
ACAN_STM32 Arduino library
for Nucleo Boards

Version 1.0.0
Pierre Molinaro

March 17, 2022

Contents

1 Versions 3

2 Features 3

3 Supported boards 3

4 Data flow 4

5 A sample sketch: LoopBackDemo 5

6 The CANMessage class 7

7 Transmit FIFO 8
7.1 The driverTransmitFIFOSize method . 8
7.2 The driverTransmitFIFOCount method . 9
7.3 The driverTransmitFIFOPeakCount method . 9

8 Transmit mailboxes (MailBox1 and MailBox2) 9

9 Transmit Priority 9

10 Receive FIFOs 10

11 Sending frames: the tryToSendReturnStatus method 10
11.1 Testing a send buffer: the sendBufferNotFullForIndex method 10
11.2 Usage example . 11

12 Retrieving received messages using the receivei method 12

1

CONTENTS

12.1 Driver receive FIFO i size . 13
12.2 The driverReceiveFIFOiSize method . 13
12.3 The driverReceiveFIFOiCount method . 13
12.4 The driverReceiveFIFOiPeakCount method . 13
12.5 The resetDriverReceiveFIFOiPeakCount method . 13

13 Acceptance filters 14
13.1 Quad standard filter bank . 14
13.2 Dual standard mask filter bank . 15
13.3 Dual extended filter bank . 16
13.4 Single extended mask filter bank . 17

14 The dispatchReceivedMessage method 18

15 The dispatchReceivedMessage0 method 19

16 The dispatchReceivedMessage1 method 20

17 The ACAN_STM32::begin method reference 21
17.1 The prototype . 21
17.2 The error codes . 21

18 ACAN_STM32_Settings class reference 21
18.1 The ACAN_STM32_Settings constructor: computation of the CAN bit settings 21
18.2 The CANBitSettingConsistency method . 25
18.3 The actualBitRate method . 25
18.4 The exactBitRate method . 26
18.5 The exactDataBitRate method . 26
18.6 The ppmFromDesiredBitRate method . 26
18.7 The ppmFromDesiredDataBitRate method . 26
18.8 The samplePointFromBitStart method . 26
18.9 The dataSamplePointFromBitStart method . 27
18.10 Properties of the ACAN_STM32_Settings class . 27

18.10.1 The mModuleMode property . 27
18.10.2 The mOpenCollectorOutput property . 27

ACAN_STM32 Arduino library 2

1 Versions

Version Date Comment
1.0.0 March 17, 2022 Initial release.

2 Features

The ACAN_STM32 library is a CAN (Controller Area Network) Controller driver for Nucleo boards.

This library is compatible with the ACAN25151, the ACAN2515Tiny2 and the ACAN25173 libraries.

It has been designed to make it easy to start and to be easily configurable:

• default configuration sends and receives any frame – no default filter to provide;

• efficient built-in CAN bit settings computation from bit rates;

• user can fully define its own CAN bit setting values;

• up to 14 reception filters can be easily defined;

• reception filters accept callback functions;

• driver and controller transmit buffer sizes are customisable;

• driver and controller receive buffer size is customisable;

• overflow of the driver receive buffer is detectable;

• internal loop back, external loop back, silent controller modes are selectable.

3 Supported boards

Currently, two boards are supported (table 2). CAN_CLOCK_FREQUENCY is the the bxCANmodule internal clock
frequency.

Nucleo 32 Board Variable TxCAN RxCAN CAN_CLOCK_FREQUENCY
NUCLEO-F303K8 can PA12 == D2 PA11 == D3 32 MHz
NUCLEO-L432KC can PA12 == D2 PA11 == D3 80 MHz

Table 2 – Nucleo 32 supported boards

1https://github.com/pierremolinaro/acan2515
2https://github.com/pierremolinaro/acan2515Tiny
3https://github.com/pierremolinaro/acan2517

ACAN_STM32 Arduino library 3

https://github.com/pierremolinaro/acan2515
https://github.com/pierremolinaro/acan2515Tiny
https://github.com/pierremolinaro/acan2517

4 Data flow

The figure 1 illustrates default message flow of sending and receiving CAN messages.

User code

ACAN_STM32 driver

dispatchReceivedMessage
dispatchReceivedMessage0

available0
receive0

available1
receive1

dispatchReceivedMessage1
sendBufferNotFullForIndex

tryToSendReturnStatus

bxCAN module

lost

idx
0

> 21 2

Driver
Transmit FIFO

16

Driver
Reception FIFO0

32

Driver
Reception FIFO1

0

CAN Protocol Engine

TxCAN RxCAN

Mailbox 0
(1)

Mailbox 1
(1)

Mailbox 2
(1)

Reception Filters
Pass all to FIFO 0

Hardware
Receive FIFO0

(3)

Hardware
Receive FIFO1

(3)

Figure 1 – Message flow in ACAN_STM32 driver and bxCAN module, default configuration

Sending messages. The ACAN_STM32 driver defines a driver transmit FIFO (default size: 16 messages), and 3
individual Mailboxes whose capacity is one message.

A message is defined by an instance of the CANMessage class. For sending a message, user code calls the
tryToSendReturnStatus method – see section 11 page 10 for details, and the idx property of the sent
message should be:

• 0 (default value), for sending via driver transmit FIFO and Mailbox 0;

• 1, for sending via Mailbox 1;

• 2, for sending via Mailbox 2.

If the idx property is greater than 2, the message is lost.

You can call the sendBufferNotFullForIndex method (section 11.1 page 10) for testing if a send buffer is
not full.

ACAN_STM32 Arduino library 4

Receiving messages. The CAN Protocol Engine transmits all correct frames to the reception filters. By default,
they are configured as pass-all to FIFO0, see section 13 page 14 for configuring them. Messages that pass
the filters are stored in the Hardware Reception FIFO0 or in the Hardware Reception FIFO1. A hardware reception
FIFO has a capacity of 3 messages. The interrupt service routine transfers the messages from the FIFOi to
the Driver Receive FIFOi. The size of the Driver Receive FIFO 0 is 10 by default – see section 12.1 page 13 for
changing the default value. Seven user methods are available:

• the available0 method returns false if the Driver Receive FIFO0 is empty, and true otherwise;

• the receive0 method retrieves messages from the Driver Receive FIFO0 – see section 12 page 12;

• the available1 method returns false if the Driver Receive FIFO1 is empty, and true otherwise;

• the receive1 method retrieves messages from the Driver Receive FIFO1 – see section 12 page 12;

• the dispatchReceivedMessage method, see section 14 page 18;

• the dispatchReceivedMessage0 method, see section 15 page 19;

• the dispatchReceivedMessage1 method, see section 16 page 20.

