 - v2.00, March 2022

1. using simple button switches

2. declaring the button switches as toggle switches using the add_switch function. That

is, the button switches will be masquerading as toggle switches to our advantage

3. linking each switch to an output pin which has a different coloured LED wired in

The key part of the game, after the switches and associated linkages are made in setup()

is:

1. for (int sw = 0; sw < num_switches; sw++) {
2. byte sw_id = pseudo_toggles[sw][2]; // switch id given by add_switch
3. bool sw_status = my_switches.read_switch(sw_id);
4. if (sw_status == switched &&

5. my_switches.switches[sw_id].switch_status == !on)

6. {
7. // this switch was pressed on and now switched to off and the
8. // linked output will have been set to LOW (i.e. LED is off),
9. // so record it - add to guess list
10. guesses[0]++;

11. guesses[guesses[0]] = sw; // record this switch's index

12. }

13. }

Line 3 reads the status of the current switch under consideration. Because we have linked

our switches to outputs wired with LEDs, these LEDs will automatically turn to on/off when

the button switches are pressed/released, respectively, thereby providing a visual

confirmation of switch selection – just as we require, but note that we have not explicitly

coded this.

Lines 4 and 5 test if the switch has been switched, but also that the switch has gone from

on to off (!on). This is the condition we need to register a single user guess following a

complete button press/release cycle. Waiting for the !on condition ensures that the switch’s

linked out LED is turned to off after button switch release. If we tested for just on, the LED

would not be extinguished.

We can only do this because the switch is declared as a toggle switch and its status is

therefore always maintained by the library in the switch control struct(ure) whenever

actuated - switches[sw_id].switch_status.

We could not have used button switches declared as button switches to readily achieve the

above without a degree of additional direct coding, or similarly toggle switches. What the

above example demonstrates is that <ez_switch_lib> can provide a deeper degree of

flexibility and capabilities to the developer.

Many Switches, One Interrupt Service Routine (ISR)

The ability to link a digital output pin to a switch so that it will be automatically flipped on

switch actuation can be a useful feature to the end user developer. By way of an academic

exercise the sketch below was developed to explore the use of this feature to link multiple

switches (of different types and wiring schemes) to a single interrupt service routine or ISR.

Recall that the linking of a switch to an output pin2 for automatic switching/flipping only

occurs via use of the switch read function read_switch. The other two switch reading

2
 We use the function link_switch_to_output to achieve this capability.

ARDUINO/ESP 32 - Switch Library User Guide

A Library Supporting the Reading of Multiple, Mixed-type Simple Switches & Circuits

RDB Stafford, UK - 50 - v2.00, March 2022

functions, read_button_switch and read_toggle_switch, will not process any linked

outputs. This feature provides a degree of flexibility in that there may be circumstances when

a switch needs to be read without affecting any linked output.

The sketch does not include very much code but it is extensively documented and the reader

should be well versed at this point with the approach adopted. The switch mappings and

outputs for this sketch are:

Project Name: Corollary – Multiple Switches, One ISR Date: 29 March 2021

Switch Configs Linked Outputs
Notes

Pin
Switch Type Circuit Type

Pin
Initial Value

Button Toggle C1 C2 LOW HIGH

2 Interrupt pin, not physical connected

3 X X 2 X 1
st
 button switch

4 X X 2 X 2
nd

 button switch

5 X X 2 X 1
st
 toggle switch

6 X X 2 X 2
nd

 toggle switch

The sketch may be accessed from github here.

// Ron Bentley, Stafford UK

// March 2021

//

// This example and code is in the public domain and may be used without

// restriction and without warranty.

//

// %%

// Example sketch - Multiple switches handled by a single interrupt

// '''

// This sketch demonstrates how the ez_switch_lib may be used to handle multiple

// switches (button & toggle switches in this example) with a single interrupt

routine.

//

// The use of the ez_switch_lib library for switches provides:

// * switch type independence

// * switch circuit type independence

// * automatic multiple switch debounce handling

// * parallel switching capabilities, and

// * automatic interrupt handling for all switches

//

// The sketch is designed such that when a toggle switch is switched to the 'on'

// position, or a button switch is pressed AND released a linked output connected

// to a common interrupt pin will cause the associated interrupt handler to be

// fired to process the switch 'on' event.

// NB, and to recap:

// 1. a toggle switch will fire the interrupt when set to 'on'. Setting it back

// off does not fire the interrupt

// 2. a button switch will ONLY fire the interrupt when pressed 'on' AND

// then released

// to off. The interrupt fires on completion of the button switch cycle.

