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Abstract

ESP32 is a low-cost, low-power System on a Chip series of microcontroller with a highly

integrated dual core microprocessor, developed by Espressif Systems. The MCU is designed to

formulate embedded system and power internet of things usage in professional projects. The

ESP32 supports Control Area Network protocol (CAN), the peripheral contains a CAN controller

compatible for CAN 2.0B specification. In an effort, this project draw the development of ESP32

CAN driver. The developed driver is featured by the Arduino-ESP32 SDK. The technical

specification document of ESP32 does not contain any details of the ESP32 CAN Controller.

From discussions it is found that ESP32 CAN controller is a compatible NXP SJA1000 CAN

controller. ESP32 CAN registers are reformed from SJA1000 and the registers are documented

in this report. The library is written in ACAN style for easy configuration and usage. Efficient

CAN-bit settings calculator, customisable driver buffer size and acceptance filter settings are in-

built features of the driver. This driver is developed and tested on a ESP32 MiniKit development

board integrated with MCP2515 and MCP2517 CAN controller and MCP2562 transceiver.

Sequential data flow is successfully achieved by the ESP32 CAN controller using the driver.

The operation of the driver is tested using arduino example codes and a demo of the transmitter

model is verified using tool UPPAAL.

Keywords : ESP32, Espressif System, Controlled Area Network (CAN), ESP32 CAN

Driver, SJA100 CAN Controller, ESP32-MiniKit.
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Introduction

The ESP32 module, little beast is an extremely capable wireless programmable microcontroller

board developed by Espressif systems. It is preferred by all embedded and IoT developers reason

of low cost, its cost is around $4. ESP32 achieves ultra-low power consumption which is a

benefit for mobile devices, wearable electronics and IoT applications. The official development

frame work for Internet of Things is Espressif IoT Development Framework (ESP-IDF). Another

frame work for arduino platform is Arduino-ESP32. There are different versions of ESP32

modules and boards released by Espressif. We use the ESP32-MiniKit board.

Objective of this project is to develop a ESP32 CAN driver. ESP32 is integrated with a CAN

peripheral that supports CAN2.0B specification. CAN FD is not supported by the ESP32 CAN

controller. The challenge in the project is that the official technical specification document of

ESP32 does not contain any details of the CAN peripheral. It does not specify the register map

and any features of the CAN peripheral. In forum discussion and other ESP32 sources it is stated

that the ESP32 CAN is NXP SJA1000 CAN controller compatible. From the discussion source

and unofficial ESP32 CAN driver by Thomas Barth [3] with comparison of arduino ESP32 SDK,

the register for ESP32 CAN peripheral are defined in similar way as other available peripheral

description in the technical document.

The basic of CAN protocol and specification of CAN network is detailed in the Chapter 1, CAN

Network. The structure of CAN frame and types are elaborated. In Chapter 2, ESP32 Overview

specifies the key features of ESP32 and configuration of ESP32 in arduino IDE. The register

mapping of the ESP32 CAN peripheral and the technical specification are detailed in Chapter 3,

ESP32 CAN Peripheral. The driver class and utilization of the driver methods are explained in

chapter 4, ESP32 CAN Driver. The driver operation and instantiation of the driver object are

documented. In chapter 5, the example codes tested with the driver and output of the ESP32

CAN performance are provided.

The ESP32 is integrated with MCP2515 and MCP2517 CAN controller. The ACAN2515

can be downloaded from https://github.com/pierremolinaro/acan2515 and ACAN2517 from

https://github.com/pierremolinaro/acan2517. These drivers are common for Arduino modules

and ESP32 (Look the driver documentation for ESP32 adaptability).

https://github.com/pierremolinaro/acan2515
https://github.com/pierremolinaro/acan2517


Chapter 1

CAN Network

1.1 History

In the earlier stage of Automobile industry, the communication system in the car seemed to be

chaotic. The electric world inside the car were not as stable as in the automation world, there

were many interfaces from the engine that disturbed the communication between the Electronic

Control Units (ECU). The data exchange between the ECU were implemented conventionally,

(i.e a physical communication channel was allocated to every signal to be transmitted that led

to huge increase of cables and consequently the weight of the car). In the early 80’s, a group

of people at Robert Bosch were the first to investigate the existing communication systems

regarding the possible use on passenger cars.

Finally, to overcome the dilemma of limited data exchange, in 1986, at the SAE congress

“Controlled Area Network" shortly CAN was introduced. In 1987, the first CAN controller chip,

the 82526 was presented by Intel and shortly after the Philips Semiconductor presented the

82C200. The first automobile to implement the CAN feature is Mercedes-Benz W140 in the

year 1992. Table 1.1 shows the history of CAN Network.

In 1993, the International Organization for Standardization (ISO) released the CAN standard

ISO 11898 which was later restructured into two parts; ISO 11898-1 which covers the data link

layer, and ISO 11898-2 which covers the CAN physical layer for high-speed CAN. ISO 11898-3

was released later and covers the CAN physical layer for low-speed, fault-tolerant CAN [4]. In

2012, Bosch released CAN FD 1.0 or CAN with Flexible Data-Rate. This specification uses

a different frame format that allows a different data length as well as optionally switching to

a faster bit rate. CAN FD is compatible with existing CAN 2.0 networks. Since 1994, several

higher-level protocols have been standardized on CAN, such as CANopen and DeviceNet. These

additional protocols were adopted by other industries, which are now standards for industrial

communications.
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Year Event

1983 Bosch started internal projects to develop vehicle network

1986 Official release of CAN protocol

1987 First CAN controller chips from Intel and Philips Semiconductors

1991 Bosch CAN specification 2.0 published

CAN-based higher-layer protocol introduced by Kvaser

1992 CAN in Automation (CiA) Group was established

CAN Application Layer (CAL) protocol published by CiA

First cars from Mercedes-Benz used CAN network

1993 ISO 11898 standard published

1994 1st international CAN Conference (iCC) organized by CiA

1995 ISO 11898 amendment (extended frame format) published

CiA 301 CANopen protocol was published by CiA

2000 Development of the time-triggered communication protocol for CAN (TTCAN)

2003 Separation of data link and high-speed physical layer (ISO 11898-1 and -2)

2004 Publication of ISO 11898-4 (TTCAN)

2006 Publication of ISO 11898-3 (low-power, low-speed physical layer)

2007 Publication of ISO 11898-5 (low-power, high-speed physical layer)

2011 Start of the CAN FD protocol development

2012 Bosch released CAN FD 1.0

2013 Publication of ISO 11898-6 (physical layer with selective wake-up function)

2015 Publication of the reviewed ISO 11898-1 (Classical CAN and CAN FD)
Table 1.1 CAN History [2]

1.2 CAN Architecture

1.2.1 What is CAN?

CAN (Controller Area Network) is a multiplexed serial communication channel through which

the data is transferred among distributed electronic module efficiently with a very high level

of security. CAN is extremely a robust communication protocol. The CAN standard defines

a communication network that establish a link to all the nodes that are connected in a bus to

communicate with one another. CAN protocol is message based and not address based i.e,

messages are not transmitted from one node to another node based on the address of a CAN

node, instead a CAN node will broadcast it’s message to all the nodes on the bus, and it is up to

the receiving node to determine whether it should act on that message. Single or multiple nodes
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may act on the same data. CAN allows distributed control across a network due to the reliability

of the data. CAN comprise of the following properties [5].

1. Prioritization of messages.

2. Multicast reception with time synchronization.

3. Multimaster.

4. Guarantee of latency times.

5. Configuration flexibility.

6. System wide data consistency.

7. Error detection and signalling.

8. Automatic re-transmission of error messages as soon as the bus is idle again.

1.2.2 CAN Network Layer

To achieve the design transparency, implementation and flexibility, CAN has been subdivided

into three layers; Object Layer, Transport Layer and Physical Layer. In terms of the Open

Systems Interconnection model (ISO/OSI), CAN specification; ISO 11898, deals with only

the Physical and Data Link Layers for a CAN network, shown in Figure 1.1. The object layer

and the transfer layer comprise all services and functions of the data link layer defined by the

ISO/OSI model [5].

Figure. 1.1 CAN Network Layer

The Logical Link Control (LLC) of Data Link layer defines the Object Layer that is concerned

with message filtering, status and message handling. The Transfer Layer represents the kernel of

the CAN protocol. The Medium Access Control (MAC) defines the transfer layer that accepts the
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message to be transmitted from object layer. The most important features of MAC are Message

Framing, Arbitration, Acknowledgement, Error Detection & Signaling, and a management entity

called Fault Confinement. The Physical Layer defines how signals are actually transmitted,

within this specification the physical layer is not defined so as to allow transmission medium

and signal level implementations to be optimized for the application.

1.2.3 CAN Node

The device that needs to establish a communication link are considered to be nodes. These nodes

are the Microcontroller (MCU) integrated with the CAN controller, this controller provides two

single ended pins (digital signals) to communicate (CAN-TX, CAN-RX). The CAN specification

does not allow communication of digital signals, instead uses a differential signal (CAN-High,

CAN-Low). The digital signals are short range signals, therefore the differential signals are used

that gives more immunity to the noise and data can be transmitted more reliably. The MCU does

not produce the differential signal and a CAN transceiver is introduced to convert the digital

signals to differential signals. The Figure 1.2 shows the CAN Node with the digital signal

(CAN-TX, CAN-RX) from CAN Controller and differential signal (CAN-H, CAN-L) from the CAN

Transceiver.

Figure. 1.2 CAN Node

1.2.4 CAN Bus

The physical layer of the CAN bus consists of a two-wire twisted pair connecting all transmitters

and receivers, CAN-Low (low-speed CAN) and CAN-High (high speed CAN). Both lines are

terminated by a termination resistance (Rt) of 120Ω to prevent transient phenomena such as

reflection [5]. To configure the Node to the CAN bus, connect the CAN-H terminal of the node to
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CAN-High bus line and CAN-L terminal of the node to CAN-Low bus line. Figure 1.3 shows the

pattern of connection between the node to the Bus line. CAN uses broadcast type of bus which

allows all the nodes connected in the bus to hear the transmission. There is no possibility to send

data specifically to a node with the address. All nodes will pickup the traffic on the bus. The

length of the bus wires is of significance and affects the quality of data transmission. According

the ISO 11898 standard, it is recommended that the length of the bus not exceed 40 m.

Figure. 1.3 CAN BUS

1.2.5 CAN Signals

Differential signals are used in CAN communication. The CAN transceiver produces differential

signals CAN High (CAN-H) and CAN Low (CAN-L) and these signals are complementary signals.

CAN-L is actual complimentary signal of CAN-H. To send logic 1, the CAN bus state will be

recessive (potential difference between CAN-H and CAN-L is 0 volt) and for logic 0, the

state will be dominant (potential difference between CAN-H and CAN-L is around 2 volt) shown

inFigure 1.4. The dominant state always overrides the recessive state during the data transfer.

Figure. 1.4 CAN Signal
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1.2.6 CAN Types

CAN bus can be categorized into three types based on the identifiers.

• CAN 2.0A - 11-bit message Identifier (Standard CAN).

• CAN 2.0B - 11-bit (Standard CAN) and 29-bit message Identifier (Extended CAN).

• CAN FD - Flexible Data Rate.

The standard 11-bit identifier field provides for 211 (2048), which is 0 to 2047 unique message

identifiers. Where as the extended 29-bit identifier provides for 229, 536870912 unique identifiers.

While CAN 2.0x has the capacity to hold 8 bytes of data within the CAN-frame, CAN FD can

hold up to 64 bytes. CAN FD is not centred in this project as ESP-32 contains only CAN 2.0x

specifications.

The message frame format of CAN 2.0A is shown in Figure 1.5 for CAN 2.0B Standard Frame

Format in Figure 1.6, and Extended Frame Format in Figure 1.7. The difference between a

CAN 2.0A and a CAN 2.0B message is that CAN 2.0B supports both 11 bit (standard) and

29 bit (extended) identifiers. Standard and Extended frames may exist on the same bus with

numerically equivalent identifiers. In that case, the standard frame prevails.

The message frame is marked with dominant (logic 0) and recessive (logic 1). The

default condition of each field differentiating the Standard and Extended message frame are

given in the Figure 1.8.

The description of the bit fields of Message frame are:

• Start of Frame (SOF) : This bit indicates the start of a message, and is used to synchronize

the nodes on a bus after being idle. It is preceded by at least 11 recessive bits.

• Identifier (ID) : Logical address and priority of the message. With lower binary value,

higher its priority (0 - highest priority). The Standard CAN Frame has 11-bit identifier

and Extended Frame has 29-bit identifier (11-bit base ID and 18-bit extension ID)

• Remote Transmission Request (RTR) : The RTR Bit is used by the receiver to request

a remote transmitter to send its information. If the bit is set to recessive, the frame

contains no data field. In that case all the connected nodes can check whether there is a

corresponding transmitter defined or not. The request and the possible answer are two

completely different frames on the bus. The answer can be delayed due to messages with

higher priorities.

• Substitute Remote Request (SRR) : The bit replaces the RTR bit in the standard message

location as a placeholder in the extended format.