5 A sample sketch: LoopBackDemo

The LoopBackDemo sketch is a sample code for introducing the ACAN_STM32 library. It demonstrates how to
configure the library, to send a CAN message, and to receive a CAN message.

Note: this code runs without any CAN connection, the CAN module is configured in EXTERNAL_LOOP_BACK
mode (see section 18.10.1 page 27).

ACAN_STM32 inclusion.

#include <ACAN_STM32.h>

The setup function.

void setup () {
//--- Switch on builtin led

pinMode (LED_BUILTIN, OUTPUT) ;
//--- Start serial

Serial.begin (115200) ;
//--- Wait for serial (blink led at 10 Hz during waiting)

while (!Serial) {
delay (50) ;
digitalWrite (LED_BUILTIN, !digitalRead (LED_BUILTIN)) ;

}

Builtin led is used for signaling. It blinks led at 10 Hz during until serial monitor is ready.

ACAN_STM32_Settings settings (125 * 1000) ;

ACAN_STM32 Arduino library 5

Configuration is a four-step operation. This line is the first step. It instanciates the settings object of the
ACAN_STM32_Settings class. The constructor has one parameter: the desired CAN bit rate (here, 125 kbit/s).
It returns a settings object fully initialized with CAN bit settings for the desired bit rate, and default values
for other configuration properties.

settings.mModuleMode = ACAN_STM32_Settings::EXTERNAL_LOOP_BACK ;

This is the second step. You can override the values of the properties ofsettingsobject. Here, themModuleMode
property is set to EXTERNAL_LOOP_BACK – its value is NORMAL by default. Setting this property enables exter-
nal loop back, that is you can run this demo sketch even it you have no connection to a physical CAN network.
The section 18.10 page 27 lists all properties you can override.

const uint32_t errorCode = can.begin () ;

This is the third step, configuration of the CAN driver with settings values. The driver is configured for being
able to send any (standard / extended, data / remote) frame, and to receive all (standard / extended, data /
remote) frames. If you want to define reception filters, see section 13 page 14.

if (errorCode != 0) {
Serial.print ("Configuration error 0x") ;
Serial.println (errorCode, HEX) ;

}

Last step: the configuration of the can driver returns an error code, stored in the errorCode constant. It has
the value 0 if all is ok – see section 17.2 page 21.

The global variables.

static uint32_t gSendDate = 0 ;
static uint32_t gSentCount = 0 ;
static uint32_t gReceivedCount = 0 ;

The gBlinkDate global variable is used for sending a CAN message every second. The gSentCount global
variable counts the number of sent messages. The gReceivedCount global variable counts the number of
sucessfully received messages.

The loop function.

void loop () {
CANMessage message ;
if (gSendDate < millis ()) {
message.id = 0x542 ;
message.len = 8 ;
message.data [0] = 0 ;
message.data [1] = 1 ;
message.data [2] = 2 ;
message.data [3] = 3 ;
message.data [4] = 4 ;
message.data [5] = 5 ;
message.data [6] = 6 ;
message.data [7] = 7 ;

ACAN_STM32 Arduino library 6

const bool ok = can.tryToSendReturnStatus (message) ;
if (ok) {
digitalWrite (LED_BUILTIN, !digitalRead (LED_BUILTIN)) ;
gSendDate += 1000 ;
gSentCount += 1 ;
Serial.print ("Sent: ") ;
Serial.println (gSentCount) ;

}
}
if (can.receive0 (message)) {
gReceivedCount += 1 ;
Serial.print ("Received: ") ;
Serial.println (gReceivedCount) ;

}
}

6 The CANMessage class

Note. The CANMessage class is declared in the CANMessage.h header file. The class declaration is protected
by an include guard that causes the macro GENERIC_CAN_MESSAGE_DEFINED to be defined. The ACAN2515
driver4, the ACAN2517 driver5 and the ACAN2517FD driver6 contain an identical CANMessage.h header file,
enabling using the ACAN_STM32 driver, the ACAN2515 driver, ACAN2517 driver and ACAN2517FD driver in a
same sketch.

A CAN message is an object that contains all CAN 2.0B frame user informations. All properties are initialized
by default, and represent a base data frame, with an identifier equal to 0, and without any data.

class CANMessage {
public : uint32_t id = 0 ; // Frame identifier
public : bool ext = false ; // false -> standard frame, true -> extended frame
public : bool rtr = false ; // false -> data frame, true -> remote frame
public : uint8_t idx = 0 ; // This field is used by the driver
public : uint8_t len = 0 ; // Length of data (0 ... 8)
public : union {

uint64_t data64 ; // Caution: subject to endianness
int64_t data_s64 ; // Caution: subject to endianness
uint32_t data32 [2] ; // Caution: subject to endianness
int32_t data_s32 [2] ; // Caution: subject to endianness
float dataFloat [2] ; // Caution: subject to endianness
uint16_t data16 [4] ; // Caution: subject to endianness
int16_t data_s16 [4] ; // Caution: subject to endianness
int8_t data_s8 [8] ;

4The ACAN2515 driver is a CAN driver for the MCP2515 CAN controller, https://github.com/pierremolinaro/acan2515.
5The ACAN2517 driver is a CAN driver for the MCP2517FD CAN controller in CAN 2.0B mode, https://github.com/

pierremolinaro/acan2517.
6The ACAN2517FD driver is a CANFD driver for the MCP2517FD CAN controller in CANFD mode, https://github.com/

pierremolinaro/acan2517FD.

ACAN_STM32 Arduino library 7

https://github.com/pierremolinaro/acan2515
https://github.com/pierremolinaro/acan2517
https://github.com/pierremolinaro/acan2517
https://github.com/pierremolinaro/acan2517FD
https://github.com/pierremolinaro/acan2517FD

uint8_t data [8] = {0, 0, 0, 0, 0, 0, 0, 0} ;
} ;

} ;

Note the message datas are defined by an union. So message datas can be seen as height bytes, four 16-bit
unsigned integers, two 32-bit, one 64-bit or two 32-bit floats. Be aware that multi-byte integers and floats
are subject to endianness (Cortex M4 processors of the STM32 are little-endian).

The idx property is not used in CAN frames, but:

• for a received message, it contains the acceptance filter index (see section 14 page 18);

• on sending messages, it is used for selecting the transmit buffer (see section 11 page 10).

7 Transmit FIFO

The STM32 bxCAN module provides 3 mailboxes for sending CAN frames. Each mailbox has a capacity of 1
message. MailBox 0 gets the message from the driver transmit FIFO, for MailBox 1 and MailBox 2 see
section 8 page 9.

