Charlieplexing library
for Raspberry Pi RP2040 PIO

Version 1.0.1

Pierre Molinaro

June 10, 2021

Contents
1 Releases
2 Introduction
3 6-leds version
3.1 Connections
3.2 Example: 6-leds-charlieplexingsketch
3.3 Reference.
3.3.1 The charlieplexing6_add_programfunction.
3.3.2 The charlieplexing6 _can_add_programfunction
333 The charlieplexing6 program_initfunction...................
3.3.4 The charlieplexing6_set_outputfunction
4 5-leds version
4.1 Connections e
4.2 Example: 5-leds-charlieplexingsketch
L3 Reference
4,31 The charlieplexing5 add programfunction.
4.3.2 The charlieplexing5_can_add_programfunction
4.3.3 The charlieplexing5_program_initfunction
4.3.4 The charlieplexing5 set outputfunction
435 The charlieplexing5_set_output_2function
5 Running several state machines
6 How itworks

10

10

3 6-LEDS VERSION

6.1 The charlieplexing5 set outputfunction 10

6.2 Thecharlieplexing5 set output 2function 11

6.3 Thecharlieplexing6_set_outputfunction 11
1 Releases

This library uses Raspberry Pi Pico/RP2040 board manager, by Earle F. Philower, Ill, see https://github.

com/earlephilhower/arduino-pico

Version Date Comment
1.0.0 June 5, 2021 Initial release
1.0.1 June 10,2021 Documentation update

2 Introduction

Charlieplexing is a technique for driving a multiplexed display in which relatively few I/0 pins on a microcontroller are
used eg. to drive an array of LEDs". \lery often, an interrupt routine is used to periodically refresh the leds. The
PIOs builtinto the RP2040 microcontroller allow this refresh to be performed automatically, without processor

intervention.

This Arduino library uses the PIO (Programmable 10) module of RP2040 microcontroller for handling 5-leds
and 6-leds charlieplexing:

» the 6-leds version requires 11 PIO instructions, and 3 consecutive GPIO ports;

» the 5-leds version requires 7 PIO instructions, and 3 consecutive GPIO ports.

3 6-leds version

The 6-leds version uses three consecutive pins (for example: GP®, GP1, GP2) for driving six leds.

3.1 Connections

The figure 1 shows how to connect the six leds to the RP2040. The value of the R resistors depends on the
brightness you want to achieve; typically 150 2 or 220 Q2 is used.

3.2 Example: 6-1leds-charlieplexing sketch

TFrom https://en.wikipedia.org/wiki/Charlieplexing

https://github.com/earlephilhower/arduino-pico
https://github.com/earlephilhower/arduino-pico
https://en.wikipedia.org/wiki/Charlieplexing

3.2 Example: 6-Leds-charlieplexing sketch

3

6-LEDS VERSION

W 00 N O U1 A W N B

N N NN NMNDNMDNMNNMMNNMMNPRPRPRRPRPR PR PR PR PR PR R PR
O 00 N O VT A W N R O OOWOWNOO VI A WDNRO

RP2040
GPsase GPsase+1 GPpase+2
R R R
D3 D5
— <
D2 D4
»——l>|——<>——l>'——¢
D1
»——'Q——«
Do
»——M——ﬁ

Figure 1 — 6-leds Charlieplexing, using 3 pins

#include <RP2040_PIO_Charlieplexing.h>

static const PIO pio = pio® ; // pio@ or piol
static const uint32_t stateMachine =0 ; // 0, 1, 2 or 3

void setup () {
pinMode (LED_BUILTIN, OUTPUT) ;
const uint32_t prgmOffset = 0 ;
const uint32_t outputBasePin = 0 ;
charlieplexing6_add_program (pio, prgmOffset) ;

charlieplexing6_program_init (pio, stateMachine, prgmOffset, outputBasePin) ;

pio_sm_set_enabled (pio, stateMachine, true) ;

static uint32_t gDeadline = 0 ;
static uint32_t gValue =1 ;

void loop () {
if (gDeadline <= millis ()) {
gDeadline += 1000 ;
digitalWrite (LED_BUILTIN, !digitalRead (LED_BUILTIN)) ;
charlieplexing6_set_output (pio, stateMachine, gValue) ;
gValue <<= 1 ;
gValue &= Ox3F ;
if (gValue == @) {
gValue = 1 ;

3.3 Reference 3 6-LEDS VERSION

Line 1. This line includes the RP2040-Charlieplexing library.
Lines 3, 4. Select the PIO (pio® or piol) and the state machine (@, 1, 2 or 3) you use.
Line 7. This line configures the LED_BUILTIN as OUTPUT; optional, this sketch makes this led blink.