• Identifier Extension (IDE) : This bit used to mark the message as standard or extended. A

dominant bit means that a standard CAN identifier with no extension is being transmitted.
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• Reserved bit (r0,r1) : The reserved bit is for future use. The development of CAN FD

utilizes the reserved bit for identification of FD format in the base and extended format.

The reserved bit are marked as dominant.

• Data Length Code (DLC) : This bit contains the number of bytes of data being transmitted.

• Data : 0 to 64 bits (0 to 8 bytes); contains up to 64 bits of application data to be

transmitted.

• Cyclic Redundancy Check (CRC) : Contains the checksum (number of bits transmitted)

of the preceding application data for error detection. It can be used only for error detection

and not for error correction. The hamming distance of this CRC code is 6. With this it

is possible to detect up to 6 single bit errors which are scattered about the message or so

called burst errors up to a length of 15 bits.

• Acknowledge Field (ACK) : Every node receiving an accurate message overwrites this

recessive bit in the original message with a dominant bit, indicating an error-free message

has been sent. If a receiving node detects an error and leaves this bit recessive, it discards

the message and re-transmits after re-arbitration. In this way, each node acknowledges the

integrity of its data.

• End of Frame (EOF) : The EOF is marked by coding violation. The bit-stuffing rule of

the coding technique is violated. When 5 bits of the same logic level occur in succession

during normal operation, a bit of the opposite logic level is stuffed into the data. This

bit-stuffing is indicated by a dominant bit. This field indicates the end of a CAN frame

and disables bit-stuffing.

Figure. 1.5 CAN 2.0A Standard CAN

Figure. 1.6 CAN 2.0B Standard CAN
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Figure. 1.7 CAN 2.0B Extended CAN

Figure. 1.8 CAN Message Frame

1.2.7 CAN Message

There are four different types of frames that are used for communication over CAN bus.

• Data Frame (Standard and Extended) – send data

• Remote Frame (Standard and Extended) – request data

• Error Frame (Passive and Active) – report error

• Overload Frame – request a delay between two data or remote frames.

Data and Remote Frame

The Data Frame are of two formats Standard and Extended. The difference is the Arbitration

field; Standard Frame 11-bit and Extended Frame 29-bit.
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The frame format for both the frame type is same with the RTR bit as Dominant bit 0. Both

the frame can co-exists on the same CAN bus. The standard frame will win the arbitration over

the extended frame.

Remote frame is similar to data frame with no data payload. It is denoted by the RTR bit as

Recessive bit 1. It is used when one node needs to request data from another node.

Error Frame

When a CAN node detects an error with the data or remote frame, it will immediately abort the

transmission and broadcast the error frame. Error Frame is a special message that violates the

formatting rules of a CAN message. The transmitting node will know that the message sent was

not received properly by all nodes, and will automatically attempt a re-transmission at the next

available idle time on the bus [6].

The Error Frame consists of 2 fields, an Error Flag field followed by an Error Delimiter

field. The error flag made up of 6 dominant bits and an error flag delimiter made up of 8 recessive

bits, which allows the bus nodes to restart bus communications after an error. Depending on the

error count of the node, the error flag are of two mode active and passive.

Figure. 1.9 Error Frame

• Error Active : Either in transmit or receive buffer of a node the count is (0≤ count ≤ 128).

It states that, at least one error has been detected, even when the node is fully functional.

The Error Flag field consists of between 6 and 12 consecutive dominant bits (generated

by one or more nodes). The Error Delimiter field completes the Error Frame. After

completion of the Error Frame bus activity returns to normal and the interrupted node

attempts to resend the aborted message.

• Error Passive : The error count (128 ≤ 255) is considered as error passive. The passive

Error Flag consists of 6 consecutive recessive bits, and therefore the Error Frame consists

of 14 recessive bits.
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Receive errors increments the error count by 1; transmit errors increments the count by 8.

Subsequently, error-free messages decrements the error count by 1. If the error count returns to

zero, a node will return to normal operating mode.

1.3 Bit Timing Requirements

The performance of CAN Network depends on the CAN bit timing. One advantage of CAN

protocol is that, the bit rate, sampling point of the bit, number of samples taken in a bit period

can be programmed by the user to optimize the performance of CAN network for a particular

application. Bit timing parameters, the reference oscillator tolerance, signal propagation delay

are the key features to be considered during the optimization process. Apparently, the larger

allowable oscillator tolerance and a long bus length are conflicting goals, that can be met through

optimization of bit timing parameters.

The Bit construction of ESP32 CAN; Synchronisation Segment, Propagation Segment, Phase

Segment 1, Phase Segment 2 are the non-overlapping CAN Bit Timing Segments, Figure 1.10.

Figure. 1.10 CAN Bit Timing Segments by ISO-11898

1.3.1 Calculation of Bit Timing Parameters

This section details the general procedure for calculation of Bit Timing parameters [7], [8]. The

bit timing calculation and register description are different for each CAN Network technologies,

we focus on NXP technologies as the ESP32 CAN resembles the features of NXP SJA1000 [9].

Basically the CAN bit period can be subdivided into four time segments Figure 1.10. Each time

segment consists of a number of Time Quanta (TQ).

The Calculation requires at least three input parameters.

1. Desired Bit Rate, is uniform across the entire bus.

2. CAN Module Clock Frequency, is used to derive the bit-stream sampling clock.
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3. Estimation of Propagation Delay between the most distant nodes on the bus.

And the Bit timing calculator must provide at least five outputs.

1. Baud Rate Prescaler(BRP), determines the sampling clock period.

2. Propagation Delay, expressed as a number of time quanta.

3. Phase Segment 1, in time quanta.

4. Phase Segment 2, in time quanta.

5. Synchronization Jump Width(SJW), in time quanta.

Calculation of Bit Timing Parameters [10]

The following example provides the steps for determining the optimum bit timing calculation

with the details of the input parameters. The PIC microcontroller is considered for this example.

Bit Rate 1 Mbit/s

Bus Length 20m

Bus propagation delay 5 ns/m

Transceiver loop delay

(MCP2562)
125ns

oscillator frequency 8MHz

Step 1: Determine minimum permissible time for the PROP_SEG segment.

tPROP_SEG = 2(tBus + tTx + tRx)

Physical bus delay tBus = Bus length × Bus propagation delay.

tBus = 20×5×10−9 = 100ns

tTx + tRx = Transceiver loop delay = 125ns

tPROP_SEG = 2(100ns+125ns) = 450ns.

Step 2: Choose CAN System Clock Frequency.

The period of the CAN system clock is equal to the duration of Time Quanta (tq), which

is derived from the MCU system clock (fclk) or oscillator by way of a programmable

prescaler, called the Baud Rate Prescaler (BRP).

fclk = 8 MHz BRP = 1 (note. is chosen).

BRP of value 1 gives CAN system clock = 8 MHz.

tq = BRP/fclk = 125ns

Nominal Bit Time (NBT) = 1000/125 = 8TQ
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Step 3: Calculate PROP_SEG duration.

PROP_SEG= ROUND_UP
(

tPROP_SEG
tq

)

PROP_SEG = ROUND_UP(500ns/125ns) = 4TQ

Step 4: Determine PHASE_SEG1, PHASE_SEG2.

From NBT subtract the PROP_SEG and SYNC_SEG = 1TQ (default).

value = 8− (4+1) = 3

• value < 3 : select higher CAN system clock frequency from Step 2.

• value > 3 and odd number : add 1 to PROP_SEG and recalculate.

• value > and even number : divide by 2 and assign the values to PHASE_SEG1 and

PHASE_SEG2.

• value = 3 : PHASE_SEG1 = 1 and PHASE_SEG2 = 2 and only one sample per bit may

be chosen.

value = 3; So the PHASE_SEG1 = 1 PHASE_SEG2 = 2

Step 5: Determine Synchronization Jump Width (SJW)

SJW is chosen as the smaller of 4 and PHASE_SEG1

(4 ≥ SJW ≥ 1)

this case; SJW = 1

BRP 1

NBT 8

SYN_SEG 1

PROP_SEG 1

PHASE_SEG1 3

PHASE_SEG2 2

SJW 1

1.4 Synchronization

All nodes on the CAN bus must have the same nominal bit rate. Noise, phase shifts, and

oscillator drift create situations where the nominal bit rate does not equal the actual bit rate in a

real system. The receivers must synchronize to the transmitted data stream to ensure messages

are properly decoded. This is achieved by the receivers synchronization on recessive to dominant

edges.

There are two methods; Hard Synchronization and Re-synchronization, used for achieving and

maintaining synchronization. A Hard Synchronization is done once at the start of a frame;
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inside a frame only Re-synchronizations occur at recessive to dominant (1-to-0) edges and

adjust the bit clock as necessary. After a hard synchronization, the bit is restarted with the edge

of SYNC_SEG, regardless of the edge phase error. Thus it forces the edge which has caused

the hard synchronization to lie within the synchronization segment of the restarted bit time.

Re-synchronization leads to a shortening or lengthening of the bit time such that the position of

the sample point is shifted with regard to the edge.

Synchronization Rules [11]:

1. Only recessive-to-dominant edges will be used for synchronization.

2. Only one synchronization within one bit time is allowed.

3. An edge will be used for synchronization only if the value at the previous sample point

differs from the bus value immediately after the edge.

4. A transmitting node will not re-synchronize on a positive and negative phase error. This

implies that a transmitter will not re-synchronize due to propagation delays of it’s own

transmitted message. The receivers will synchronize normally.

5. If the absolute magnitude of the phase error is greater than the SJW, then the appropriate

phase segment will be adjusted by an amount equal to the SJW.

1.5 CAN Operation

The transmission and reception of message are are handled by the protocol engine in the CAN

module. The CAN module must be in the configuration mode before starting the communication

in the CAN network. The below section shows the protocol engine of the ESP32 CAN Node for

transmitting and receiving.

1.5.1 CAN Node Transmitting

The CAN module should be initialized with the bit rate settings and all the nodes in the bus must

be set with the same bit rate.

After all the configuration and initialization of the CAN module; is set to normal mode. The

driver writes the message ID, data length code, data bit into the TXB registers and set the

Transmission request bit. The TXB is locked.

At this point the CAN module protocol engine performs the following action on the message.

The message is assembled and stuff bits are added where ever necessary. It sense the CAN bus

for the idle time. At this time the module will start transmitting the message while checking

for error frames. The CAN Transceiver will translate the digital signal from the microcontroller

to bus signals on to the bus.
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If the CAN message is successfully sent onto the CAN bus, the TXB will be unlocked for the

next message.

Figure. 1.11 CAN Node Transmission Figure. 1.12 CAN Node Receiving

1.5.2 CAN Node Receiving

When a CAN node transmit a message on the CAN bus, another node on the CAN bus sense the

message starting with SOF.

The CAN transceiver will translate the bus signal into digital signal and pass it to the CAN

controller. The protocol engine will perform the de-stuffing operation on the stuffed bits and

check for the message errors while loading the message into the Message Assemble Buffer.

If there are no errors; the entire message is loaded in the MAB and the CAN module will check

the received message against the Mask and Filter settings. If the message ID matches

the Acceptance filter settings, then the message will be transferred to the RX buffer and the

driver will be notified. If the message fails the acceptance filter match, the controller will not be

notified. Therefore the Acceptance filter must be set carefully. The message in the RX buffer

are removed and processed for the corresponding application.



Chapter 2

ESP32 Overview

2.1 About ESP32

The ESP32 is a low-cost, low-power system-on-chip (SoC) microcontroller series created and

developed by Espressif Systems, a Shanghai-based Chinese company, and is manufactured by

TSMC ultra-low-power 40 nm technology [12]. Since the end of 2016, the ESP32 has become

an improvement to the ESP8266. ESP32 has both Wi-Fi and Bluetooth capabilities, which

makes it an all-rounded chip for the development of IoT projects and embedded systems in

general. The ESP32 series employs a Tensilica Xtensa LX6 microprocessor in both dual-core

and single-core 32-bit microprocessor. ESP32 counts about 19 peripherals beside the WiFi and

Bluetooth. The objective of this project is to develop a library for CAN Peripheral. The difficulty

is that there are no specification of CAN registers in the ESP32 technical documentation (which

is still underdevelopment) [13].

2.2 ESP32 Specification

ESP32 is a highly-integrated solution for Wi-Fi and Bluetooth IoT applications, with around

20 external components. ESP32 achieves ultra-low power consumption, it features all the

state-of-the-art characteristics of low-power chips, including fine-grained clock gating, multiple

power modes, and dynamic power scaling. ESP32 comprise of in-built antenna switches, RF

balun, power amplifier, low-noise receive amplifier, filters and power management modules

[1]. ESP32 can perform as a complete standalone system or as a slave device to a host MCU,

reducing communication stack overhead on the main application processor. ESP32 can interface

with other systems to provide Wi-Fi and Bluetooth functionality through its SPI / SDIO or I2C /

UART / CAN interfaces. ESP32 is capable of functioning reliably in industrial environments,

with an operating temperature ranging from –40◦C to +125◦C.