The transmit FIFO (see figure 1 page 4) size is 20 by default; you can change the default size by setting the
mDriverTransmitFIFOSize property of your settings object.

For sending a message throught the Transmit FIFO, call thetryToSendReturnStatusmethod with a message
whose idx property is zero:

• if the controller transmit FIFO is not full, the message is appended to it, and tryToSendReturnStatus
returns 0;

• otherwise, if the driver transmit FIFO is not full, the message is appended to it, andtryToSendReturnStatus
returns 0; the interrupt service routine will transfer messages from driver transmit FIFO to the hardware
transmit FIFO while it is not full;

• otherwise, both FIFOs are full, the message is not stored and tryToSendReturnStatus returns the
kTransmitBufferOverflow error.

The transmit FIFO ensures sequentiality of emission.

7.1 The driverTransmitFIFOSize method

The driverTransmitFIFOSize method returns the allocated size of this driver transmit FIFO, that is the
value of settings.mDriverTransmitFIFOSize when the begin method is called.

const uint32_t s = can.driverTransmitFIFOSize () ;

ACAN_STM32 Arduino library 8

7.2 The driverTransmitFIFOCount method

7.2 The driverTransmitFIFOCount method

The driverTransmitFIFOCount method returns the current number of messages in the driver transmit
FIFO.

const uint32_t n = can.driverTransmitFIFOCount () ;

7.3 The driverTransmitFIFOPeakCount method

The driverTransmitFIFOPeakCount method returns the peak value of message count in the driver trans-
mit FIFO.

const uint32_t max = can.driverTransmitFIFOPeakCount () ;

If the transmit FIFO is full whentryToSendReturnStatus is called, the return value of this call iskTransmit-
BufferOverflow. In such case, the following calls of driverTransmitBufferPeakCount() will return
driverTransmitFIFOSize()+1.

So, when driverTransmitFIFOPeakCount() returns a value lower or equal to transmitFIFOSize(), it
means that calls to tryToSendReturnStatus do not provide any overflow of the driver transmit FIFO.

8 Transmit mailboxes (MailBox1 and MailBox2)

A Mailbox has a capacity of 1 message. So it is either empty, either full. You can call thesendBufferNotFullForIndex
method (section 11.1 page 10) for testing if a mailbox is empty or full.

9 Transmit Priority

From document RM0394 Rev 4, section 44.7.1, pages 1482-1483:

By identifier. When more than one transmit mailbox is pending, the transmission order is given by the identifier of
the message stored in the mailbox. The message with the lowest identifier value has the highest priority according
to the arbitration of the CAN protocol. If the identifier values are equal, the lower mailbox number will be scheduled
first.

By transmit request order. In this mode the priority order is given by the transmit request order. This mode is very
useful for segmented transmission.

By default, the selected mode is by identifier.

You can change the default mode by setting the settings.mTransmitPriority:

settings.mTransmitPriority = ACAN_STM32_Settings::BY_REQUEST_ORDER ;

ACAN_STM32 Arduino library 9

10 Receive FIFOs

A CAN module contains two receive FIFOs, FIFO0 and FIFO1. By default, only FIFO0 is enabled.

the receive FIFOi (0 ⩽ i ⩽ 1, see figure 1 page 4) is composed by:

• the hardware receive FIFOi, whose size is always 3;

• the driver receive FIFOi (in library software), whose size is positive (default 32 for FIFO0, 0 for FIFO1);
you can change the default size by setting the mDriverReceiveFIFOiSize property of your settings
object.

The receive FIFO mechanism ensures sequentiality of reception.

11 Sending frames: the tryToSendReturnStatus method

The ACAN_STM32::tryToSendReturnStatus method sends CAN 2.0B frames:

uint32_t ACAN_STM32::tryToSendReturnStatus (const CANMessage & inMessage);

You call the tryToSendReturnStatusmethod for sending a message in the CAN network. Note this function
returns before the message is actually sent; this function only adds the message to a transmit buffer. It
returns:

• kTransmitBufferIndexTooLarge (value: 1) if the idx property value does not specify a valid transmit
mailbox (see below);

• kTransmitBufferOverflow (value: 2) if the transmit buffer specified by the idx property value is full;

• 0 (no error) if the message has been successfully added to the transmit buffer specified by the idx
property value.

The idx property of the message specifies the transmit buffer:

• 0 for the transmit FIFO (section 7 page 8);

• 1 for the mailbox 1 (section 8 page 9);

• 2 for the mailbox 2 (section 8 page 9).

11.1 Testing a send buffer: the sendBufferNotFullForIndex method

bool ACAN_STM32::sendBufferNotFullForIndex (const uint32_t inTxBufferIndex);

This method returns true if the corresponding transmit buffer is not full, and false otherwise (table 3).

ACAN_STM32 Arduino library 10

11.2 Usage example

inTxBufferIndex Operation
0 true if the transmit FIFO is not full, and false otherwise
1 true if the Mailbox1 is empty, and false if it is full
2 true if the Mailbox2 is empty, and false if it is full

> 2 Always false

Table 3 – Value returned by the sendBufferNotFullForIndex method

11.2 Usage example

A way is to use a global variable to note if the message has been successfully transmitted to driver transmit
buffer. For example, for sending a message every 2 seconds:

static uint32_t gSendDate = 0 ;

void loop () {
if (gSendDate < millis ()) {
CANMessage message ;
// Initialize message properties
const uint32_t sendStatus = can.tryToSendReturnStatus (message) ;
if (sendStatus == 0) {

gSendDate += 2000 ;
}

}
}

An other hint to use a global boolean variable as a flag that remains true while the message has not been
sent.

static bool gSendMessage = false ;

void loop () {
...
if (frame_should_be_sent) {
gSendMessage = true ;

}
...
if (gSendMessage) {
CANMessage message ;
// Initialize message properties
const uint32_t sendStatus = can.tryToSendReturnStatus (message) ;
if (sendStatus == 0) {
gSendMessage = false ;

}
}
...

}

ACAN_STM32 Arduino library 11

12 Retrieving received messages using the receivei method

bool ACAN_STM32::receive0 (CANMessage & outMessage) ;
bool ACAN_STM32::receive1 (CANMessage & outMessage) ;

If the receive FIFO i is not empty, the oldest message is removed, assigned to outMessage, and the method
returns true. If the receive FIFO i is empty, the method returns false.

This is a basic example:

void loop () {
CANMessage message ;
if (can.receive0 (message)) {

// Handle received message
}
...

}

The receive method:

• returns false if the driver receive buffer is empty, message argument is not modified;

• returns true if a message has been has been removed from the driver receive buffer, and the message
argument is assigned.