Line 8. Set the PIO program offset. As each PIO has a 32 instructions memory, and the code has 11 instruc-
tions, you can choose any value between 0 and 32 - 11 = 21 inclusive.

Line 9. Set the GPIO you use. Three consecutive pins are used, you set here the first one.

Line 10. The charlieplexing6_add_program function writes the program instructions (11) in the selected
PIO instruction memory, from the specified offset.

Line 11. The charlieplexing6_program_int function performs all required initializations for configuring
the state machine and the three output pins.

Line 12. The pio_sm_set_enabled function is defined by the SDK; it starts the state machine (last pa-
rameter is true), or it stops it (last parameter is false). From now on, the refresh is launched and is car-
ried out without intervention of a processor. Initially, all the leds are off. To change, you have to call the
charlieplexing6_set_output function, which is done in the 1oop function.

Lines 18 to 29. The loop function uses the gDeadline global variable for performing every 1000 ms:
» blinking the LED_BUILTIN led;

» updating the gValue global variable, the successive values are 0x1, 0x2, 0x4, 0x8, 0x10, 0x20, 0x1
again, ... So the active led is Do, D1, ..., D5, D@ again...

3.3 Reference
Four functions are provided:

» the charlieplexing6_add_program function, section 3.3.1 page 4;
» the charlieplexing6_can_add_program function, section 3.3.2 page 5;
» the charlieplexing6_program_init function, section 3.3.3 page 5;

» the charlieplexing6_set_output function, section 3.3.4 page 5.

3.3.1 Thecharlieplexing6_add_program function

uint32_t charlieplexing6_add_program (const PIO pio,
const uint32_t prgmOffset) ;

Attempt to load the program at the specified instruction memory offset, panicking if not possible. Call the
charlieplexing6_can_add_program function if you need to check whether the program can be loaded.

pio: the PIO instance; either pio® or piol.

3.3 Reference 3 6-LEDS VERSION

prgmOffset: the instruction memory offset wanted for the start of the program, i.e. a value between 0 and
23 inclusive.

Returned value: the instruction memory offset available for loading an other program.

3.3.2 Thecharlieplexing6_can_add_program function

bool charlieplexing6_can_add_program (const PIO pio,
const uint32_t prgmOffset) ;

Determine whether the given program can (at the time of the call) be loaded onto the PIO instance starting at
a particular location.

pio: the PIO instance; either pio® or piol.

prgmOffset: the instruction memory offset wanted for the start of the program.

Returned value: trueif the program can be loaded at that location (calling the charlieplexing6_add_program
function succeeds); false if there is not space in the instruction memory.

3.3.3 The charlieplexing6_program_init function

void charlieplexing6_program_init (const PIO pio,
const uint32_t stateMachine,
const uint32_t prgmOffset,
const uint32_t basePin) ;

Initialize the selected state machine.
pio: the PIO instance; either pio® or piol.
stateMachine: the state machine index, © to 3.

prgmOffset: the instruction memory offset used when calling the charlieplexing6_add_program func-
tion.

basePin: the first pin index to set as output. The two next pins are also set as output.

3.3.4 Thecharlieplexing6_set_output function

void charlieplexing6_set_output (const PIO pio,
const uint32_t stateMachine,
const uint32_t value) ;

Set the output configuration. As six leds are handled, a led is driven ON for one sixth of the period.
pio: the PIO instance; either pio® or piol.
stateMachine: the state machine index, @ to 3.

value: a bit-field value that specifies the state of the six leds:

4 5-LEDS VERSION

« bit O: if true, DO is ON, if false, DO is OFF;
« bit 1: if true, D1is ON, if false, D1 is OFF;
« bit 2: if true, D2 is ON, if false, D2 is OFF;
» bit 3: if true, D3is ON, if false, D3 is OFF;
» bit 4: if true, D4 is ON, if false, D4 is OFF;

» bit 5: if true, D5 is ON, if false, D5 is OFF;

» bits 6 to 31: any value, are ignored by the function.

4 5-leds version

The 5-leds version uses three consecutive pins (for example: GP9, GP1, GP2) for driving five leds. It is very
similar to the 6-leds version, the only advantage is that it requires 7 instructions, unlike the 6-leds version

which requires 11.