//

// Note that:

// 1. error checking on switch set ups has been removed post development.

// 2. the serial monitor is used to confirm the correct operation of the sketch.

//

// The sketch will use digital pin 2 as the common interrupt pin and

// pins 3, 4, 5 and 6 as the switch pins.

//

// For an understanding of the capabilities of the 'ez_switch_lib' library see

// the USER GUIDE:

// https://github.com/ronbentley1/ez_switch_lib-Arduino-

Library/blob/main/ez_switch_lib_user_guide%2C%20v1.02.pdf

//

https://github.com/ronbentley1/eazy-switch-library/blob/main/examples/general%20examples/ez_switch_lib_interrupt.ino

ARDUINO/ESP 32 - Switch Library User Guide

A Library Supporting the Reading of Multiple, Mixed-type Simple Switches & Circuits

RDB Stafford, UK - 51 - v2.00, March 2022

// %%

#include <ez_switch_lib.h>

int interrupt_pin = 2; // external interrupt pin

#define num_switches 4

//

// 'my_switches' layout.

// one row of data for each switch to be configured, as follows:

// [][0] = switch type

// [][1] = digital pin connected to switch

// [][2] = the switch_id provided by the add_switch function for the

// switch declared

// [][3] = the circuit type connecting the switch, here all switches

// will have 10k ohm pull down resistors wired

byte my_switches[num_switches][4] =

{

 button_switch, 3, 0, circuit_C1,

 button_switch, 4, 0, circuit_C1,

 toggle_switch, 5, 0, circuit_C1,

 toggle_switch, 6, 0, circuit_C1

};

// Create the 'Switches' instance (ms) for the given number of switches

Switches ms(num_switches);

void setup() {

 // Add all switches to library switch control structure

 // and link all to same interrupt pin as a linked output

 for (byte sw = 0; sw < num_switches; sw++) {

 my_switches[sw][2] = ms.add_switch(

 my_switches[sw][0], // switch type

 my_switches[sw][1], // digital pin switch is wired to

 my_switches[sw][3]); // type of circuit switch is wired as

 ms.link_switch_to_output(

 my_switches[sw][2], // switch id

 interrupt_pin, // digital pin to link to for interrupt

 LOW);// start with interrupt pin LOW, as interrupt will be triggered on RISING

 }

 // Now establish the common interrupt service routine (ISR) that

 // will be used for all declared switches

 attachInterrupt(

 digitalPinToInterrupt(interrupt_pin),

 switch_ISR, // name of the sketch's ISR function to handle switch interrupts

 RISING); // trigger on a rising pin value

 Serial.begin(115200);

} // end of setup function

void loop() {

 // Keep testing switch, and let the interrupt handler do its thing

 // once a switch is switched to 'on'

 for (byte sw = 0; sw < num_switches; sw++) {

 ms.read_switch(my_switches[sw][2]); // my_switches[sw][2] is the switch id

 // for switch sw

 }

}

// %%%

// ISR for handling interrupt triggers arising from associated switches

// when they transition to on. The routine knows which switch has generated

// the interrupt because the ez_switch_lib switch read functions record the

// actuated switch in the library variable 'last_switched_id'.

//

// The routine does nothing more than demonstrate the effectiveness of the

// use of a single ISR handling multiple switches by using the serial monitor

// to confirm correct operation.

// %%%

void switch_ISR()

{

ARDUINO/ESP 32 - Switch Library User Guide

A Library Supporting the Reading of Multiple, Mixed-type Simple Switches & Circuits

RDB Stafford, UK - 52 - v2.00, March 2022

 // Reset the interrupt pin to LOW, so that any other switch will fire the

 // interrupt whist one or more switches in transition stage

 byte switch_id = ms.last_switched_id; // switch id of switch currently

 // switched to on

 digitalWrite(ms.switches[switch_id].switch_out_pin, LOW);

 // For button switches only, reset the linked output pin status to LOW so that

 // it will trigger the interrupt at every press/release cycle.

 if (ms.switches[switch_id].switch_type == button_switch) {

 ms.switches[switch_id].switch_out_pin_status = LOW;

 }

 Serial.print("** Interrupt triggered for switch id ");

 Serial.println(switch_id); // 'this_switch_id' is the id of the triggering switch

 Serial.flush();

} // end of switch_ISR

There are other options to be explored.....enjoy!