You need to manually dispatch the received messages. If you did not provide any receive filter, you should
check the type property (remote or data frame?), the ext bit (base or extended frame), and the id (identifier
value). The following snippet dispatches three messages:

void loop () {
CANMessage message ;
if (can.receive0 (message)) {

if (!message.rtr && message.ext && (message.id == 0x123456)) {
handle_myMessage_0 (message) ; // Extended data frame, id is 0x123456

}else if (!message.rtr && !message.ext && (message.id == 0x234)) {
handle_myMessage_1 (message) ; // Base data frame, id is 0x234

}else if (message.rtr && !message.ext && (message.id == 0x542)) {
handle_myMessage_2 (message) ; // Base remote frame, id is 0x542

}
}
...

}

The handle_myMessage_0 function has the following header:

void handle_myMessage_0 (const CANMessage & inMessage) {
...

}

So are the header of the handle_myMessage_1 and the handle_myMessage_2 functions.

ACAN_STM32 Arduino library 12

12.1 Driver receive FIFO i size

12.1 Driver receive FIFO i size

By default, the driver receive FIFO 0 size is 10 and the driver receive FIFO 1 size is 0. You can change them by
setting themDriverReceiveFIFO0Sizeproperty and themDriverReceiveFIFO1Sizeproperty ofsettings
variable before calling the begin method:

ACAN_STM32_Settings settings (125 * 1000) ;
settings.mDriverReceiveFIFO0Size = 100 ;
const uint32_t errorCode = can.begin (settings) ;
...

As the size of CANMessage class is 16 bytes, the actual size of the driver receive FIFO 0 is the value of
settings.mDriverReceiveFIFO0Size * 16, and the actual size of the driver receive FIFO 1 is the value
of settings.mDriverReceiveFIFO1Size * 16.

12.2 The driverReceiveFIFOiSize method

The driverReceiveFIFOiSizemethod returns the size of the driver FIFO i, that is the value of the mDriver-
ReceiveFIFOiSize property of settings variable when the the begin method is called.

const uint32_t s = can.driverReceiveFIFO0Size () ;

12.3 The driverReceiveFIFOiCount method

The driverReceiveFIFOiCount method returns the current number of messages in the driver receive FIFO
i.

const uint32_t n = can.driverReceiveFIFO0Count () ;

12.4 The driverReceiveFIFOiPeakCount method

The driverReceiveFIFOiPeakCount method returns the peak value of message count in the driver receive
FIFO i.

const uint32_t max = can.driverReceiveFIFO0PeakCount () ;

If an overflow occurs, further calls ofcan.driverReceiveFIFOiPeakCount () returncan.driverReceiveFIFOiSize
()+1.

12.5 The resetDriverReceiveFIFOiPeakCount method

The resetDriverReceiveFIFOiPeakCount method assign the current count to the peak value.

can.resetDriverReceiveFIFO0PeakCount () ;

ACAN_STM32 Arduino library 13

13 Acceptance filters

for an example sketch, see LoopBackDemoFilters.

The bxCAN module accepts up to 14 filter banks. A filter bank can be either:

• a standard quad filter bank (section 13.1 page 14);

• a standard mask dual filter bank (section 13.2 page 15);

• an extended dual filter bank (section 13.3 page 16);

• an extended mask single filter bank (section 13.4 page 17).

The bxCAN module bases the filtering of the received frames on the nature of their identifier value, format
(standard / extended, data / remote).

13.1 Quad standard filter bank

bool Filters::addStandardQuad (const uint16_t inIdentifier1,
const bool inRTR1,
const uint16_t inIdentifier2,
const bool inRTR2,
const uint16_t inIdentifier3,
const bool inRTR3,
const uint16_t inIdentifier4,
const bool inRTR4,
const ACAN_STM32::Action inAction) ;

bool Filters::addStandardQuad (const uint16_t inIdentifier1,
const bool inRTR1,
const ACANCallBackRoutine inCallBack1,
const uint16_t inIdentifier2,
const bool inRTR2,
const ACANCallBackRoutine inCallBack2,
const uint16_t inIdentifier3,
const bool inRTR3,
const ACANCallBackRoutine inCallBack3,
const uint16_t inIdentifier4,
const bool inRTR4,
const ACANCallBackRoutine inCallBack4,
const ACAN_STM32::Action inAction) ;

This bank defines 4 individual independant filters; one of theses filters matches if all following conditions are
met:

• the received frame is a standard frame;

ACAN_STM32 Arduino library 14

13.2 Dual standard mask filter bank

• the received frame identifier is equal to inIdentifieri value;

• if inRTRi is false, the received frame is a data frame;

• if inRTRi is true, the received frame is a remote frame.

If the received frame matches one of theses filters, it is appended to Hardware receive FIFO0 or Hardware
receive FIFO1, depending from inAction value.

Therefore this bank is valid if all inIdentifieri are lower or equal to 0x7FF, and the current filter bank count
is lower than 14. The method returns true if the bank is valid, and false otherwise. If the bank is valid, this
method appends it to the receiver list. If the bank is not valid, the bank is not appended.

A inCallBacki callback function can be associated to each individual filter. The first prototype does not name
any callback function, it is equivalent to the second one when all inCallBacki are nullptr.

See section 14 page 18 for using callback routines.

13.2 Dual standard mask filter bank

bool Filters::addStandardMasks (const uint16_t inBase1,
const uint16_t inMask1,
const Format inFormat1,
const uint16_t inIdentifier2,
const uint16_t inMask2,
const Format inFormat2,
const ACAN_STM32::Action inAction) ;

bool Filters::addStandardMasks (const uint16_t inBase1,
const uint16_t inMask1,
const Format inFormat1,
const ACANCallBackRoutine inCallBack1,
const uint16_t inIdentifier2,
const uint16_t inMask2,
const Format inFormat2,
const ACANCallBackRoutine inCallBack2,
const ACAN_STM32::Action inAction) ;

This bank defines 2 individual independant filters; one of theses filters matches if all following conditions are
met:

• the received frame is a standard frame;

• the received frame identifier verifies (received_frame_identifier & inMaski) is equal to inBasei;

• if inFormati is equal to ACAN_STM32::DATA, the received frame is a data frame;

• if inFormati is equal to ACAN_STM32::REMOTE, the received frame is a remote frame;

ACAN_STM32 Arduino library 15

13.3 Dual extended filter bank

• if inFormati is equal to ACAN_STM32::DATA_OR_REMOTE, the received frame can be a data frame or a
remote frame.

If the received frame matches one of theses filters, it is appended to Hardware receive FIFO0 or Hardware
receive FIFO1, depending from inAction value.