2.2 ESP32 Specification 17

ESP32 is integrated on different modules, in this project the MH-ET LIVE Minikit is operated

by ESP32-WROOM-32 module. The module is based on ESP32-D0WDQ6 chip (D - dual core

processor; 0 - no embedded flash; WD - WiFi b/g/n + BT/BLE dual mode; Q6 - QNF 6×6),

Figure 2.1.

Figure. 2.1 ESP32-D0WDQ6 Pin Layout [1]

2.2.1 Key Features

Rather than using the ESP32 SoC directly, ESP32 boards use an ESP32 module (ESP32-

WROOM-32) from Espressif which integrates additionally to the SoC some key components,

like SPI flash memory, PSRAM, or crystal oscillator, some of these components are optional.

The important features of ESP32 are listed in the Table 2.1.

Figure. 2.2 ESP32-Function Block Diagram [1]
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Category Specification

MCU Dual Core

• CPU: Xtensa dual-core (or single-core) 32-bit LX6 microprocessor.

• Ultra low power (ULP) co-processor.

Memory • RAM - 520 KiB SRAM, 16 kByte RTC SRAM

• ROM – 520 kByte

• FLASH – 512 kByte/16 Mbyte

Frequency 240 MHz, 160 MHz, 80 MHz

Wi-Fi 802.11 b/g/n - 2.4 GHz up to 150 Mbit/s

Bluetooth v4.2 BR/EDR and BLE(Bluetooth Low Energy)

Peripheral • 34 – GPIO (6 only inputs)

• 2 x SAR-ADC with up to 18 x 12 bit channels

• 2 x DAC with 8 bit

• 4 x SPI (Serial Peripheral Interface)

• 2 x I2C Interface

• 2 x I2S Interface

• 3 x UART

• Ethernet MAC Interface

• SD/SDIO/MMC host controller

• SDIO/SPI Slave Controller

• CAN bus 2.0
Table 2.1 ESP32-Specification

2.3 MH-ET LIVE ESP32 MiniKit

MH-ET LIVE MiniKit is based on ESP32-WROOM-32. The chip embedded is designed to be

scalable and adaptive. The two CPU cores can be controlled individually, and the CPU clock

frequency is adjustable from 80 MHz to 240 MHz. By default the module has 4MB flash, 40

MHz Integrated crystal oscillator, on-chip hall sensor. The operating current is of average 80mA

[14].

The Figure 2.3 shows the pinout of MH-ET LIVE MiniKit for ESP32 board as defined by

the default board configuration compatible to the miniKit development board. The default

configuration cannot be used or it may not available, when the optional hardware are used (ADC

and DAC GPIOs are mandatory, SPI/UART/I2C/CAN.. are optional). GPIO (1, 3, 6, 7,

8, 11) cannot be used, GPIO (12, 13, 14, 15, 16, 17, 26, 27, 32, 33) can be used

always and other GPIOs can be used only when they are free [15].



2.4 Programming Environment 19

Figure. 2.3 MH-ET LIVE ESP32-MiniKit

2.4 Programming Environment

The ESP32 can be programmed in different programming environments.

1. Arduino IDE.

2. Espressif IDF (IoT Development Framework).

3. Micropython.

4. JavaScript.

In this project Arduino IDE is used to program the controller.

2.4.1 Installing the ESP32 Board in Arduino IDE

The arduino-esp32 git hub repository can be cloned by following the procedure in, https:

//github.com/espressif/arduino-esp32/blob/master/docs/arduino-ide/windows.md. The following

steps shows the direct clone of ESP32 hardware source on Arduino IDE [16].

Step 1: Install latest version of Arduino IDE (open source IDE) from www.arduino.cc/en/Main/

Software.

Step 2: Open the Preference window from the Arduino IDE. Go to File − > Preferences or

(Ctrl + comma).

Step 3: Enter https://dl.espressif.com/dl/package_esp32_index.json into the Additional

Board Manager URLs field and click OK.

(Additional URLs can be separated with a comma)

https://github.com/espressif/arduino-esp32/blob/master/docs/arduino-ide/windows.md
https://github.com/espressif/arduino-esp32/blob/master/docs/arduino-ide/windows.md
www.arduino.cc/en/Main/Software
www.arduino.cc/en/Main/Software
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Step 4: Open boards manager. Go to Tools −> Board −> Boards Manager. . . .

Step 5: Search for ESP32 and click install button for the “ESP32 by Espressif Systems“.

After the installation of ESP32 hardware on the Arduino IDE, the hardware files will be available

in the path C:\Users\xxx \Documents\Arduino\hardware\espressif\esp32.
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2.5 ESP32 CAN Setup

ESP32 has built-in CAN bus peripherals Figure 2.2. The ESP32 CAN controller supports

Standard Frame Format (11-bit ID) and Extended Frame Format (29-bit ID) of the CAN2.0B

specification, and are not compatible with CAN FD frames (will interpret such frames as errors).

As discussed in Section 1.2.3 on Page 5, a CAN Node is operated by the controller and transceiver.

ESP32 CAN controller provides only the data link layer and physical layer signaling sub-layer.

ESP32 does not contain an internal transceiver. Therefore, depending on the physical layer

requirements, an external transceiver module is required which converts the CAN-RX and

CAN-TX signals of the ESP32 into CAN-High and CAN-Low bus signals. There are many

transceiver available and are selected depending on the ISO 11898-2 Physical layer compatibility.

We make use of the MCP2562 High speed CAN Transceiver [17] for the operation of CAN

network.

Figure. 2.4 ESP32 CAN Node

The ESP32 internal CAN Controller consists of 4 signal lines.

1. TX and RX signal lines are interfaced with the MCP2562 CAN transceiver TXD and

RXD pins. These signal line interprets the recessive bit (3.3v) and dominant bit (0v).

The connection should be made careful, as the change in logic level of TX line can be

observed on the RX line. Failing the connection causes loss in arbitration or bit error.

2. BUS-OFF signal line is optional and is set to a low logic level (0V) whenever the CAN

controller reaches a bus-off state. The BUS-OFF signal line is set to a high logic level

(3.3V) otherwise.

3. CLKOUT signal line is optional and outputs a prescaled version of the CAN controller

source clock APB Clock.
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2.6 ESP32 MiniKit Development Board

Figure. 2.5 ESP32 MiniKit Developement Board

The development board contains a ESP32 MiniKit MCU. Other components integrated on the

board are;

• CAN Controllers:

– MCP2515 [18]

– MCP2517 [19]

• CAN Transceiver [17]; the transceiver is common for all the CAN controllers in the

board.



Chapter 3

ESP32 CAN Peripheral

3.1 ESP32 CAN Peripheral Registers

The ESP32 Technical Reference Manual [13] does not contain any detail about the CAN

peripheral registers. It is found in the esperssif forum [20] that ESP32 integrates a CAN

controller which is compatible with the NXP SJA1000 CAN controller [21].

The CAN Registers are found with the comparison of available ESP32 SDK (developed by

espressif) [22], SJA1000 CAN Controller registers, and only one existing unofficial CAN library

developed by Thomas Barth [3].

Figure. 3.1 ESP32 CAN Controller Register Map
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The base register for the CAN peripheral is 0x3FF6B000 [20]. The ESP32 can only access

peripheral registers every 32bits, but the registers are 8bits, so each CAN register is mapped to

the least significant byte of every 32bits. Figure 3.1 details the ESP32 CAN Controller registers.

ESP32 CAN peripheral registers are similar to SJA1000, but some registers and register bits of

SJA1000 are not supported on ESP32. The output control register (OCR) that allows to set-up

different output driver configuration; Test Register; Receive buffer start address registers are not

supported by ESP32 CAN controller. The Sleep mode bit of the mode register is not supported

by ESP32. The Wake-Up interrupt bit of the Interrupt register is not supported as the sleep mode

is not configurable in the ESP32 CAN controller.

3.1.1 Mode Register (CAN_MODE)

The behaviour of the CAN Controller are changed by the bits of the Mode Register. The reserved

bits are read as logic 0.

Figure. 3.2 Mode Register

CAN supports four modes of operation.

1. Reset Mode.

2. Normal Mode.

3. LoopBack Mode.

4. Listen Only Mode.

The Three modes can be configured by setting the bit field of Mode Register Figure 3.2.

1. CAN_MODE_RESET : bit [0]; The bit is set to logic 1 to enter reset mode. It is obligatory

to enter reset mode to attain write access to the configuration registers. By default CAN

module enters reset mode during bus-off or hardware reset to prevent the bus activity.

When the CAN_MODE_RESET bit is set to logic 0, the controller will enter the operating

mode and wait for the bus states:

• One occurrence of the bus-free signal i.e., 11 recessive bits in CAN frame.

• 128 Occurrences of bus free. If the previous reset has been made by controller

initiated bus-off, before re-entering the bus-on mode.
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2. CAN_MODE_LISTENONLY : bit [1]; In this mode the CAN controller does not acknowledge

the can bus even if the message are received successfully. By setting this bit to logic 1

the controller enters Listen Only mode. The special ability of this bit is that it freezes

the error counters. This mode of operation also force the CAN controller to be Error

Passive (See Section 1.2.7). During the bus-off state the Receive Error Counter is

likely to increase, therefore by setting the controller to Listen Only mode prevent the

controller from bus-activities; transmission of messages/acknowledgement/error frames

are disabled. Bus-monitoring is effective on this mode of operation.

3. CAN_MODE_SELFTEST : bit [2]; Self-Test Mode or LoopBack Mode performs a success-

ful transmission, even without the acknowledgement. This test is performed on the active

node by setting the CAN_CMD_SELF_RX_REQ bit. The working condition of the CAN

controller can be verified by this test.

4. CAN_MODE_ACCFILTER : bit [3]; The Acceptance Filter can be operated in two modes.

• Dual Filter Mode.

• Single Filter Mode.

By setting the CAN_MODE_ACCFILTER to logic 1 the controller is enabled to operate in

Single Acceptance Filter Mode, else default logic 0, operate in Dual Filter Mode.

NOTE

(a) CAN_MODE address in memory : 0x3FF6B000.

(b) The write access to the mode register bits; ListenOnly, SelfTest, Acceptance-

Filter are possible only by entering Reset Mode previously.

(c) Register value after hardware reset is 0x21.

(d) Normal Mode can be entered by clearing all the CAN_MODE register bit; necessary

acceptance filter mode can be set.

3.1.2 Command Register (CAN_CMD)

The Command Register initiates the action within the transfer layer of the Controller. Internal

clock cycle is mandatory between the two command settings.

Figure. 3.3 Command Register
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1. CAN_CMD_TX_REQ : bit [0]; The message can be transmitted by normally setting this bit.

To cancel the transmission, CAN_CMD_ABORT_TX bit is set; reset of CAN_CMD_TX_REQ bit

dose not cancel the transmission. The CAN_CMD_TX_REQ bit is cleared automatically either

at the moment the CAN_STATUS_TX bit is set; signifying successful transmission of a

message is in progress, or when the whole message has been read from the Transmit

Buffer register.

Single Shot Transmission is possible by setting the CAN_CMD_TX_REQ bit and

CAN_CMD_ABORT_TX bit simultaneously. This command performs transmission without

re-transmission in the event of arbitration lost or error capture.

2. CAN_CMD_ABORT_TX : bit [1]; This bit is set to suspend the previously requested transmis-

sion and to transmit a higher priority message.

3. CAN_CMD_RELEASE_RXB : bit [2]; This set to logic 1, after reading the the message from

RX FIFO enabling the space for the next available message.

4. CAN_CMD_CLEAR_DATAOVERRUN : bit [3]; The CAN_STATUS_DATAOVERRUN bit is cleared

by setting this bit. No further CAN_INTERRUPT_DATAOVERRUN is generated until the

CAN_STATUS_DATAOVERRUN bit is set.

5. CAN_CMD_SELF_RX_REQ : bit [4]; This bit is set to transmit and receive message simulta-

neously. The bit is set during the Self-Test Mode.

NOTE

(a) CAN_CMD register address in memory - 0x3FF6B004.

(b) CAN_CMD is write only register. Reading the register value returns - 0xFF.

(c) Setting CAN_CMD_SELF_RX_REQ bit and CAN_CMD_TX_REQ bit simultaneously will

ignore the set CAN_CMD_TX_REQ.

(d) During Self-Test Mode write the CAN_CMD with CAN_CMD_SELF_RX_REQ bit and

write CAN_CMD_TX_REQ bit in Normal Mode.

(e) Combination of CAN_CMD register.

• Single-Shot Transmission - by setting CAN_CMD_TX_REQ bit and

CAN_CMD_ABORT_TX bit.

• Single-Shot Transmission and Reception - by setting

CAN_CMD_SELF_RX_REQ bit and CAN_CMD_ABORT_TX bit.

3.1.3 Status Register (CAN_STATUS)

The Status of the CAN Controller is reflected by the content of the Status Register.

