
MPU6050 light
library documentation

Romain JL Fetick

November 2020

Abstract

The MPU6050 light library is made for your Arduino to communicate
with the MPU6050 device. It retrieves the MPU6050 acceleration, gy-
roscopic and temperature measurements. The angles of the device are
computed from the raw measurements. The tilt angles are computed by
a complementary filter between acceleration and gyroscopic data, thus
providing quite a good accuracy of estimation.

Contents

1 Introduction 2

2 Methods of the MPU6050 class 3
2.1 Constructor and initialisation . . . . . . . . . . . . . . . . . . . . 3
2.2 Configuration setters . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Update measurement . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.4 Data getters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Examples 5

4 Authors and license 5

1



1 Introduction

The MPU6050 delivers three angular speeds and three linear accelerations. This
raw data is directly accessible through the MPU6050 light library. Moreover the
library performs basic angle computation from this data. Indeed an integration
of the angular speed gives the angles. However any small bias in the angular
speed measurement is integrated and leads to a severe drift of the estimated
angle. This must be corrected using another information, that is provided by
the accelerometer. The gravity is supposed to be the main component of the
acceleration, so a projection of the gravity on the MPU6050 axis gives a rough
(and noisy) estimate of the tilt angles of the device.

Merging the angles estimated from gyroscopic and accelerometric data pro-
vides a good estimation of the MPU6050 angles. A complementary filter per-
forms the merging of the two sources. For this library, the gyroscopic data is
weighted with a 0.98 factor, whereas the accelerometric data is weighted with
the complementary 0.02 factor. This factor can be fine tuned by the user. The
main hypothesises to ensure the consistency of the angle estimation are

• Small loop delay between to calls to the update( ) function, so the ap-
proximation made for the numerical integration of the angular speed holds
θg[i] ' θg[i− 1] + θ̇g[i] · dt

• Small linear accelerations (the gravity is the main one). This constraint
can be loosened since the complementary filter gives few confidence in
angles computed from acceleration (only 2% of confidence as default value)

• Small tilt angles (due to approximations in the trigonometric equations)

Figure 1: Overview of the data accessible through the MPU6050 light library.
The raw data from the MPU6050 is the linear acceleration (green) and angular
speed (red) for the three axis. Computations allow to derive the angles of the
MPU6050. Angles computed from acceleration are noisy. The angles computed
from data fusion between accelerometric and gyroscopic data are more accurate.

2



2 Methods of the MPU6050 class

2.1 Constructor and initialisation

MPU6050( TwoWire &w):
Constructor. Needs to be called with Wire.

begin( int gyroConfig=1, int accConfig=0): void
Start communication with the MPU6050 device. User may choose a gyroscope
configuration (from 0 to 3) and accelerometer configuration (from 0 to 3) that
set the sensitivity and working range of the device. The configuration list can
be found on the Invensense website.
The function returns a byte to check the success of the connection (0=success).

calcOffsets( bool calcGyro=true, bool calcAcc=true): void
Compute gyroscope and accelerometer offsets to remove measurement bias.
MPU6050 device must be on a flat surface during the calibration.

2.2 Configuration setters

setGyroOffsets( float x, float y, float z): void
Manually set gyroscope offsets if you already know them. Otherwise use the
method calcOffsets( ).

setAccOffsets( float x, float y, float z): void
Manually set accelerometer offsets if you already know them. Otherwise use the
method calcOffsets( ).

setFilterGyroCoef( float fg): void
Set the gyroscope coefficient for the complementary filter. The coefficient must
be between 0 (accelero data only) and 1 (gyro data only). Recommended value
fg = 0.98. This function automatically sets the accelerometer coefficient to
fa = 1− fg.

setFilterAccCoef( float fa): void
Set the accelerometer coefficient for the complementary filter. The coefficient
must be between 0 (gyro data only) and 1 (accelero data only). Recommended
value fa = 0.02. This function automatically sets the gyroscope coefficient to
fg = 1− fa.

2.3 Update measurement

update( ): void
Update data. This function must be called in the loop as often as possible to
get consistent angleX, angleY and angleZ. Indeed these angles rely on the in-
tegration of the gyroscope data between two updates, a longer delay leads to a
less accurate integration.

3

https://invensense.tdk.com/products/motion-tracking/9-axis/icm-20948/


2.4 Data getters

getTemp( ): float
Last measurement of the device temperature.
Units: data is given in Celsius degrees.

getAccX[,Y,Z]( ): float
Last measurement of the acceleration on the X axis.
Units: data is given as multiple of the gravity norm g = 9.81 m.s−2

Note: similar functions exist on Y and Z axis.

getGyroX[,Y,Z]( ): float
Last measurement of the angular speed around the X axis.
Units: data is given in degrees per second.
Note: similar functions exist on Y and Z axis.

getAccAngleX[,Y]( ): float
Estimated angle around the X axis, computed with the accelerometer data (tilt
of the gravity vector). This data is noisy, and is valid only for small linear ac-
celerations (the gravity is the major acceleration). It is better to use the angle
given by the getAngleX( ) function.
Units: data is given in degrees.
Note: a similar function exists on Y axis.

getAngleX[,Y,Z]( ): float
Estimated angle around the X axis. The angle is computed through a comple-
mentary filter merging data from accelerometer and gyroscope integration. This
might be the best estimate of the angles provided by this library.
Units: data is given in degrees.
Note: similar functions exist on Y and Z axis.

4



3 Examples

The minimal code below shows how to initialise and retrieve some data from
the MPU6050 device.

#inc lude ”Wire . h”
#inc lude <MPU6050 light . h>
MPU6050 mpu( Wire ) ;

void setup ( ) {
Wire . begin ( ) ;
mpu. begin ( ) ;
mpu. c a l c O f f s e t s ( ) ;

}

void loop ( ) {
mpu. update ( ) ;
f l o a t ang le [ 3 ] = {mpu. getAngleX ( ) ,

mpu. getAngleY ( ) ,
mpu. getAngleZ ( ) } ;

f l o a t gyro [ 3 ] = {mpu. getGyroX ( ) ,
mpu. getGyroY ( ) ,
mpu. getGyroZ ( ) } ;

// p roce s s t h i s data f o r your needs . . .
// ( do something . . . )

}

The setup can be fine tuned with the following commands

void setup ( ) {
Wire . begin ( ) ;
// d e f i n e gyro and a c c e l e r o c o n f i g ( from 0 to 3)
byte s t a t u s = mpu. begin ( 1 , 0 ) ;
// i f i n i t i a l i s a t i o n e r r o r −> stop
whi l e ( s t a t u s !=0){ }
// d e f i n e which o f f s e t ( gyro , a c c e l e r o ) to compute
mpu. c a l c O f f s e t s ( true , t rue ) ;
// d e f i n e custom complementary f i l t e r ( from 0 .0 to 1 . 0 )
mpu. s e tF i l t e rGyroCoe f ( 0 . 9 8 ) ;

}

More examples can be found in the dedicated ”examples” folder of the li-
brary. You may have a look at them in order to get started with the library.

4 Authors and license

• RFETICK (github.com/rfetick): modifications and documentation

• TOCKN (github.com/tockn): initial author (forked from v1.5.2)

The MPU6050 light library is provided under the MIT license. Please check
the LICENSE file included with the library for more information.

5

https://www.github.com/rfetick
https://www.github.com/tockn

	Introduction
	Methods of the MPU6050 class
	Constructor and initialisation
	Configuration setters
	Update measurement
	Data getters

	Examples
	Authors and license