This bank is valid if the current filter bank count is lower than 14 and for all i:

• (inBasei is lower or equal to 0x7FF;

• (inMaski is lower or equal to 0x7FF;

• (inBasei & inMaski) is equal to inBasei.

The method returns true if the bank is valid, and false otherwise. If the bank is valid, this method appends
it to the receiver list. If the bank is not valid, the bank is not appended.

A inCallBacki callback function can be associated to each individual filter. The first prototype does not name
any callback function, it is equivalent to the second one when all inCallBacki are nullptr.

See section 14 page 18 for using callback routines.

For example:

filters.addStandardMasks (0x405, 0x7D5, ACAN_STM32::DATA, // 8 Standard data frames
0x605, 0x7D5, ACAN_STM32::REMOTE, // 8 Standard remote frames
ACAN_STM32::FIFO1) ;

This first filter is valid because (0x405 & 0x7D5) is equal to 0x405.

10 9 8 7 6 5 4 3 2 1 0
inBase: 0x405 1 0 0 0 0 0 0 0 1 0 1
inMask: 0x7D5 1 1 1 1 1 0 1 0 1 0 1

Matching identifiers 1 0 0 0 0 x 0 x 1 x 1

Therefore there are 8 matching identifiers: 0x405, 0x407, 0x40B, 0x40F, 0x425, 0x427, 0x42B, 0x42F.

13.3 Dual extended filter bank

bool Filters::addExtendedDual (const uint32_t inIdentifier1,
const bool inRTR1,
const uint32_t inIdentifier2,
const bool inRTR2,
const ACAN_STM32::Action inAction) ;

bool Filters::addExtendedDual (const uint32_t inIdentifier1,
const bool inRTR1,
const ACANCallBackRoutine inCallBack1,
const uint32_t inIdentifier2,
const bool inRTR2,
const ACANCallBackRoutine inCallBack2,
const ACAN_STM32::Action inAction) ;

ACAN_STM32 Arduino library 16

13.4 Single extended mask filter bank

This bank defines 2 individual independant filters; one of theses filters matches if all following conditions are
met:

• the received frame is a extended frame;

• the received frame identifier is equal to inIdentifieri value;

• if inRTRi is false, the received frame is a data frame;

• if inRTRi is true, the received frame is a remote frame.

If the received frame matches one of theses filters, it is appended to Hardware receive FIFO0 or Hardware
receive FIFO1, depending from inAction value.

Therefore this bank is valid if all inIdentifieri are lower or equal to 0x1FFF_FFFF, and the current filter
bank count is lower than 14. The method returns true if the bank is valid, and false otherwise. If the bank
is valid, this method appends it to the receiver list. If the bank is not valid, the bank is not appended.

A inCallBacki callback function can be associated to each individual filter. The first prototype does not name
any callback function, it is equivalent to the second one when all inCallBacki are nullptr.

See section 14 page 18 for using callback routines.

13.4 Single extended mask filter bank

bool Filters::addExtendedMask (const uint32_t inBase,
const uint32_t inMask,
const Format inFormat,
const ACAN_STM32::Action inAction) ;

bool Filters::addExtendedMask (const uint32_t inBase,
const uint32_t inMask,
const Format inFormat,
const ACANCallBackRoutine inCallBack,
const ACAN_STM32::Action inAction) ;

This bank defines one individual filter that matches if all following conditions are met:

• the received frame is an extended frame;

• the received frame identifier verifies (received_frame_identifier & inMask) is equal to inBase;

• if inFormat is equal to ACAN_STM32::DATA, the received frame is a data frame;

• if inFormat is equal to ACAN_STM32::REMOTE, the received frame is a remote frame;

• if inFormat is equal to ACAN_STM32::DATA_OR_REMOTE, the received frame can be a data frame or a
remote frame.

ACAN_STM32 Arduino library 17

If the received frame matches this filter, it is appended to Hardware receive FIFO0 or Hardware receive FIFO1,
depending from inAction value.

This bank is valid if :

• the current filter bank count is lower than 14;

• (inBase is lower or equal to 0x1FFF_FFFF;

• (inMask is lower or equal to 0x1FFF_FFFF;

• (inBase & inMaski) is equal to inBase.

The method returns true if the bank is valid, and false otherwise. If the bank is valid, this method appends
it to the receiver list. If the bank is not valid, the bank is not appended.

A inCallBack callback function can be associated to the filter. The first prototype does not name any callback
function, it is equivalent to the second one when inCallBack is nullptr.

See section 14 page 18 for using callback routines.

For example:

filters.addExtendedMask (0x6789, 0x1FFF67BD, ACAN_STM32::REMOTE, ACAN_STM32::FIFO0) ;

This filter is valid because (0x6789 & 0x1FFF67BD) is equal to 0x6789.

28 ... 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
inBase: 0x6789 0 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1

inMask: 0x1FFF67BD 1 0 1 1 0 0 1 1 1 1 0 1 1 1 1 0 1
Matching identifiers 0 x 1 1 x x 1 1 1 1 x 1 1 1 0 x 1

Therefore there are 32 matching extended remote frames.

14 The dispatchReceivedMessage method

Sample sketch: the LoopBackDemoDispatch sketch shows how using the dispatchReceivedMessage
method.

Instead of calling the receive0 and the receive1 methods, call the dispatchReceivedMessage method
in your loop function. For every message extracted from FIFO0 and FIFO1, it calls the callback function
associated with the corresponding filter.

If you have not defined any filter, do not use this function, call the receive0 and / or the receive1 methods.

void loop () {
can.dispatchReceivedMessage () ; // Do not call can.receive0, can.receive1 any more
...

}

The dispatchReceivedMessagemethod handles one FIFO0message and one FIFO1message on each call.
Specifically:

ACAN_STM32 Arduino library 18

• if FIFO0 and FIFO01 are both empty, it returns false;

• if FIFO0 is not empty, its oldest message is extracted and its associated callback is called; then, if FIFO1
is not empty, its oldest message is extracted and its associated callback is called; the true value is
returned.

If a filter definition does not name a callback function, the corresponding messages are lost.

The return value can used for emptying the FIFOs and dispatching all received messages:

void loop () {
while (can.dispatchReceivedMessage ()) {
}
...

}

15 The dispatchReceivedMessage0 method

The dispatchReceivedMessage0 method dispatches the messages stored in the FIFO0. The messages
stored is FIFO1 are retrieved using the receive1 method.

void loop () {
can.dispatchReceivedMessage0 () ; // Do not call can.receive0 any more
CANMessage ;
if (can.receive1 (message)) {

... handle FIFO1 message ...
}
...