1. CAN_STATUS_RXB : bit [0]; This bit reflects the state of Receive buffer; full or empty.

When the bit is logic 1 full; one or more complete messages are available in the RX

FIFO.
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Figure. 3.4 Status Register

2. CAN_STATUS_DATAOVERRUN : bit [1]; The RX FIFO stores messages that passes success-

fully through acceptance filter. If the memory is full, the message will be dropped and

indicated by this bit. The bit is cleared by setting the CAN_CMD_CLEAR_DATAOVERRUN.

3. CAN_STATUS_TXB : bit [2]; The Transmit Buffer register status is either released

(logic 1) or locked (logic 0) which is indicated by this bit. When the status is

released the message are written into the Transmit Buffer. When locked it indi-

cates that there is either a message waiting for transmission or in the process of being

transmitted.

4. CAN_STATUS_TX_COMPLETE : bit [3]; The status indicates the successful completion of

the last transmission. This should be done after the CAN_STATUS_TXB bit has been set

to logic 1 or a Transmit Interrupt has been generated. The bit resets automatically

whenever Transmission Request bit or Self Reception Request bit is set.

5. CAN_STATUS_RX : bit [4]; This bit indicates that the controller is receiving a message.

6. CAN_STATUS_TX : bit [5]; This bit indicates that the controller is transmitting a message.

7. CAN_STATUS_ERROR : bit [6]; When any of the error counters exceeds the warning limit is

reflected by this bit.

8. CAN_STATUS_BUS : bit [7]; bus-off; bus-on; The bus activities either on or off are indi-

cated by this bit. When Transmission Error Counter > 255 the bit is set to logic

1; bus-off and simultaneously, the CAN_MODE_RESET bit is set and an CAN_INTERRUPT_

ERR_WARNING is generated. In reset mode the Transmit Error Counter is set to 127

and the Receive Error Counter is cleared. The controller remains in the same state

until the reset mode is cleared. The controller then waits for 128 occurrences of the

bus-free signal counting down the Transmit Error Counter. The Error Counter bits

are also cleared when CAN_STATUS_BUS bit is cleared.

NOTE

(a) The CAN_STATUS register memory address - 0x3FF6B008

(b) The Status register is Read-Only memory.

(c) Register value after reset - 0x0C.
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(d) The Receive buffer status is cleared after reading the message in RX FIFO and

setting the CAN_CMD_RELEASE_RXB bit.

(e) Trying to write message to the Transmit Buffer when locked, the message will not

be accepted and lost without any indication.

(f) If bit the CAN_STATUS_TX and CAN_STATUS_RX are logic 0 the bus state is idle.

On a hardware reset, 11 consecutive recessive bit has to be detected to reach the

idle state.

3.1.4 Interrupt Register (CAN_INTERRUPT)

The Interrupt register allows the identification of an Interrupt source. When one or more bits of

the Interrupt register are set, an output interrupt will be indicated.

Figure. 3.5 Interrupt Register

1. CAN_INTERRUPT_RECEIVE : bit [0]; This bit is set when a message is present in RX FIFO

and reset when RX FIFO is empty. If there is another message available within the RX

FIFO after the CAN_CMD_RELEASE_RXB bit is set, the CAN_INTERRUPT_RECEIVE bit is set

again. Otherwise it remains cleared.

2. CAN_INTERRUPT_TRANSMIT : bit [1]; Whenever the Transmit Buffer status changes from

0 locked to 1 release; (edge controlled) the CAN_INTERRUPT_TRANSMIT bit is set.

3. CAN_INTERRUPT_ERR_WARNING : bit[2]; The change (set and reset) in CAN_STATUS_ERROR

and CAN_STATUS_BUS bit are reflected in this bit.

4. CAN_INTERRUPT_DATAOVERRUN : bit [3]; The bit is set when CAN_STATUS_DATAOVERRUN

bit is active.

5. CAN_INTERRUPT_ERR_PASSIVE : bit [5]; This bit is set when Error Counter > 127 (Error

Passive) or change from Error Passive to Error Active. (See Section 1.2.7)

6. CAN_INTERRUPT_ARB_LOST : bit [6]; set, when the controller arbitration is lost and

becomes a receiver. Bit position where arbitration has been lost is located within CAN_ALC

register.
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7. CAN_INTERRUPT_BUS_ERR : bit [7]; set, when a bus error occurs (bit, stuff, crc, ack or

form error).

NOTE

(a) CAN_INTERRUPT register memory address - 0x3FF6B00C.

(b) Register value after reset - 0xE0.

(c) Except for the CAN_INTERRUPT_RECEIVE bit, all bits are cleared after reading.

(d) CAN_INTERRUPT_RECEIVE bit is cleared temporarily when

CAN_CMD_RELEASE_RXB bit is present.

(e) The transmit interrupt is generated even if the message was aborted because the

CAN_STATUS_TXB bit changes to released.

(f) A new Bus error interrupt is not possible until the Error Code Capture register

is read out once.

3.1.5 Interrupt Enable Register (CAN_IER)

The Interrupt Register are set by enabling the corresponding Interrupt Enable register bits. The

register is read and write memory.

Figure. 3.6 Interrupt Enable Register

3.1.6 Arbitration Lost Capture Register (CAN_ALC)

The bit position of the lost arbitration is reflected by the CAN_ALC register. On arbitration lost,

the corresponding arbitration lost interrupt is enabled.

Figure. 3.7 Arbitration Lost Capture Register
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3.1.7 Error Code Capture Register (CAN_ECC)

The type and location of bus error occurred during transmission and reception are indicated on

this register. This register memory is read only.

Figure. 3.8 Error Code Capture Register

1. CAN_ECC_SEGMENT : bit [4 - 0]; the bit settings reflect the error on the corresponding

segment of the current message frame.

2. CAN_ECC_DIRECTION : bit [5]; The bit tokens the error either during transmission; logic

0 or reception; logic 1.

3. CAN_ECC_ERR_CODE : bit [7 - 6]; The type of error on the bus is indicated by this bit. 0 -

bit error, 1 - form error, 2 - stuff error and 3 - other type of error.

NOTE

(a) The Error Code Capture register does not indicate a error until the previous

error content in the register is read.

(b) Bus error interrupt is not possible until the Error Code Capture register is cleared

by reading.

3.1.8 Error Warning Limit Register (CAN_EWLR)

The Error Warning Limit can be defined within this register. The default value of the register is

96. The register memory is read/write only in reset mode.

Figure. 3.9 Error Warning Limit Register

CAN_EWLR : bit [7 - 0]; value that determines the Error Warning Limit. When one of the Error

Counters reaches the Error Warning Limit and the CAN_IER_ERR_WARNING bit of Interrupt

Enable register is set, the CAN_INTERRUPT_ERR_WARNING will be generated. The content of the

Error Warning Limit register can only be changed in Reset mode. A change in the error state
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and the corresponding Error Warning Interrupt that is generated, will occur only in operating

mode.

3.1.9 Receive Error Counter Register (CAN_RXERR)

The Receive Error count is indicated on the Receive Error Counter. The register memory is

read/write only in Reset mode. Maximum value of the counter is 0x7F.

Figure. 3.10 Receive Error Counter Register

CAN_RXERR : bit [7 - 0]; value that determines the output of the Receive Error Counter.

A change in the error state and the corresponding Error Warning Interrupt or Error Passive

Interrupt forced by the new register content, will not occur until the mode changed from Reset

to operating.

3.1.10 Transmit Error Counter Register (CAN_TXERR)

The Transmit Error Counter register indicates the Transmission Error Count. The register

memory is read only in operation mode.

Figure. 3.11 Transmit Error Counter Register

CAN_TXERR : bit [7 - 0]; value that determines the output of the Transmit Error Counter. If a

Bus-Off event occurs, the Transmit Error Counter is initialized to 127 to count the minimum

protocol-defined time (128 occurrences of the bus-free signal). Reading the counter during this

time gives information about the status of the Bus-Off recovery.

The content of the Transmit Error Counter can only be changed in Reset mode. A change in

the error state and the corresponding Error Warning Interrupt or Error Passive Interrupt forced

by the new register content, will not occur until Reset mode has been cleared.
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3.1.11 Receive Message Counter Register (CAN_RXM_COUNTER)

The register indicates the number of message in the RX FIFO. The register value increases each

time a new message is added to the RX FIFO.

Figure. 3.12 Receive Message Counter Register

Note

(a) The register memory is read only.

(b) During the read-out the register value returned as 0.

(c) Register bit [7 - 5]; always in low logic state,logic 0.

(d) CAN_CMD_RELEASE_RXB command decrements the register value.

3.1.12 Clock Divider Register (CAN_CLK_DIVIDER)

The Register value defines the type of the operation mode; PeliCAN or BasciCAN mode and

configures the CLKOUT frequency. CLKOUT is a pre-scaled version of System Clock (APB CLK).

Figure. 3.13 Clock Divider Register

CAN_CLK_DIV : bit [2 - 0]; the value defines clock divider for generation of CLKOUT frequency

at the CLKOUT pin.

CAN_CLK_OFF : bit [3]; setting this pin disables the CLKOUT pin.

CAN_CLK_DIV_CAN_MODE : bit [7];

• logic 1 : PeliCAN mode; additional registers are exposed. Transmit CAN2.0B CAN

message frame. Both Standard and Extended Frame format are supported in PeliCAN

mode.
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• logic 0 : BasicCAN mode. Only Standard Frame Format are supported, if extended

frame are detected on the CAN bus they are tolerated and an acknowledgement is given if

the message were correct, but no receive interrupt is generated.

NOTE

(a) CAN_CLK_DIV bits are accessible during both Reset and operating modes.

(b) CAN_CLK_DIV_CAN_MODE bit write access is possible only in Reset mode.

3.2 Transmit and Receive Buffer Register

Both the Transmit and Receive buffer share the same CAN memory address.

• Frame Information : CAN_FRAME_INFO

• Frame Identifier : CAN_ID_SFF and CAN_ID_EFF

• Frame Data : CAN_DATA_SFF and CAN_DATA_EFF.

Register Address Standard Frame Format Extended Frame Format

0x3FF6B040 CAN_FRAME_INFO CAN_FRAME_INFO

0x3FF6B044 CAN_ID_SFF (0) CAN_ID_EFF (0)

0x3FF6B048 CAN_ID_SFF (1) CAN_ID_EFF (1)

0x3FF6B04C CAN_DATA_SFF (0) CAN_ID_EFF (2)

0x3FF6B050 CAN_DATA_SFF (1) CAN_ID_EFF (3)

0x3FF6B054 CAN_DATA_SFF (2) CAN_DATA_EFF (0)

0x3FF6B058 CAN_DATA_SFF (3) CAN_DATA_EFF (1)

0x3FF6B05C CAN_DATA_SFF (4) CAN_DATA_EFF (2)

0x3FF6B060 CAN_DATA_SFF (5) CAN_DATA_EFF (3)

0x3FF6B064 CAN_DATA_SFF (6) CAN_DATA_EFF (4)

0x3FF6B068 CAN_DATA_SFF (7) CAN_DATA_EFF (5)

0x3FF6B06C - CAN_DATA_EFF (6)

0x3FF6B070 - CAN_DATA_EFF (7)

Table 3.1 Transmit and Receive Buffer Layout for SFF and EFF

3.2.1 Transmit and Receive Buffer Frame Information (CAN_FRAME_INFO)

Transmit and Receive Frame Information register is same for both Standard Frame Format and

Extended Frame Format.
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Figure. 3.14 Frame Information Register

CAN_DLC : bit [3 : 0]; Data Length Code. The number of bytes in the data field of a CAN

message. In Remote frame the data length code is not considered as absence of data field. For

compatibility reasons data length code should be less than 8.

CAN_RTR : bit [6]; Remote Transmission Request.

1. logic 1 : CAN_RTR. Remote frame will be transmitted by the CAN controller.

2. logic 0 : data; data frame will be transmitted by the CAN controller.

CAN_FRAME_FORMAT : bit [7]; Frame Format.

1. logic 1 : CAN_FRAME_FORMAT_EFF. Extended Frame Format.

2. logic 0 : CAN_FRAME_FORMAT_SFF. Standard Frame Format.

3.2.2 Transmit and Receive Buffer Identifier (CAN_ID_SFF and CAN_ID_EFF)

The Identifier acts as the message name. Standard Frame identifier consists of 11 bits and

Extended Frame consists of 29 bits. ID 28 the most significant bit of the identifier frame is

transmitted first on the bus during the arbitration process. It is subsequently used in a receiver

for acceptance filtering. It also determines the bus access priority during the arbitration process.

The lower the binary value of the identifier, the higher the message priority. This is due to the

larger number of leading dominant bits during arbitration.

Figure. 3.15 Standard Frame Format Identifier

Figure 3.15 denotes the bit field of Transmit and Receive Frame Identifier for standard frame

format. The X are don’t cares. For the receive frame identifier the bit[4] of CAN_ID_SFF (1)

is a RTR bit which is a direct copy of the RTR bit from Frame Information register, and for

transmit frame identifier it is a don’t care bit.
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Figure. 3.16 Extended Frame Format Identifier

Figure 3.16 denotes the bit field of Transmit and Receive Frame Identifier for extended frame

format. The X are don’t cares. For the receive frame identifier the bit[2] of CAN_ID_EFF (3)

is a RTR bit which is a direct copy of the RTR bit from Frame Information register, and for

transmit frame identifier it is a don’t care bit.