4.1 Connections

The figure 2 shows how to connect the six leds to the RP2040. The value of the R resistors depends on the

brightness you want to achieve; typically 150 2 or 220 Q2 is used.

RP2040
GPgase GPgase+1
R R

D3

D2

4.2 Example: 5-leds-charlieplexing sketch

—KF——
P

D1

Do

D4

>
K
e [

Figure 2 — 5-leds Charlieplexing, using 3 pins

4.2 Example: 5-Leds-charlieplexing sketch 4 5-LEDS VERSION

1 |[#include <RP2040_PIO_Charlieplexing.h>

2

3 |static const PIO pio = pio® ; // pio@ or piol

4 |static const uint32_t stateMachine =0 ; // @, 1, 2 or 3

5

6 |void setup () {

7 pinMode (LED_BUILTIN, OUTPUT) ;

8 const uint32_t prgmOffset = 0 ;

9 const uint32_t outputBasePin = 0 ;

10 charlieplexing5_add_program (pio, prgmOffset) ;

11 charlieplexing5_program_init (pio, stateMachine, prgmOffset, outputBasePin) ;
12 pio_sm_set_enabled (pio, stateMachine, true) ;

13 |}

14

15 |static uint32_t gDeadline = 0 ;

16 |static uint32_t gValue =1 ;

17

18 |void loop () {

19 if (gheadline <= millis ()) {

20 gDeadline += 1000 ;

21 digitalWrite (LED_BUILTIN, !digitalRead (LED_BUILTIN)) ;
22 charlieplexing5_set_output (pio, stateMachine, gValue) ;
23 gValue <<= 1 ;

24 gValue &= Ox1F ;

25 if (gValue == 0) {

26 gValue = 1 ;

27 }

28 }

29 |}

Line 1. This line includes the RP2040-Charlieplexing library.
Lines 3, 4. Select the PIO (pio® or piol) and the state machine (@, 1, 2 or 3) you use.
Line 7. This line configures the LED_BUILTIN as OUTPUT; optional, this sketch makes this led blink.

Line 8. Set the PIO program offset. As each PIO has a 32 instructions memory, and the code has 7 instructions,
you can choose any value between 0 and 32 - 7 = 25 inclusive.

Line 9. Set the GPIO you use. Three consecutive pins are used, you set here the first one.

Line 10. The charlieplexing5 add_program function writes the 11 instructions in the selected PIO in-
struction memory, from the specified offset.

Line 11. The charlieplexing5_program_int function performs all required initializations for configuring
the state machine and the three output pins.

Line 12. The pio_sm_set_enabled function is defined by the SDK; it starts the state machine (last pa-
rameter is true), or it stops it (last parameter is false). From now on, the refresh is launched and is car-
ried out without intervention of a processor. Initially, all the leds are off. To change, you have to call the

4.3 Reference 4 5-LEDS VERSION

charlieplexing5_ set output function, which is done in the 1oop function.

Lines 18 to 29. The loop function uses the gDeadline global variable for performing every 1000 ms:

» blinking the LED_BUILTIN led;

» updating the gValue global variable, the successive values are ©x1, 0x2, 0x4, 0x8, 0x10, 0x1 again, ...
So the active led is D9, D1, ..., D4, D@ again...

4.3 Reference

Five functions are provided:

» the charlieplexing5_add_program function, section 4.3.1 page 8;

» the charlieplexing5_can_add_program function, section 4.3.2 page 8;
» the charlieplexing5_program_init function, section 4.3.3 page 9;

» the charlieplexing5_set_output function, section 4.3.4 page 9;

» the charlieplexing5_set_output_2 function, section 4.3.5 page 9.

4.3.1 Thecharlieplexing5_add_program function

uint32_t charlieplexing5_add_program (const PIO pio,
const uint32_t prgmOffset) ;

Attempt to load the program at the specified instruction memory offset, panicking if not possible. Call the
charlieplexing5_can_add_program function if you need to check whether the program can be loaded.

pio: the PIO instance; either pio® or piol.

prgmOffset: the instruction memory offset wanted for the start of the program, i.e. a value between 0 and
25 inclusive.

Returned value: the instruction memory offset available for loading an other program.