}

Instead of calling the receive0 method, call the dispatchReceivedMessage0 method in your loop func-
tion. For every message extracted from FIFO0, it calls the callback function associated with the corresponding
filter.

If you have not defined any filter that targets the FIFO0, do not use this function (messages will be not dis-
patched and therefore lost), call the receive0 method.

The dispatchReceivedMessage0 method handles one FIFO0 message on each call. Specifically:

• if FIFO0 is empty, it returns false;

• if FIFO0 is not empty, its oldest message is extracted and its associated callback is called and the true
value is returned.

If a filter definition does not name a callback function, the corresponding messages are lost.

The return value can used for emptying and dispatching all received messages:

void loop () {

ACAN_STM32 Arduino library 19

while (can.dispatchReceivedMessage0 ()) {
}
CANMessage ;
if (can.receive1 (message)) {

... handle FIFO1 message ...
}
...

}

16 The dispatchReceivedMessage1 method

The dispatchReceivedMessage1 method dispatches the messages stored in the FIFO1. The messages
stored is FIFO0 are retrieved using the receive0 method.

void loop () {
can.dispatchReceivedMessage1 () ; // Do not call can.receive1 any more
CANMessage ;
if (can.receive0 (message)) {

... handle FIFO0 message ...
}
...

}

Instead of calling the receive1 method, call the dispatchReceivedMessage1 method in your loop func-
tion. For every message extracted from FIFO1, it calls the callback function associated with the corresponding
filter.

If you have not defined any filter that targets the FIFO1, do not use this function (messages will be not dis-
patched and therefore lost), call the receive1 method.

The dispatchReceivedMessage1 method handles one FIFO1 message on each call. Specifically:

• if FIFO1 is empty, it returns false;

• if FIFO1 is not empty, its oldest message is extracted and its associated callback is called and the true
value is returned.

If a filter definition does not name a callback function, the corresponding messages are lost.

The return value can used for emptying and dispatching all received messages:

void loop () {
while (can.dispatchReceivedMessage1 ()) {
}
CANMessage ;
if (can.receive0 (message)) {

... handle FIFO0 message ...
}

ACAN_STM32 Arduino library 20

...
}

17 The ACAN_STM32::begin method reference

17.1 The prototype

uint32_t ACAN_STM32::begin (const ACAN_STM32_Settings & inSettings,
const ACAN_STM32::Filters & inFilters = ACAN_STM32::Filters ()) ;

The first argument is a ACAN_STM32_Settings instance that defines the settings.

The second one is optional, and specifies the filter bank list (see section 13 page 14). By default, the filter bank
list is empty.

17.2 The error codes

The ACAN_STM32::begin method returns an error code. The value 0 denotes no error. Otherwise, you
consider every bit as an error flag, as described in table 4. An error code could report several errors. The
ACAN_STM32 class defines static constants for naming errors.

Bit Code Static constant Name Comment
0 0x1 kBitRatePrescalerIsZero See table 5 page 25
... See table 5 page 25
9 0x200 kDataSJWIsGreaterThanPhaseSegment2 See table 5 page 25

16 0x1_0000 kActualBitRateTooFarFromDesiredBitRate

Table 4 – The ACAN_STM32::begin method error code bits

18 ACAN_STM32_Settings class reference

Note. The ACAN_STM32_Settings class is not Arduino specific. You can compile it on your desktop computer
with your favorite C++ compiler.

18.1 The ACAN_STM32_Settings constructor: computation of the CAN bit settings

void setup () {
ACAN_STM32_Settings::ACAN_STM32_Settings (const uint32_t inDesiredBitRate,

const uint32_t inTolerancePPM = 1000) ;

The constructor of the ACAN_STM32_Settings has two mandatory arguments: the desired bit rate. It tries to
compute the CAN bit settings for theses bit rates. If it succeeds, the constructed object has its mBitRateClo-
sedToDesiredRate property set to true, otherwise it is set to false. For example, for an 1 Mbit/s bit rate:

ACAN_STM32 Arduino library 21

18.1 The ACAN_STM32_Settings constructor: computation of the CAN bit settings

void setup () {
// Bit rate: 1 Mbit/s
ACAN_STM32_Settings settings (1000 * 1000) ;
// Here, settings.mBitRateClosedToDesiredRate is true
...

}

But this does not mean there is no possibility to get such data bit rates factors. For example, we can have a
bit rate of 4/7 Mbit/s = 571 428 kbit/s with the STM32L432KC clock (80 MHz):

void setup () {
...
ACAN_STM32_Settings settings (571428) ;
Serial.print ("mBitRateClosedToDesiredRate: ") ;
Serial.println (settings.mBitRateClosedToDesiredRate) ; // 1 (true)
Serial.print ("Actual Bit Rate: ") ;
Serial.println (settings.actualBitRate ()) ; // 571428 bit/s
Serial.print ("distance: ") ;
Serial.println (settings.ppmFromDesiredBitRate ()) ; // 1 ppm= 0,0001 %
...

}

Due to integer computations, and the distance from desired bit rate is 1 ppm. ”ppm” stands for ”part-per-
million”, and 1 ppm = 10−6. In other words, 10, 000 ppm = 1%.

By default, a desired bit rate is accepted if the distance from the computed actual bit rate is lower or equal
to 1, 000 ppm = 0.1 %. You can change this default value by adding your own value as third argument of
ACAN_STM32_Settings constructor. For example, with a bit rate equal to 727 kbit/s (with the STM32L432KC
clock, 80 MHz):

void setup () {
...
ACAN_STM32_Settings settings (727 * 1000, 100) ; // 100 ppm
Serial.print ("mBitRateClosedToDesiredRate: ") ;
Serial.println (settings.mBitRateClosedToDesiredRate) ; // 0 (false)
Serial.print ("actual bit rate: ") ;
Serial.println (settings.actualBitRate ()) ; // 727272 bit/s
Serial.print ("distance: ") ;
Serial.println (settings.ppmFromDesiredBitRate ()) ; // 375 ppm
...

}

The third argument does not change the CAN bit computation, it only changes the acceptance test for setting
the mBitRateClosedToDesiredRate property. For example, you can specify that you want the computed
actual bit to be exactly the desired bit rate:

void setup () {
...
ACAN_STM32_Settings settings (500 * 1000, 0) ; // Max distance is 0 ppm
Serial.print ("mBitRateClosedToDesiredRate: ") ;

ACAN_STM32 Arduino library 22

18.1 The ACAN_STM32_Settings constructor: computation of the CAN bit settings

Serial.println (settings.mBitRateClosedToDesiredRate) ; // 1 (true)
Serial.print ("distance: ") ;
Serial.println (settings.ppmFromDesiredBitRate ()) ; // 0 ppm
...