3.3 CAN Bit Timing Registers

The CAN bit timing registers are one of the important registers to be initialized during con-

figuration of the CAN controller to work with the desired bit rate. The register value defines

the bit rate of the CAN controller in the CAN bus. The non-overlapping segments CAN bit in

Figure 3.17 are slightly different from the Bosch CAN bit segment in Figure 1.10. Each CAN

family specification has unique CAN bit segment specification, but the mechanism remains the

same.

The ESP32 CAN controller bit segments are defined according to the NXP manufacturers

(SJA1000 CAN controller). The bit timing segments are defined as,

• SYN_SEG : Synchronize all nodes on the bus.

• TSEG1 : It is the sum of the PROP_SEG and the PHASE_SEG1. This facilitates the program-

ming of bit timing parameters.

• TSEG2 : It is PHASE_SEG2.

• Sample point : Sampling point is the point of time at which the bus level is read and

interpreted as the value at that respective time.

• Time Quanta (TQ) : The Time Quanta is a fixed unit of time derived from the oscillator

period.

• Baud Rate Prescaler (BRP) : The Time Quanta is equal to the period of the CAN

system clock, which is derived from the system clock or oscillator by dividing the system

clock or oscillator by the programmable pre-scalar, called BRP.
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• Nominal Bit Time (NBT) : This is the sum of all the CAN bit time segments.

Figure. 3.17 CAN Bit Time Segments

In Figure 3.17, fosc is the oscillator period. The length of time quanta tq; tq = BRP / fsys. fsys
is the CAN controller system clock; fsys = fosc or fsys = fosc / 2.

The bit timing configuration BRP, SJW, TSEG1, TSEG2 have to be programmed in two register

bytes; CAN_BTR0 and CAN_BTR1.

3.3.1 Bus Timing Register 0 (CAN_BTR0)

CAN_BTR0 register controls the Baud Rate Prescaler (BRP) and Synchronization Jump Width

(SJW). The register memory is read-only in operation mode.

Figure. 3.18 Bus Timing 0 Register

1. CAN_BTR0_BRP : bit [5 : 0]; write the value of Baud Rate Prescaler.

tq =
2×BRP

fOSC

BRP = 32 × bit[5] + 16 × bit[4] + 8 × bit[3] + 4 × bit[2] + 2 × bit[1] + bit[0] + 1.

2. CAN_BTR0_SJW : bit [7 : 6]; SJW defines the maximum number of time quanta a bit period

may be shortened or lengthened by one re-synchronization, to compensate for phase shifts

between clock oscillators of different bus controllers and propagation delays between

CAN-bus nodes.

tSJW = SJW
tq

SJW = 2 × bit[7] + bit[6] + 1
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NOTE

The CAN_BTR0 register memory write access is granted only in Reset mode.

3.3.2 Bus Timing 1 Register (CAN_BTR1)

The length of bit period, location of sample point and the number of samples taken at each

sample point are written into the CAN_BTR1 register. In operating mode the register memory is

read only.

Figure. 3.19 Bus Timing 1 Register

Time Segment 1 and Time Segment 2 determine the number of time quanta per bit period and

the location of the sample point.

• CAN_BTR1_TSEG1 : bit [3 : 0];

tTSEG1 = TSEG1 × tq

TSEG1 = 8 × bit[3] + 4 × bit[2] + 2 × bit[1] + bit[0] + 1

• CAN_BTR1_TSEG2 : bit [6 : 4];

tTSEG2 = TSEG2 × tq

TSEG2 = 4 × bit[6] + 2 × bit[5] + bit[4] + 1

CAN_SAMPLING : bit [7]; Two sampling modes are supported.

• logic 1 : Triple Sampling; the bus is sampled three times. Recommended for low /

medium speed buses.

• logic 0 : Single Sampling; recommended for high speed buses

3.3.3 ESP32 CAN bit time constraints

Every CAN module has its unique bit timing constraints. It is mandatory to respect the bit

timing constraints to attain the desired bit rate on the CAN Network.
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Segments Min TQ Max TQ

BRP 2 128

SYNC_SEG 1 (fixed)

TSEG1 1 16

TSEG2 1 8

SJW 1 4

TQ 3 25
Table 3.2 ESP32 CAN Bit Timing Constraints

3.4 Acceptance Filter Register

Acceptance Filter allow an automatic check on the identifier and data bytes of the CAN message

to be accepted by the CAN node receiver to store the message in the Receive buffer. A CAN

node that filters out a message will not receive the message, but still it will acknowledge the

message.

The acceptance filter is controlled by two registers Acceptance Code and Acceptance Mask.

In PeliCAN mode these registers are expanded to 4; 8-bit wide registers for a versatile filtering

of the messages.

• Acceptance Code: The bit sequence of the message: ID, RTR, Data bytes, to be

received by the controller is defined with in the Code register.

• Acceptance Mask: The bit positions of the acceptance code that can be ignored are

defined in this registers.

For accepting a CAN message, all the received bits have to match the respective bits of the Accep-

tance code register. The acceptance filter can be used in two modes by the CAN_MODE_ACC_FILTER

bit of CAN_MODE register (See Item 4 Page 25).

• Single Filter Mode.

• Dual Filter Mode.

Figure. 3.20 Single Filter Mode (Standard and Extended Frame)

The acceptance filter registers configuration are different for the standard and extended frame

format in single and dual filter mode. The Figure 3.20 shows the single filter mode configuration
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Figure. 3.21 Dual Filter Mode (Standard and Extended Frame)

of registers for the standard and extended frame. The ACRn is the acceptance code register and

AMRn is the acceptance mask register. For standard frame the 11-bit ID, RTR, Data byte1 and

Data byte2 are used for acceptance. The 8-bit of the register ACR0, ACR2, ACR3 and upper 4bits

of ACR1 are used. The unused bits of AMR1 register should be set to 1. For extended frame 29-bit

ID and RTR bits used for acceptance. In ACR3 and AMR3 register only the upper 6 bits are used.

The unused bits of AMR3 register must be set to 1.

Figure 3.21 shows the register configuration for the dual filter mode. For standard frame only

one data byte is used for acceptance in Filter 1. For extended frame only the 16 most significant

bit of extended frame ID is used.

For example two message ID have to be accepted by the CAN node. Data byte and RTR bit are

not considered. The Code and Mask register configuration are:

Message ID 1 : 0x205 : 0100 0000 101

Message ID 2 : 0x2A5 : 0101 0100 101

Figure. 3.22 Example: Dual Filter Mode (Standard Frame)



Chapter 4

ESP32 CAN Driver

4.1 Computation of CAN Bit Settings : ESP32ACANSettings class

The Initial phase of developing a CAN driver is to define the Bit Timing Calculator. CAN bus

operates in different data rates. Each data rate defines different bus timing configuration. This

section details the driver CAN bus timing calculation.

ESP32ACANSettings class computes the value of the bit timing segments for the desired bit

rate. Other features of the class is that it explores all CAN bit rates from 1 bit/s to 1 Mbit/s for

the ESP32 CAN controller source clock (See Figure 4.1). It is found that the CAN controller

operates with the APB clock in ESP32 module [23]. It also checks that all the computed CAN

bit decomposition are consistent, even if they are too far from the desired bit rate.

4.1.1 ESP32ACANSettings Constructor

The constructor of the ESP32ACANSettings has one mandatory argument: the Desired Bit

Rate. The constructor computes the CAN bit settings for the desired bit rate. On a successful

computation, the class property mBitRateClosedToDesiredRate is set to true, else it is set

to false and other bit timing segments are set on respecting the constraints.

The computation process of the Bit timing parameters:

Step 1: Baud Rate Prescaler BRP and Nominal Bit Time NBT are determined with the dependency

of the desired bit rate (input argument) and clock frequency (APB clock 80 MHz).

BRPmin = APB_CLOCK_FREQUENCY
(DESIRED_BIT_RATE ∗ NBTmin)

Step 2: Time Segment 2 TSEG2 is calculated with a sampling rate of 80%. Sampling point can be

in the range from 50% to 90%. The value is fixed respecting the constrains.
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Step 3: Time Segment 1 TSEG1 is set with the remaining value of NBT obtained by subtracting

the TSEG2 and Sync Segment (fixed 1). If the TSEG1 value exceeds the maximum value,

TSEG2 is updated to satisfy the maximum value.

Step 4: SJW segment value is set 3; if the value of TSEG2 < 4, else SJW is set to 4.

Step 5: Sampling : Single or Triple sampling type is defined on the required condition.

Step 6: Finally the configuration is compared with the Tolerance PPM(part-per-million) and the

bit settings closed to desired bit rate property is returned true or false.

The constraints of the Bit Timing property are:

2 ≤ mBitRatePrecaler ≤ 128

1 ≤ mSJW ≤ 4

1 ≤ mTimeSegment1 ≤ 16

1 ≤ mTimeSegment2 ≤ 8

4.1.2 ESP32ACANSettings class Properties

The mandatory parameters for the CAN bit timing calculation are the CAN Module Clock

Source and Desired bit rate. The CAN controller operates with the APB clock in ESP32 module.

The Peripheral input clock macros are defined in soc.h file of the ESP32 hardware.

#define APB_CLK_FREQ ( 80*1000000 ) //unit: Hz

The Clock source does not change in any circumstances, therefore it is defined as a static constant

property kSourceClockAPB.

The properties of the ESP32ACANSettings class :

Property Type Initial value

mDesiredBitRate uint32_t constructor argument

mBitRatePrescaler uint8_t 0

mTimeSegment1 uint8_t 0

mTimeSegment2 uint8_t 0

mSJW uint8_t 0

mTQcount uint8_t 0

mTripleSampling bool false

mBitRateClosedToDesiredRate bool false

mRequestedCANMode CANMode NormalMode

mControlMessagebyMethod CANProcess InterruptControlled

mDriverReceiveBufferSize uint16_t 32

mDriverTransmitBufferSize uint16_t 16

Table 4.1 Properties of the ESP32ACANSettings class
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The ESP32ACANSettings::mRequestedCANMode property defines the mode requested at the

end of the configuration. By default the mode is set to NormalMode, other modes LoopBackMode

and ListenOnlyMode.

The ESP32ACANSettings::mControlMessagebyMethod property defines the message control

method: InterruptControlled (default) and PollingControlled.

4.1.3 ESP32ACANSettings Methods

These methods verify the consistency of the CAN bit time settings. The return value of the

methods are irrelevant, if the CAN bit settings are not consistent.

actualBitRate method

The actualBitRate method returns the actual bit rate computed from the property values

mBitRatePrescaler, mTimeSegment1, mTimeSegment2, mSJW.

Actual bit rate = kSourceClockAPB
mBitRatePrescaler·(SYNC_SEG + mTimeSegment1 + mTimeSegment2)

ppmFromDesiredBitRate method

The ppmFromDesiredBitRate method returns the distance from the actual bit rate to the desired

bit rate (in ppm): 1 ppm = 10−6. In other words, 10,000 ppm = 1%

samplePointFromBitStart method

This method returns the distance of sample point from the start of the CAN bit, expressed in

part-per-cent (ppc): 1 ppc = 10−2 = 1%. If triple sampling is selected, the returned value is the

distance of the first sample point from the start of the CAN bit. It is good practice to get sample

point from 65% to 80%.

Sampling point (single sampling) = 100 · SYNC_SEG + mTimeSegment1

SYNC_SEG + mTimeSegment1 + mTimeSegment2

Sampling point (triple sampling) = 100 · mTimeSegment1

SYNC_SEG + mTimeSegment1 + mTimeSegment2

exactBitRate method

The method returns true if the actual bit rate matches the desired bit rate, and false otherwise.
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CANBitSettingConsistency method

This method checks the consistency of the CAN bit segment property values given by: mBitRate

Prescaler, mTimeSegment1, mTimeSegment2, mSJW. It returns 0, if the CAN bit timing values

are consistent, else the returned value is a bit field of error properties.

The static constant properties of the error bit field are:

Bit Error Name Error

0 kBitRatePrescalerIs LowerThan2 mBitRatePrescaler < 2

1 kBitRatePrescalerIsGreaterThan128 mBitRatePrescaler > 128

2 kTimeSegment1IsZero mTimeSegment1 == 0

3 kTimeSegment1IsGreaterThan16 mTimeSegment1 > 16

4 kTimeSegment2IsZero mTimeSegment2 == 0

5 kTimeSegment2IsGreaterThan8 mTimeSegment2 > 8

6 kTimeSegment1Is1AndTripleSampling (mTimeSegment1 == 1) && mTripleSampling

7 kSJWIsZero mSJW == 0

8 kSJWIsGreaterThan4 mSJW > 4

9 kTimeSegment2IsGreaterTimeSegment1 mTimeSegment2 > mTimeSegment1

Table 4.2 The ESP32ACANSettings::CANBitSettingConsistency method error codes

4.1.4 Test on Desktop compiler

The ESP32ACANSettings class can be compiled on any desktop C++ compiler. The ESP32

CAN bit settings computation always succeeds for the classical bit rates: 125 kbit/s, 250 kbit/s,

500 kbit/s, 1 Mbit/s.