4.3.2 The charlieplexing5_can_add_program function

bool charlieplexing5_can_add_program (const PIO pio,
const uint32_t prgmOffset) ;

Determine whether the given program can (at the time of the call) be loaded onto the PIO instance starting at
a particular location.

pio: the PIO instance; either pio® or piol.
prgmOffset: the instruction memory offset wanted for the start of the program.

Returned value: trueif the program can be loaded at that location (calling the charlieplexing5_add_program
function succeeds); false if there is not space in the instruction memory.

4.3 Reference 4 5-LEDS VERSION

4.3.3 Thecharlieplexing5_program_init function

void charlieplexing5_program_init (const PIO pio,
const uint32_t stateMachine,
const uint32_t prgmOffset,
const uint32_t basePin) ;

Initialize the selected state machine.
pio: the PIO instance; either pio® or piol.
stateMachine: the state machine index, 0 to 3.

prgmOffset: the instruction memory offset used when calling the charlieplexing5_add_program func-
tion.

basePin: the first pin index to set as output. The two next pins are also set as output.

4.3.4 Thecharlieplexing5_set_output function

void charlieplexing5_set_output (const PIO pio,
const uint32_t stateMachine,
const uint32_t value) ;

Set the output configuration. As five leds are handled, a led is driven ON for one fifth of the period.
pio: the PIO instance; either pio® or piol.
stateMachine: the state machine index, @ to 3.

value: a bit-field value that specifies the state of the five leds:

« bit O: if true, DO is ON, if false, DO is OFF;
« bit 1: if true, D1is ON, if false, D1 is OFF;
» bit 2: if true, D2 is ON, if false, D2 is OFF;
» bit 3: if true, D3is ON, if false, D3 is OFF;
» bit 4: if true, D4 is ON, if false, D4 is OFF;

» bits 5 to 31: any value, are ignored by the function.

4.3.5 The charlieplexing5_set_output_2 function

void charlieplexing5_set_output_2 (const PIO pio,
const uint32_t stateMachine,
const uint32_t value) ;

Set the output configuration. The only difference with the charlieplexing5_set_output function is that
each led is driven for one sixth of the period.

6 HOWIT WORKS

5 Running several state machines

The 6-1leds-charlieplexing and 5-1leds-charlieplexing demo sketches show how to run one state
machine. The PIQis versatile, allowing many combinations: several state machines can run the same program,
and several programs can be loaded and executed in a PIO.

The 2-6-1eds-charlieplexing sketch shows how a same PIO program can be ran by two state machines.
The reader can easily extend the demo code to run the same program on the 4 state machines of a single PIO,
allowing to control 24 leds via 12 pins. Using the 4 state machines of the 2 PIOs, you can drive 48 leds with
24 GPIOs.

The 5-1leds-6-1leds-charlieplexing sketch shows how a two state machines of a same PIO can run their
own program. Note this demo sketch has no practical interest: it requires 18 PIO instructions and drives 11
leds, while the 2-61eds-charliepexing demo sketch requires 11 PIO instructions and drives 12 leds. The
only purpose is to illustrate the way to deploy and run different program in a PIO. The reader can easily adapt
this demo code to its own purpose.

6 How it works

6.1 The charlieplexing5_set_output function

This function is the easiest to understand. It sends to the TX FIFO a 32-bit number with the following com-
position:

Bits 31-30 29-27 26-24 23-21 20-18 17-15 14-12 11-9 8-6 5-3 2-0
Value 00 d4 110 d3 011 d2 011 di 101 de 101

Where:

do is 800 when DO is OFF, and 001 if it is ON;

d1is 900 when D1 is OFF, and 100 if it is ON;

d2 is 800 when D2 is OFF, and 001 if it is ON;
» d3is 000 when D3 is OFF, and 010 if it is ON;

» d4is 900 when D4 is OFF, and 010 if it is ON.

Each led requires 6 bits, 3 fixed bits for setting the GPIO direction, 3 d; bits for the current output level.
So for 5 leds 30 bits are used. Bits 31 - 30 are unused and set to @.
The PIO program is in the charlieplexing5.pioasm file:

1 .wrap_target
2 pull noblock ; Pull from FIFO to OSR if available, else copy X to OSR
3 mov X, oOsr ; Copy most-recently-pulled value back to scratch X

10

6.2 Thecharlieplexing5_set_output_2 function 6 HOW IT WORKS

4 |mainloop:

5 out pindirs, 3 ; Set pin directions

6 out pins, 3 [31] ; Set pin output values

7 set y, 31 [31] ; Load Y register for wait loop

8 |waitl:

9 jmp y-- waitl [31] ; Wait loop : 31 * 32 cycles

10 set pins, © ; Switch off any led

11 jmp losre mainloop ; if OSRE not null, handle next 1led

12 .wrap 5 Implicit jump to the first instruction

Adapted from rp2040 datasheet, section 3.6.8 page 384: Often, leds activation can be left unchanged for thou-
sands of cycles, rather than supplying a new configuration each time. The two first instructions highlight how a
nonblocking PULL (Section 3.4.7) can achieve this: if the TX FIFO is empty, a nonblocking PUL L will copy X to the OSR.
After pulling, the program copies the OSR into X. The net effect is that, if a new configuration has not been supplied
through the TX FIFO at the start of this period, the configuration from the previous period (which has been copied
from X to OSR via the failed PULL, and then back to X via the MOV) is reused, for as many periods as necessary.

Then, at every mainloop iteration, the OUT instructions right shift the OSR value, inserting © bits at MSB. At
the end of the fifth iteration, OSR is null, and the execution wraps to the first instruction.

6.2 The charlieplexing5_set_output_2 function
The value sent to the TX FIFO differs from the previous one by the two most significant bits :

Bits 31-30 29-27 26-24 23-21 20-18 17-15 14-12 11-9 8-6 5-3 2-0
Value 11 d4 110 d3 011 d2 011 di 101 de 1e1

So, at the end of the of the fifth iteration, OSR is not null, its value is @b11. A sixth iteration is performed, where
no led is ON, as the output value set by the out pins, 3instructionis .
6.3 The charlieplexing6_set_output function

The previous function uses 6 bits for every led. For 6 leds we would need 36 bits, but a TX FIFO input has 32
bits. As two consecutive leds require the same pin direction, we use 9 bits for 2 consecutive leds, so the 6 leds
are handled with 27 bits; the five MSBs are set to 0.

The charlieplexing6_set_output function sends to the TXFIFO a 32-bit number with the following com-
position:

Bits 31-27 26-24 23-21 20-18 17-15 14-12 11-9 8-6 5-3 2-0
Value 00000 d5 d4 110 d3 d2 011 di do 1e1l

Where:

» dOis 900 when DO is OFF, and 901 if it is ON;

11

6.3 Thecharlieplexing6_set_output function

6 HOWIT WORKS

d1is 800 when D1 is OFF, and 100 if it is ON;

» d2is 0900 when D2 is OFF, and 901 if it is ON;

» d3is 000 when D3 is OFF, and 010 if it is ON;

» d4is 900 when D4 is OFF, and 910 if it is ON;

d5 is 800 when D5 is OFF, and 100 if it is ON.

The corresponding PIO program is in the charlieplexing6.pioasm file:

.wrap_target
pull noblock

X, osr

pindirs, 3
pins, 3 [31]
y, 31 [31]

y-- waitl [31]
pins, 3 [31]
y, 31 [31]

y-- wait2 [31]
pins, ©
losre mainloop

1

2

3 mov
4 |mainloop:
5 out
6 out
7 set
8 |waitl:
9 jmp
10 out
11 set
12 |wait2:
13 jmp
14 set
15 jmp
16 .wrap

Pull from FIFO to OSR if available,

else copy X to OSR

Copy most-recently-pulled value back to scratch X

Set pin directions

Set pin output values

Load Y register for first wait loop

First wait loop

31 * 32 cycles

Set pin output values

Load Y register for second wait loop

Second wait loop
Switch off any led
if OSRE not null,
Implicit jump to the first instruction

31 * 32 cycles

handle next led

Now, two pin output values setting and two wait loops are needed at each iteration, increasing the program

by 4 instructions.

12

	Releases
	Introduction
	6-leds version
	Connections
	Example: 6-leds-charlieplexing sketch
	Reference
	The charlieplexing6_add_program function
	The charlieplexing6_can_add_program function
	The charlieplexing6_program_init function
	The charlieplexing6_set_output function

	5-leds version
	Connections
	Example: 5-leds-charlieplexing sketch
	Reference
	The charlieplexing5_add_program function
	The charlieplexing5_can_add_program function
	The charlieplexing5_program_init function
	The charlieplexing5_set_output function
	The charlieplexing5_set_output_2 function

	Running several state machines
	How it works
	The charlieplexing5_set_output function
	The charlieplexing5_set_output_2 function
	The charlieplexing6_set_output function