}

In any way, the bit rate computation always gives a consistent result, resulting an actual bit rate closest from
the desired bit rate. For example, we query a 330 kbit/s bit rate (with the STM32L432KC clock, 80 MHz):

void setup () {
...
ACAN_STM32_Settings settings (330 * 1000) ;
Serial.print ("mBitRateClosedToDesiredRate: ") ;
Serial.println (settings.mBitRateClosedToDesiredRate) ; // 0 (false)
Serial.print ("Actual Bit Rate: ") ;
Serial.println (settings.actualBitRate ()) ; // 330 578 bit/s
Serial.print ("distance: ") ;
Serial.println (settings.ppmFromDesiredBitRate ()) ; // 1 753 ppm
...

}

The resulting bit rates settings are far from the desired values, the CAN bit decomposition is consistent. You
can get its details:

void setup () {
...
ACAN_STM32_Settings settings (330 * 1000) ;
Serial.print ("mBitRateClosedToDesiredRate: ") ;
Serial.println (settings.mBitRateClosedToDesiredRate) ; // 0 (false)
Serial.print ("Actual Bit Rate: ") ;
Serial.println (settings.actualBitRate ()) ; // 330 578 bit/s
Serial.print ("distance: ") ;
Serial.println (settings.ppmFromDesiredBitRate ()) ; // 1 753 ppm
Serial.print ("Bit rate prescaler: ") ;
Serial.println (settings.mBitRatePrescaler) ; // BRP = 11
Serial.print ("Phase segment 1: ") ;
Serial.println (settings.mPhaseSegment1) ; // PS1 = 14
Serial.print ("Phase segment 2: ") ;
Serial.println (settings.mPhaseSegment2) ; // PS2 = 7
Serial.print ("Resynchronization Jump Width: ") ;
Serial.println (settings.mRJW) ; // RJW = 4
Serial.print ("Sample Point: ") ;
Serial.println (settings.samplePointFromBitStart ()) ; // 68, meaning 68%
Serial.print ("Consistency: ") ;
Serial.println (settings.CANBitSettingConsistency ()) ; // 0, meaning Ok
...

}

The samplePointFromBitStart method returns sample point, expressed in per-cent of the bit duration

ACAN_STM32 Arduino library 23

18.1 The ACAN_STM32_Settings constructor: computation of the CAN bit settings

from the beginning of the bit.

Note the computation may calculate a bit decomposition too far from the desired bit rate, but it is always
consistent. You can check this by calling the CANBitSettingConsistency method.

You can change the property values for adapting to the particularities of your CAN network propagation time.
By example, you can increment the mPhaseSegment1 property value, and decrement the mPhaseSegment2
property value in order to sample the RxCAN pin later.

void setup () {
...
ACAN_STM32_Settings settings (500 * 1000) ;
Serial.print ("mBitRateClosedToDesiredRate: ") ;
Serial.println (settings.mBitRateClosedToDesiredRate) ; // 1 (true)
settings.mPhaseSegment1 += 1 ; // 13 -> 14: safe, 1 <= PS1 <= 16
settings.mPhaseSegment2 -= 1 ; // 6 -> 5: safe, 1 <= PS2 <= 8, and PS2 >= RJW
Serial.print ("Sample Point: ") ;
Serial.println (settings.samplePointFromBitStart ()) ; // 75, meaning 75%
Serial.print ("actual bit rate: ") ;
Serial.println (settings.actualBitRate ()) ; // 500 000: ok, no change
Serial.print ("Consistency: ") ;
Serial.println (settings.CANBitSettingConsistency ()) ; // 0, meaning Ok
...

}

Be aware to always respect CAN bit timing consistency! The bxCAN constraints are:

1 ⩽ mBitRatePrescaler ⩽ 1024

1 ⩽ mPhaseSegment1 ⩽ 16

2 ⩽ mPhaseSegment2 ⩽ 18

1 ⩽ mRJW ⩽ 4

mRJW ⩽ mPhaseSegment2

Resulting actual bit rates are given by (CAN_CLOCK_FREQUENCY is defined in table 2 page 3):

Actual Bit Rate =
CAN_CLOCK_FREQUENCY

mBitRatePrescaler · (1 + mPhaseSegment1+ mPhaseSegment2)

And the sampling point (in per-cent unit) are given by:

Sampling Point = 100 · 1 + mPhaseSegment1
1 + mPhaseSegment1+ mPhaseSegment2

ACAN_STM32 Arduino library 24

18.2 The CANBitSettingConsistency method

18.2 The CANBitSettingConsistency method

This method checks the CAN bit decomposition (specified bymBitRatePrescaler,mPhaseSegment1,mPhase-
Segment2, mRJW and mTripleSampling property values) is consistent.

void setup () {
...
ACAN_STM32_Settings settings (500 * 1000) ;
Serial.print ("mBitRateClosedToDesiredRate: ") ;
Serial.println (settings.mBitRateClosedToDesiredRate) ; // 1 (true)
settings.mPhaseSegment1 = 0 ; // Error, mPhaseSegment1 should be >= 1 (and <= 16)
Serial.print ("Consistency: 0x") ;
Serial.println (settings.CANBitSettingConsistency (), HEX) ; // != 0, meaning error
...

}

The CANBitSettingConsistency method returns 0 if CAN bit decomposition is consistent. Otherwise, the
returned value is a bit field that can report several errors – see table 5.

The ACAN_STM32_Settings class defines static constant properties that can be used as mask error. For
example:

public: static const uint32_t kBitRatePrescalerIsZero = 1 << 0 ;

Bit Code Error Name Error
0 0x1 kBitRatePrescalerIsZero mBitRatePrescaler == 0
1 0x2 kBitRatePrescalerIsGreaterThan1024 mBitRatePrescaler > 1024
2 0x4 kPhaseSegment1IsZero mPhaseSegment1 == 0
3 0x8 kPhaseSegment1IsGreaterThan16 mPhaseSegment1 > 16
4 0x10 kPhaseSegment2IsZero mPhaseSegment2 == 0
5 0x20 kPhaseSegment2IsGreaterThan8 mPhaseSegment2 > 8
6 0x40 kRJWIsZero mRJW == 0
7 0x80 kRJWIsGreaterThan4 mRJW > 4
8 0x100 kRJWIsGreaterThanPhaseSegment2 mRJW > mPhaseSegment2
9 0x200 kPhaseSegment1Is1AndTripleSampling (mPhaseSegment1 == 1) and triple sampling

Table 5 – The ACAN_STM32_Settings::CANBitSettingConsistency method error codes

18.3 The actualBitRate method

TheactualBitRatemethod returns the actual bit computed frommBitRatePrescaler,mPropagationSegment,
mPhaseSegment1, mPhaseSegment2, mRJW property values.

void setup () {
...
ACAN_STM32_Settings settings (440 * 1000) ;
Serial.print ("mBitRateClosedToDesiredRate: ") ;
Serial.println (settings.mBitRateClosedToDesiredRate) ; // 0 (false)
Serial.print ("actual bit rate: ") ;
Serial.println (settings.actualBitRate ()) ; // 444,444 bit/s

ACAN_STM32 Arduino library 25

18.4 The exactBitRate method

...
}

Note. If CAN bit settings are not consistent (see section 18.2 page 25), the returned value is irrelevant.