In Figure 4.1, Result : 1,2,3,4 shows the computed bit timing segment values for classical CAN

bit rates. Result : 5 and 6, are computed for the desired bit rate of 20 kbit/s and 10 kbit/s; the

bit settings are not close to desired bit rate and the property mBitRateClosedToDesiredRate

returns false which results in (Settings OK: no). The actual bit rate computed does not

match with the desired bit rate. The distance from the actual bit rate to the desired bit rate are

printed in ppm field (ppm:250000) and the sample point is printed in Sample Point field.

All CAN bit rate settings are explored from 1 bit/s to 1 Mbit/s: 311088 bit rates are valid, and

25 are exact bit rates. An exhaustive search is performed to print all the valid exact CAN bit rate

(Figure 4.2).
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Figure. 4.1 Output: Bit Time Settings(test on desktop)

Figure. 4.2 Output: All valid ESP32 CAN bit rate (test on desktop)

4.2 ESP32 CAN Register Definition

ESP32 CAN Peripheral registers are not defined in the ESP32 Technical Reference Manual with

the forum and available source the SJA1000 CAN compatible register are defined according to the

other ESP32 Peripheral registers (See Section 3.1 Page 23). The ESP32 CAN Peripheral registers
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are 8bits, however the ESP32 can only access peripheral registers every 32bits. Therefore each

ESP32 CAN register are mapped to the least significant byte of every 32bits.

ESP32 CAN Register Base Address 0x3FF6B000 .

The Peripheral registers of a device can be accessed using different approaches like pointer

access, struct access., The performance between the approaches remains the same. For better

code readability and organization we prefer to use the pointer access.

Mapping of Register address with pointer

A pointer to the register can be created using either a pointer to a volatile const uint32_t

or by a macro definition.

The example of a pointer to a volatile const uint32_t:

volatile uint32_t* const CAN_REG = (uint32_t *) REG_ADDRESS;

To understand better use of this definition one should know the keywords const and volatile.

The const keyword is a compiler-enforced, i.e., it makes the object non-modifiable type. The

volatile is a type qualifier that prevents the object from the compiler optimization. If an object

defined by volatile type, the compiler reloads the value from the memory each time it is

accessed by the program; it prevents from the cache of a variable into a register. The use of

volatile and const in the above object definition is very important as the current value of the

register can be read without any assumption and change in the value by the code.

The workaround with the pointers may be complex, to make a simple implementation we use

the macro definition of the register for the driver.

The example using macros to define the register:

#define REG (*(( volatile uint32_t *) REG_ADDRESS))

In the macro definition the left (∗) pointer dereferences REG_ADDRESS, after first casting it to

type pointer to volatile uint32_t ; REG can be used as a plain variable. In simple words the

current value of register memory are read by the REG variable.

The peripheral CAN register definition of MODE register.

static const uint32_t ESP32CAN_BASE = 0x3FF6B000;

typedef volatile uint32_t vuint32_t;

/* --- Configuration and Control Registers

#define CAN_MODE (*(( vuint32_t *)(ESP32CAN_BASE)))
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/* Bit definitions and macros for CAN_MODE */

static const uint32_t CAN_MODE_RESET = 0x01 ;

static const uint32_t CAN_MODE_LISTENONLY = 0x02 ;

static const uint32_t CAN_MODE_SELFTEST = 0x04 ;

static const uint32_t CAN_MODE_ACCFILTER = 0x08 ;

The macro definition of the Mode register with variable CAN_MODE. The bit of the CAN Mode

register is defined with the constant bit address. Accessing specific bits can be done using bit

shifting and bit masking.

For example the Mode register can be written and read by,

CAN_MODE = CAN_MODE_SELFTEST;

const unit32_t mode_value = CAN_MODE;

All other register definition is similar, writing the read-only register as const volatile type

the write can be prevented. The header file ESP32CANRegisters.h Appendix contains the

definition of all the ESP32 CAN Registers.

4.2.1 ESP32 CAN Registers Test

An arduino example code ESP32CANRegisterTest.ino is written to test the ESP32 CAN

registers read and write access.

The ESP32 CAN Peripheral register mapping is defined by macros in the header file

#include <ESP32CANRegisters.h>

void setup() {

// --- Switch on builtin led

pinMode (LED_BUILTIN , OUTPUT) ;

digitalWrite (LED_BUILTIN , HIGH) ;

// --- Start serial

Serial.begin (115200) ;

// --- Wait for serial (blink led at 10 Hz during waiting)

while (! Serial) {

delay (50) ;

digitalWrite (LED_BUILTIN , !digitalRead (LED_BUILTIN)) ;

}

Builtin Led is used for signaling. It blinks the Led at 10 Hz during until serial monitor is ready.

// --- Enable the ESP32 CAN Peripheral

periph_module_enable(PERIPH_CAN_MODULE);
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For instance to work with the ESP32 CAN, the peripheral module must be enabled. This function

is defined in the espertools/sdk/include/driver/driver/periph_ctrl.h

#include "driver/periph_ctrl.h"

This line includes the peripheral control functions.

void periph_module_enable(periph_module_t periph) {

portENTER_CRITICAL (& periph_spinlock);

DPORT_SET_PERI_REG_MASK(get_clk_en_reg(periph),

get_clk_en_mask(periph));

DPORT_CLEAR_PERI_REG_MASK(get_rst_en_reg(periph),

get_rst_en_mask(periph , true));

portEXIT_CRITICAL (& periph_spinlock);

}

The periph_module_enable function ungates the clock for the module, and reset is de-asserted,

it returns NULL.

Serial.println ("ESP32 CAN REGISTERS") ;

for (uint32_t idx=0; idx <=31 ; idx++) {

uint32_t value = REGALL(idx);

uint32_t Reg_no = 0x3FF6B000 +0x000 +4* idx;

Serial.printf("REG : %X --- %X \n",Reg_no ,value);

}

}

The current value of the CAN register is printed with the register address and register access is
tested using the example code ESP32CANRegisterTest.ino.

void loop() {

....

// --- Write Access to bus timming registers

for (uint16_t i = 0; i <= 255; i++) {

CAN_BTR0 = (byte)i;

CAN_BTR1 = (byte)i;

const uint32_t value1 = CAN_BTR0;

const uint32_t value2 = CAN_BTR1;

// Serial.printf ("Value : %d---Reg BTR0 : %X \n",i,value1);

// Serial.printf ("Value : %d---Reg BTR1 : %X \n",i,value2);

if ((i != value1) && (i != value2)) {

Serial.println("Reg Error");

}

}

}
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ESP32 CAN Registers are tested by writing byte value to the bus timing registers BTR0 and

BTR1. Register access returns error if the read value is not same as the write value.

Figure. 4.3 Output: ESP32 CAN REGISTER reset value

Figure 4.3, shows the ESP32 CAN register value after reset. Some register memory are read

only. The highlighted registers are read/write registers.

4.3 CAN Driver Initialization

The ESP32 CAN driver is written in ACAN style. ESP32ACAN.h defines the driver class and

methods used to control the CAN Message.

The main part of the driver is to initialize the correct configuration setting needed for the

operation of the CAN controller. The ESP32ACAN::begin method, setup the CAN driver initial

configuration.

The access rights to CAN peripheral registers of the ESP32 module is possible only by enabling

the CAN peripheral module. The periph_module_enable(PERIPH_CAN_MODULE); function

enables the ESP32 CAN peripheral module. Some registers of the module can be written only

by entering Reset mode. The CAN module supports both CAN message format which is defined

in the CAN_CLK_DRIVER register (See Section 3.1.12 Page 32), BasicCAN mode and PeliCAN

mode. By configuring the CAN mode to PeliCAN mode the complete CAN 2.0B functionality

is supported. Note. The Driver register are exposed to PeliCAN mode, therefore it is advised

to enter PeliCAN mode. The Bus timing registers has to be configured with the CAN bus

timing settings for the desired bit rate. In order to accept all messages in the CAN bus set the

default acceptance filter. Allocate the GPIO pins to the Output RXD pin and Input TXD pin

respectively (See Section 2.5 Page 21). After writing all the configuration information to the

control segments the CAN module is switched into requested mode by clearing the reset mode.

The transmission process can be controlled by either Interrupt request or by Polling status (See

Section 4.4 Page 51). In the case of Interrupt controlled the Interrupt Service Routine is

installed to handle the interrupts triggered.
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Figure. 4.4 Driver Initial Configuration

uint32_t ESP32ACAN ::begin (const ESP32ACANSettings &inSettings)

The ESP32ACAN::begin() method takes the configuration setting parameters and returns the

error code as value 0; if all the configuration are Ok.
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4.3.1 Configuration Functions

GPIO Settings : setGPIOPins()

The CAN controller’s signal lines has to be routed to the GPIO pins through GPIO matrix. We

can select the alternative pins for connecting the Tx and Rx pins. The other two signal lines

Bus-off and CLKOUT are optional. Since the project hardware setup is defined the Tx and Rx

are fixed. It can be changed according to the user hardware setup. In this project setup, GPIO 5

is assigned as Tx and GPIO 4 is assigned as Rx pins. The setGPIOPins() function is called to

configure the Tx and Rx pins.

void ESP32ACAN :: setGPIOPins(void) {

//TX Pin - Default set to IO5.

//RX Pin - Default set to IO4.

gpio_num_t TXPin = GPIO_NUM_5;

gpio_num_t RXPin = GPIO_NUM_4;

//Set TX pin

gpio_set_pull_mode(TXPin , GPIO_FLOATING);

gpio_matrix_out(TXPin , CAN_TX_IDX , false , false);

gpio_pad_select_gpio(TXPin);

//Set RX pin

gpio_set_pull_mode(RXPin , GPIO_FLOATING);

gpio_matrix_in(RXPin , CAN_RX_IDX , false);

gpio_pad_select_gpio(RXPin);

gpio_set_direction(RXPin , GPIO_MODE_INPUT);

}

Bus Timing Register Configuration : setBitTimingSettings(settings)

The ESP32 CAN works with the at most speed of 1 Mbit/s. The CAN Bus can be set to desired

bit rates. Bus timing values computed for the desired bit rate by the ESP32ACANSettings class

is written to the Bus Timing Registers BTR0 and BTR1 by setBitTimingSettings(settings)

function. The value for the respective bit of the register is written by bit shift method.

void ESP32ACAN :: setBitTimingSettings(const

ESP32ACANSettings&inSettings)

{

/* SJW | BRP */

CAN_BTR0 = (( inSettings.mSJW - 1) << 6) |

(((( inSettings.mBitRatePrescaler) / 2) - 1) << 0)

;

/* Sampling | Tseg2 | Tseg1 */
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CAN_BTR1 = (( inSettings.mTripleSampling) << 7) |

(( inSettings.mTimeSegment2 - 1) << 4) |

(( inSettings.mTimeSegment1 - 1) << 0)

;

}

Requested Mode Configuration : : setRequestedCANMode(settings)

The ESP32 CAN driver supports three modes of operation. NormalMode, LoopBackMode and

ListenOnlyMode. These modes can be selected according to the desired application. The mode

register bits are set in accordance with the requested mode. The Mode register macros defined

in the ESP32CANRegisters.h file are used. By default the driver mode is set to NormalMode

in the ESP32ACANSettings class.

void ESP32ACAN :: setRequestedCANMode(const

ESP32ACANSettings &inSettings) {

uint8_t requestedMode = 0 ;

switch (inSettings.mRequestedCANMode) {

case ESP32ACANSettings :: Normal :

break ;

case ESP32ACANSettings :: ListenOnly :

requestedMode = CAN_MODE_LISTENONLY ;

break ;

case ESP32ACANSettings ::NoACK :

requestedMode = CAN_MODE_SELFTEST ;

break ;

}

CAN_MODE = requestedMode | CAN_MODE_RESET ;

do{

CAN_MODE = requestedMode ;

}while (( CAN_MODE & CAN_MODE_RESET) != 0) ;

}

4.4 CAN Communication Process

The transmission and reception of message by the CAN controller is done according to the CAN

protocol. The process can be controlled either by an Interrupt request or by Polling Status flags.
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The driver is compatible to be operated by either of the control method. Driver Internal transmit

and receive buffer are added to the driver for the Interrupt controlled process.

4.4.1 Polling Controlled Process

The transmission and reception of the message are controlled by the Status flag of the CAN_STATUS

register.

Sending Frames

The flow of the polling controlled transmission is shown in the Figure 4.5. The Transmit

Buffer is locked while writing the message to be transmitted. By checking the

CAN_STATUS_TXB bit of the CAN_STATUS, the lock and release state of the Transmit Buffer

can be monitored.

The tryToSendbyPolling method of the driver is called for sending the message in the CAN

Network. When Transmit Buffer status is released a new message can be written into the

Transmit Buffer by the internalSendMessage function. The function transfers the message

to the Transmit Buffer registers and set the command CAN_CMD_TX_REQ; in NormalMode,

CAN_CMD_SELF_RX_REQ command; in LoopBackMode to start the transmission.