18.4 The exactBitRate method

bool ACAN_STM32_Settings::exactBitRate (void) const ;

The exactBitRate method returns true if the actual bit rate is equal to the desired bit rate, and false
otherwise.

Note. If CAN bit settings are not consistent (see section 18.2 page 25), the returned value is irrelevant.

18.5 The exactDataBitRate method

bool ACAN_STM32_Settings::exactDataBitRate (void) const ;

The exactDataBitRate method returns true if the actual data bit rate is equal to the desired data bit rate,
and false otherwise.

Note. If CAN bit settings are not consistent (see section 18.2 page 25), the returned value is irrelevant.

18.6 The ppmFromDesiredBitRate method

uint32_t ACAN_STM32_Settings::ppmFromDesiredBitRate (void) const ;

The ppmFromDesiredBitRate method returns the distance from the actual bit rate to the desired bit rate,
expressed in part-per-million (ppm): 1 ppm = 10−6. In other words, 10, 000 ppm = 1%.

Note. If CAN bit settings are not consistent (see section 18.2 page 25), the returned value is irrelevant.

18.7 The ppmFromDesiredDataBitRate method

uint32_t ACAN_STM32_Settings::ppmFromDesiredDataBitRate (void) const ;

The ppmFromDesiredDataBitRate method returns the distance from the actual data bit rate to the desired
data bit rate, expressed in part-per-million (ppm): 1 ppm = 10−6. In other words, 10, 000 ppm = 1%.

Note. If CAN bit settings are not consistent (see section 18.2 page 25), the returned value is irrelevant.

18.8 The samplePointFromBitStart method

uint32_t ACAN_STM32_Settings::samplePointFromBitStart (void) const ;

ACAN_STM32 Arduino library 26

18.9 The dataSamplePointFromBitStart method

The samplePointFromBitStart method returns the distance of sample point from the start of the CAN bit,
expressed in part-per-cent (ppc): 1 ppc = 1% = 10−2. It is a good practice to get sample point from 65% to
80%. The bit rate calculator tries to set the sample point at 80%.

Note. If CAN bit settings are not consistent (see section 18.2 page 25), the returned value is irrelevant.

18.9 The dataSamplePointFromBitStart method

uint32_t ACAN_STM32_Settings::dataSamplePointFromBitStart (void) const ;

The dataSamplePointFromBitStart method returns the distance of sample point from the start of the
data CAN bit, expressed in part-per-cent (ppc): 1 ppc = 1% = 10−2. It is a good practice to get sample point
from 65% to 80%. The bit rate calculator tries to set the sample point at 80%.

Note. If CAN bit settings are not consistent (see section 18.2 page 25), the returned value is irrelevant.

18.10 Properties of the ACAN_STM32_Settings class

All properties of the ACAN_STM32_Settings class are declared public and are initialized (table 6).

Property Type Initial value Comment
mDesiredBitRate uint32_t Constructor argument
mBitRatePrescaler uint8_t 1024 See section 18.1 page 21
mPhaseSegment1 uint16_t 16 See section 18.1 page 21
mPhaseSegment2 uint8_t 8 See section 18.1 page 21
mRJW uint8_t 4 See section 18.1 page 21
mTripleSampling bool true See section 18.1 page 21
mBitRateClosedToDesiredRate bool false See section 18.1 page 21
mModuleMode ModuleMode NORMAL See section 18.10.1 page 27
mOpenCollectorOutput bool false See section 18.10.2 page 27
mTransmitPriority TransmitPriority BY_REQUEST_ORDER See section 9 page 9
mDriverReceiveFIFO0Size uint16_t 32 See section 12.1 page 13
mDriverReceiveFIFO1Size uint16_t 0 See section 12.1 page 13
mDriverTransmitFIFOSize uint16_t 8 See section 7 page 8

Table 6 – Properties of the ACAN_STM32_Settings class

18.10.1 The mModuleMode property

This property defines the mode requested at this end of the configuration process: NORMAL (default value),
INTERNAL_LOOP_BACK, EXTERNAL_LOOP_BACK.

18.10.2 The mOpenCollectorOutput property

By default, mOpenCollectorOutput property is false, therefore TxCAN pin is 2-state push / pull pin. If
mOpenCollectorOutput property is set to true, TxCAN pin is an open collector pin.

ACAN_STM32 Arduino library 27

	Versions
	Features
	Supported boards
	Data flow
	A sample sketch: LoopBackDemo
	The CANMessage class
	Transmit FIFO
	The driverTransmitFIFOSize method
	The driverTransmitFIFOCount method
	The driverTransmitFIFOPeakCount method

	Transmit mailboxes (MailBox1 and MailBox2)
	Transmit Priority
	Receive FIFOs
	Sending frames: the tryToSendReturnStatus method
	Testing a send buffer: the sendBufferNotFullForIndex method
	Usage example

	Retrieving received messages using the receivei method
	Driver receive FIFO i size
	The driverReceiveFIFOiSize method
	The driverReceiveFIFOiCount method
	The driverReceiveFIFOiPeakCount method
	The resetDriverReceiveFIFOiPeakCount method

	Acceptance filters
	Quad standard filter bank
	Dual standard mask filter bank
	Dual extended filter bank
	Single extended mask filter bank

	The dispatchReceivedMessage method
	The dispatchReceivedMessage0 method
	The dispatchReceivedMessage1 method
	The ACAN_STM32::begin method reference
	The prototype
	The error codes

	ACAN_STM32_Settings class reference
	The ACAN_STM32_Settings constructor: computation of the CAN bit settings
	The CANBitSettingConsistency method
	The actualBitRate method
	The exactBitRate method
	The exactDataBitRate method
	The ppmFromDesiredBitRate method
	The ppmFromDesiredDataBitRate method
	The samplePointFromBitStart method
	The dataSamplePointFromBitStart method
	Properties of the ACAN_STM32_Settings class
	The mModuleMode property
	The mOpenCollectorOutput property