Figure. 4.5 Transmission Polling Controlled

Receiving Frames

The CAN_STATUS_RXB bit of the CAN_STATUS register reflects the Receive Buffer state either

full or empty. When the receivebyPolling method is called and the Receive Buffer
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status is full; the message are read and handled by the handleMessages function. After read-

ing the message from the Receive Buffer; the Receive Buffer is set free by the Release

Receive Buffer Command.

Figure. 4.6 Reception Polling Controlled

4.4.2 Interrupt Controlled Process

The message are controlled by handling the interrupt. The Interrupt has to be enabled and

cleared before starting the process.

Interrupt Allocation

Interrupt can be allocated for certain peripheral in ESP32 by setting esp_intr_alloc. An

applicable interrupt for the peripheral is found and allocated by the interrupt multiplexer.

Interrupt handler and Interrupt Service Routine are installed to the required peripheral. There

are two different kinds of interrupt that the function can handle; shared Interrupt and

non-shared Interrupt. The CAN peripheral utilizes the non-shared interrupt; with a separate

interrupt allocated with only one ISR being called.

Interrupts generated by CAN peripheral are external interrupts; as CAN peripheral is outside

the CPU core. The external peripheral source are defined in soc.h; ETS_CAN_INTR_SOURCE

is defined for CAN peripheral and is hardware specific that cannot be changed. As ESP32

comprise of dual core, the external interrupt slots on both the core are wired to an interrupt

multiplexer, that can route the interrupt to any slot.

• Allocating an external interrupt will always allocate it on the core that does the allocation.

• Freeing an external interrupt must always happen on the same core it was allocated on.

• Disabling and enabling external interrupts from another core is allowed.
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• Multiple external interrupt sources can share an interrupt slot by passing ESP_INTR_FLAG

_SHARED as a flag to esp_intr_alloc().

Interrupt handling by our CAN driver utilizes single core. On further implementation of multiple

task handling in the driver, interrupt can be handle by dual core by allocating the task by using

xTaskCreatePinnedToCore() with specific core ID.

The function esp_intr_alloc() is defined in esp_intr_alloc.h header [24].

esp_err_t esp_intr_alloc(int source , int flags , intr_handler_t

handler , void *arg , intr_handle_t *ret_handle)

The interrupt will always be allocated on the core that runs this function. This finds an interrupt

that matches the restrictions as given in the flags parameter, maps the given interrupt source to

it and hooks up the given interrupt handler (with optional argument) as well. If needed, it can

return a handle for the interrupt as well.

esp_intr_alloc calling in the CAN driver.

esp_intr_alloc(ETS_CAN_INTR_SOURCE , 0, isr , this , NULL);

• source : ETS_CAN_INTR_SOURCE, it is the interrupt source.

• flags : 0, it will default to allocating a non-shared interrupt of level 1, 2 or 3. If

this is ESP_INTR_FLAG_SHARED, it will allocate a shared interrupt of level 1. Setting

ESP_INTR_FLAG_INTRDISABLED will return from this function with the interrupt dis-

abled.

• handler : isr, the interrupt handler defined in the driver. Must be NULL when an interrupt

of level >3 is requested, because these types of interrupts are not C-callable.

• arg : this, when argument passed to the interrupt handler, NULL when no arguments

handled.

• ret_handle : NULL, no handle is required; pointer to an intr_handle_t to store a

handle that can later be used to request details or free the interrupt.

The interrupt handler of the CAN driver is declared as the static isr() method. The method

handles the Transmit interrupt and Receive interrupt triggered in the interrupt register.

In ESP32 the interrupt has to be handled quickly [25], otherwise it results in Guru Meditation

Error Figure 4.7. Error occurs even when the interrupts are unhandled. The interrupts are han-

dled in a short loop to handle it fast. Interrupt handling is protected by the entering critical section.

As ESP32 derives the Free-RTOS, taskENTER_CRITICAL() of FREE-RTOS is deprecated as

portENTER_CRITICAL() in ESP32 [26]. To enter the critical section, portENTER_CRITICAL()

and to exit critical section portEXIT_CRITICAL() are declared.
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Figure. 4.7 Interrupt Handling Error

Transmission Interrupt Controlled

The tryToSend method is called for sending the message in the CAN network. The Transmit

Buffer state is locked while writing a message. Writing a new message into the Transmit

Buffer is not possible and the message will be lost without any indication. Driver Transmit

Buffer, a temporary storage memory is created to store the message when Transmit Buffer

is locked. The DriverSending flag is set when the Transmit Buffer is locked and the

message are written in to Driver Transmit Buffer. The message in the Driver Transmit

Buffer will be handled by the Interrupt Service Routine which is initiated at the end of current

transmission.

Upon the reception of Transmission Interrupt, the interrupt handler handleTXInterrupt

checks the message in Driver Transmit Buffer and removes the message to write in to the

Transmit Buffer.

Receive Interrupt Controlled

When Receive Interrupt is generated the handleRXInterrupt interrupt handler reads the

message from the RX FIFO and appends in to the Driver Receive Buffer.
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Figure. 4.8 Transmission Interrupt Controlled

Figure. 4.9 Reception Interrupt Controlled

4.5 Driver Send and Receive method

This section details the ESP32ACAN Driver Sending and Receiving CAN frame methods.

4.5.1 Transmission Method

The driver contains two methods tryToSendbyPolling and tryToSend for controlling the

transmission process.

The tryToSendbyPolling method is called when the sequential process is controlled by polling.

The Transmit Buffer status is checked; if released the message frame is sent to the Transmit

Buffer through internalSendMessage function.

The tryToSendbyPolling method returns:
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• true if the message has been successfully transmitted to the transmit buffer; note. the

message is not actually sent.

• false if the Transmit buffer is locked; the message is not successfully transmitted to the

transmit buffer.

The tryToSend method is called for transmitting the message frame by handling the Interrupt

and storing the message in Driver Transmit Buffer when the Transmit Buffer status is locked.

mDriverSending flag is checked; if true append the message into the Driver Transmit Buffer,

else write message frame into the Transmit Buffer. By default, mDriverSending flag is false.

The tryToSend method returns:

• true if the message has been successfully transmitted to the driver transmit buffer; note.

the message is not actually sent.

• false if the message is not successfully transmitted to the driver transmit buffer.

Note

In Last driver update the tryToSendbyPolling method is called within the tryToSend

method for ease of driver implementation. mSendbyPoll flag in driver is set

true by mControllMessageByMethod property in the driver initialization begin

method. The tryToSend method checks the state of the mSendbyPoll flag; if true :

tryToSendbyPolling is called, else send by interrupt handling.

The internalSendMessage function writes the message frame into the Transmit Buffer

register.

The properties of CAN message; dlc, rtr, frame format are written into the CAN_FRAME_INFO

register. The CAN frame length is constrained to 8 byte; if length is greater than 8, data length

code is fixed to 8. RTR bit is set if the frame is Remote Frame. The frame format is set by the

ext property of CAN Message; if true, Extended Frame Format, else Standard Frame Format.

Next identifier register are written with the 32bit CAN message ID. The number of Identifier

register for Standard Frame Format is 2 and Extended Frame Format is 4. The register are

written by bit shifting.

// --- Set ID - Standard Frame Format

CAN_ID_SFF (0) = (uint8_t)(( inFrame.id) >> 3) ;

CAN_ID_SFF (1) = (uint8_t)(( inFrame.id) << 5) ;

// --- Set ID - Extended Frame Format

CAN_ID_EFF (0) = (uint8_t)(( inFrame.id) >> 21);

CAN_ID_EFF (1) = (uint8_t)(( inFrame.id) >> 13);

CAN_ID_EFF (2) = (uint8_t)(( inFrame.id) >> 5);

CAN_ID_EFF (3) = (uint8_t)(( inFrame.id) << 3);
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The CAN message data field is written into the corresponding Data field registers: CAN_DATA_SFF

-standard frame format and CAN_DATA_EFF-extended frame format.

After writing the Transmit Buffer register the command register is set with CAN_CMD_SELF_RX_REQ

bit; in LoopBackMode and CAN_CMD_TX_REQ bit in Normal operating mode

CAN_CMD = (( CAN_MODE & CAN_MODE_SELFTEST) !=0)?

CAN_CMD_SELF_RX_REQ : CAN_CMD_TX_REQ;

Driver Transmit Buffer

The Driver Transmit Buffer size is defined with in the ESP32ACANSettings class. By default the

size is 16. The value can be changed by setting the mDriverTransmitBufferSize properties

of the settings variable; for example:

ESP32ACANSettings settings (DESIRED_BIT_RATE) ;

settings.mDriverTransmitBufferSize = 32 ;

const uint16_t errorcode = can.begin (settings) ;

driverTransmitBufferSize method The method returns the allocated size of the driver

transmit buffer.

const uint16_t buffersize = can.driverTransmitBufferSize ;

driverTransmitBufferCount method The method returns the current number of message in

the driver transmit buffer.

const uint16_t buffermsgcount = can.driverTransmitBufferCount ;

driverTransmitBufferPeakCount method The method returns the peak value of message

count in the driver transmit buffer.

const uint16_t msgpcount = can.driverTransmitBufferPeakCount ;

4.5.2 Receive Method

The receivebyPollinging and receive method are used for receiving CAN message from

the Receive Buffer.

The receivebyPolling method returns:

• true if the message has been removed from the Receive buffer and the Receive buffer is

released.

• false if the Receive buffer is empty; No message.

The receive method returns:
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• true : if a message has been removed from the Driver Receive Buffer, and the

message argument is assigned.

• false : if the Driver Receive Buffer is empty, message argument is not modified.

Note

The final driver update uses receive method for both polling and interrupt control process.

The receivebyPolling method is called within the receive method, if mSendbyPoll

flag is set true. The mSendbyPoll flag is set in the initialization begin method with the

mControllMessageByMethod property.

The message in the Receive Buffer are handled by the handleMessages function. The CAN

message frame in the Receive Buffer is retrieved.

After handling the message the Receive Buffer is released by setting the Release Receive Buffer

bit with command register.

Driver Receive Buffer

The default size of the driver receive buffer is 32, defined in the ESP32ACANSettings class. This

value can be changed by setting the mDriverTransmitBufferSize property before calling the

begin method:

ESP32ACANSettings settings (DESIRED_BIT_RATE) ;

settings.mDriverReceiveBufferSize = 100 ;

const uint16_t errorcode = can.begin (settings) ;

As the size of CANMessage class is 16 bytes, the actual size of the driver receive buffer is the

value of settings.mReceiveBufferSize * 16.

driverReceiveBufferSize method

The method returns the allocated size of the driver receive buffer.

const uint16_t buffersize = can.driverReceiveBufferSize ;

driverReceiveBufferCount method

The method returns the current number of message in the driver receive buffer.

const uint16_t buffermsgcount = can.driverReceiveBufferCount ;

driverReceiveBufferPeakCount method The method returns the peak value of message

count in the driver receive buffer.

const uint16_t msgpcount = can.driverReceiveBufferPeakCount ;
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4.5.3 The Driver Error Code

The ESP32ACAN::begin method return an error code. The returned value is 0, if no error. The

ESP32ACAN class defines the static constant error properties.

Bit Error Name Error

0 kNotInRestModeInConfiguration
CAN mode is not in Reset Mode during the CAN

controller configuration.

1 kCANRegistersError
Error writing the Bus timing register.

CAN register not accessible

2 kTooFarFromDesiredBitRate
When mBitRateClosedToDesiredRate property

of the settings object is false

3 kInconsistentBitRateSettings When CAN bit properties values are inconsistent

4 kCannotAllocateDriverReceiveBuffer
When not enough RAM left to allocate the receive

buffer

5 kCannotAllocateDriverTransmitBuffer
When not enough RAM left to allocate the transmit

buffer

Table 4.3 The ESP32ACANSettings::begin method error codes

4.6 CANMessage class

CAN Message frame contains an identifier, frame information, frame length, data. The CAN-

Message class defines the CAN frame for the driver to work with the CAN Message. The class

object contains all the CAN frame user information. By default the frame is standard data frame

with identifier equal to 0 and without any data.

Note the class declaration is protected by include guard that causes the macro GENERIC_CAN

_MESSAGE_DEFINED to be defined. The CANMessage.h is identical for the ACAN driver, ACAN2515

driver, ACAN2517 driver (idx member is not used by the ESP32 CAN driver, as Compatibility

with the ACAN2515 and ACAN2517 library it is necessary to have the field).

#ifndef GENERIC_CAN_MESSAGE_DEFINED

#define GENERIC_CAN_MESSAGE_DEFINED

class CANMessage {

public : uint32_t id = 0; // Frame identifier

// false -> standard frame , true -> extended frame

public : bool ext = false ;

// false -> data frame , true -> remote frame

public : bool rtr = false ;

public : uint8_t idx = 0 ;

public : uint8_t len = 0 ; // data length code (0 ... 8)
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public : union {

uint64_t data64 ; // Caution: subject to endianness

uint32_t data32 [2] ; // Caution: subject to endianness

uint16_t data16 [4] ; // Caution: subject to endianness

uint8_t data [8] = {0, 0, 0, 0, 0, 0, 0, 0} ;

} ;

} ;

4.7 Acceptance Filter: ESP32ACANFilter class

ESP32ACANFilter class is defined in ESP32AcceptanceFilter.h file. For the ESP32 accep-

tance filter registers and operation (See Section 3.4).

The CAN_ACC_CODE_FILTER(idx) for Code and CAN_ACC_MASK_FILTER(idx) for Mask reg-

ister are defined in the ESP32CANRegisters.h file.

By default the can.begin(settings) receive all message by default filter settings.

Four functions are defined to accept standard or extended frame in single or dual filter mode.

1. acceptSingleFilterStandard and acceptSingleFilterExtended for single filter

mode.

2. acceptDualFilterStandard and acceptDualFilterExtended for dual filter mode.

acceptSingleFilterStandard function takes the standard code and mask id with the data

byte1 and data byte2. For instance, the RTR bit is not handled by the functions.

The filter settings are written into the registers by setAcceptanceFilter method called inside

the configuration method.

For Single filter mode, CAN_MODE_ACCFILTER bit must be set to logic 1. This action is

performed by the true state of ESP32ACANFilter class member mAMFSingle. By default

mAMFSingle property is false (dual acceptance filter mode).

4.8 Driver Model Verification

This section exhibits a demo test of the driver transmit sequence by transmit interrupt.

Three models are created in UPPAAL tool, to depict the transmit function, transmit interrupt

handler and transmit buffer of the driver shown in Figure 4.10.
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(a) Transmit Model

(b) Transmit Interrupt handler

(c) Transmit Buffer Model

Figure. 4.10 Driver Transmit Sequence Model

Tx interrupt is generated when the Transmit Buffer status changes from locked state to

release (i.e., 0 to 1), which is an edge action. The TXinterrupt is declared as a channel to

synchronize the edge action. Other flags are declared; sending flag for driver sending state, by

default its false. A driver transmit buffer of size 16 this can be change in the declaration.

The properties that are verified with this model:

• Is the system deadlock free?

A[] not deadlock

Result : Satisfied no deadlock.

• Is there any situation in which the WriteTXB is possible when the Transmit Buffer is

locked (TXB_LOCKED)

E<> tryTosend.writeTXB and TX_Buffer.TXB_LOCKED

Result : Not satisfied, There is no possibility to write TXB when in locked state.

Furthermore test can be conducted on the model. It is concluded with the satisfying result. Bus

model with some CAN nodes can be created for verification of the sequence process in the CAN

network for detailed understanding of the CAN protocol.
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ESP32 CAN Driver Examples

The configuration and operation of ESP32 CAN driver are demonstrated with the example code.

File Name Function

LoopBackCheck-Polling.ino ESP32 CAN Self-Test by Polling Controlled

LoopBackCheck-Interrupt.ino ESP32 CAN Self-Test by Interrupt Controlled

LoopBackCheck-PollingIntensive.ino Self-Test by Polling Intensive Test

LoopBackCheck-InterruptIntensive.ino Self-Test by Interrupt Intensive Test

ESP32CANTestWithACAN2515.ino ESP32 CAN test with ACAN215 in Normal mode.

The Example codes are included in the ESP32ACAN library. The codes are compiled using

Arduino IDE platform on ESP32 microcontroller board.

The common and mandatory declaration of the driver instance for all the example code are

detailed below1.

static const uint32_t DESIRED_BIT_RATE = 125UL * 1000UL ;

// 125 kb/s

Declaration of the desired CAN bit rate. The static constant variable can be initialized with all

the valid CAN bit rate settings computed from the TestOnDesktop.

ESP32ACAN can ;

Definition of the ESP32ACAN library object instance; can.

The configuration of the ESP32ACAN driver are paced into five steps within the setup function.

void setup() {

....

// CAN bit rate settings

ESP32ACANSettings settings (DESIRED_BIT_RATE);

1Subject to change settings for respective examples. It is described in the respective example section



64

Step 1. Instantiation of the ESP32ACANSettings class object; settings. The constructor

returns a settings object with all the CAN bit settings for the DESIRED_BIT_RATE parameter

passed, and default value for other driver configuration properties.

// Select operating mode

settings.mRequestedCANMode = ESP32ACANSettings :: LoopBackMode;

Step 2. The configuration of the CAN operating mode is set by the mRequestedCANMode

property of the settings object. By default the CAN operating mode is Normal mode. This

property can be overridden with the required operation mode.

Enum Variable Function

NormalMode ESP32 CAN connection with the physcial CAN network.

ListenOnlyMode ESP32 CAN only receive messages.

LoopBackMode ESP32 CAN Self Test.
Table 5.1 ESP32 CAN Operating Modes

// Select Message Control Process

settings.mControlMessageByMethod =

ESP32ACANSettings :: InterruptControlled;

Step 3. The message processing control in the CAN Driver is defined by the mControlMessage

ByMethod property. The process can be either by Polling controlled method or by Interrupt

controlled method.

Method Operation

PollingControlled Transmission and Reception by checking the status flag

InterruptControlled Transmission and Reception by Interrupt Service Routine
Table 5.2 ESP32 CAN Message Processing Method

// Driver Configuration

const uint16_t errorCode = can.begin (settings) ;

}

Step 4. Configuration of the ESP32ACAN driver object can with the settings value. The begin

method sets the initial configuration of the ESP32 CAN controller and installs the ISR; if the

control process is by Interrupt.

if (errorCode == 0) {

Serial.print ("Bit Rate prescaler: ") ;

Serial.println (settings.mBitRatePrescaler) ;

Serial.print ("Time Segment 1: ") ;

Serial.println (settings.mTimeSegment1) ;
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Serial.print ("Time Segment 2: ") ;

Serial.println (settings.mTimeSegment2) ;

Serial.print ("SJW: ") ;

Serial.println (settings.mSJW) ;

Serial.print ("Triple Sampling: ") ;

Serial.println (settings.mTripleSampling ? "yes" : "no") ;

Serial.print ("Actual bit rate: ") ;

Serial.print (settings.actualBitRate ()) ;

Serial.println (" bit/s") ;

Serial.print ("Exact bit rate ? ") ;

Serial.println (settings.exactBitRate () ? "yes" : "no") ;

Serial.print ("Sample point: ") ;

Serial.print (settings.samplePointFromBitStart ()) ;

Serial.println ("%") ;

Serial.println ("Configuration OK!");

}else {

Serial.print ("Configuration error 0x") ;

Serial.println (errorCode , HEX) ;

}

}

}

Step 5. Final step the ESP32ACAN driver configuration returns error code; stored in the

errorCode constant. It returns 0; on successful configuration. The values of the CAN bit

timing segments are printed in the serial monitor. If returned with a configuration error; the error

HEX value is printed.

The sequential operation of the CAN message by the CAN controller are succeeded by

tryToSend and receive method of the ESP32ACAN driver.

static uint32_t gReceivedFrameCount = 0 ;

static uint32_t gSentFrameCount = 0 ;

The global variables are declared to note a successful transmission of message as the driver

method returns before the message begin actually sent. gSentFrameCount counts the number

of sent messages and gReceivedFrameCount counts the number of received messages.

The CAN message send and receive operation are sequential. Therefore the driver Transmission

method and Receiving method are declared inside the loop function.

void loop() {

CANMessage frame ;

The CANMessage class instance frame object is fully initialized by the default constructor;

Standard Data Frame with identifier equal to 0, and without any data.

const bool ok = can.tryToSend (frame) ;
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if (ok) {

gSentFrameCount += 1 ;

Serial.print ("Sent: ") ;

Serial.println (gSentFrameCount) ;

}else{

Serial.println ("Send failure");

}

The tryToSend method returns true or false; on successful transmission of the CAN message

to the Transmit Buffer. It does not tell that the CAN message is actually sent on the CAN

network. On each successful transmission the gSentFrameCount is incremented and printed

in the serial monitor. If the transmission fail, the gSentFrameCount is not changed and Send

failure string is printed on the serial monitor.

if (can.receive(frame)) {

gReceivedFrameCount += 1 ;

Serial.print ("Received: ") ;

Serial.println (gReceivedFrameCount) ;

}

The receive method returns true if the message in the receive buffer is removed successfully

and returns false if no message in the receive buffer. If a message has been received, the

gReceivedFrameCount is incremented and printed on the monitor.

For transmitting and receiving Extended Frame ext property of the CANMessage class is set to

true. By default the driver transmit Standard Frame.

void loop {

CANMessage message;

message.ext = true;

}

The general example code structure is;

/* ---------- Board Check -----------*/

#ifndef ARDUINO_ARCH_ESP32

#error "Select an ESP32 board"

#endif

/* ---------- Include files ---------*/

#include "ESP32ACAN.h"

// ---- ESP32 Desired Bit Rate definition

....

// ---- ESP32 CAN Driver object instance
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....

void setup() {

// --- Switch on builtin led

pinMode (LED_BUILTIN , OUTPUT) ;

digitalWrite (LED_BUILTIN , HIGH) ;

// --- Start serial

Serial.begin (115200) ;

// --- Wait for serial (blink led at 10 Hz during waiting)

while (! Serial) {

delay (50) ;

digitalWrite (LED_BUILTIN , !digitalRead (LED_BUILTIN)) ;

}

// --- Configure ESP32 CAN

....

}

// --------------global Variable --------------------------

static uint32_t gBlinkLedDate = 0;

static uint32_t gReceivedFrameCount = 0;

static uint32_t gSentFrameCount = 0;

// ---------------------------------------------------------

void loop() {

// ---CANMessage Class instance

CANMessage Frame;

if (gBlinkLedDate < millis ()) {

gBlinkLedDate += 2000 ;

digitalWrite (LED_BUILTIN , !digitalRead (LED_BUILTIN)) ;

// --- Call tryToSend function

....

}

// --- Call receive function

....

}

The example codes are compatible for ESP32 microcontroller; Check board before compilation.

The ESP32 built-in Led is switched on to monitor the serial wait period and blink on CAN

message sequence every 2 s; By calling the tryToSend method inside gBlinkLedDate loop

function. The receive method is called outside the loop, as the Receive message has higher

priority; message in the Receive buffer is removed first.
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5.1 LoopBackCheck-Polling

The Figure 5.1 shows the connection of the ESP32 microcontroller pin setup. It is mandatory to

connect the Tx pin with the Rx pin. In this case the default pins settings are used. Note. Only

transmission occurs and reception fails if the pins are unconnected.

Figure. 5.1 LoopBackCheck Connection

LoopBackCheck-Polling.ino file performs a Self-Test of the ESP32 CAN Controller by

message polling process. It checks the status of the Transmit Buffer and Receive Buffer

flag in the Status Register.

settings.mRequestedCANMode = ESP32ACANSettings :: LoopBackMode;

settings.mControllMessageByMethod = ESP32ACANSettings

:: PollingControlled;

Setting the CAN operation to LoopBackMode is mandatory as the driver default operating mode is

defined as NormalMode. The message control method by default is set to PollingControlled.

The test is performed for all the valid CAN bit rate settings. Figure 5.2 shows the output for

CAN bit rate of 1 Mbit/s. On every flash of the ESP32 board; the Boot factors are displayed, if

error.

The Sent count and Received count are incremented on each successful return of the cor-

responding sequential action. Note. the resulting does not mean that the CAN message are

successful in the CAN network.

5.2 LoopBackCheck - Interrupt

LoopBackCheck-Interrupt.ino file implements transmission and reception using Interrupt

Service Routine.

settings.mControlMessageByMethod = ESP32ACANSettings ::

InterruptControlled;

By setting the mControlMessageByMethod property to InterruptControlled installs the

ISR in the Driver configuration. The tryToSend method uses the driver transmit buffer size of

16 and receive method uses the driver receive buffer size of 32. The edge controlled Interrupts

are handled in the ISR.
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Figure. 5.2 Output: LoopBackCheck-Polling

(a) CAN bit rate 500 kbit/s (b) CAN bit rate 125 kbit/s

Figure. 5.3 Output: LoopBackCheck-Interrupt

Figure 5.3 shows the test result for the CAN bit rate 500 kbit/s and 125 kbit/s. The value of the

Status register and the Error counter register value are printed to check the cause of error

during sequential process. The Status register value read is 0xC; bit CAN_STATUS_TX_COMPLETE,

CAN_STATUS_TXB. The previous message transmission is completed and the transmit buffer

status is released to write a new message. If any error occurs during the Transmission and

Receive sequence the value are indicated in the Error Counters. If successful, the error counter

value is 0.
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5.3 LoopBackCheck - Intensive

The previous example sequence sends the message and receive message before transmission

of next message. The Intensive example uses a message count variable with the number of

message (in 1000s) to be transmitted. By the intensive check performance of the CAN controller

at the desired bit rate can be checked effectively. The total message count sent must be received,

failing results in loss of message.

static const uint32_t MESSAGE_COUNT = 10 * 1000;

The tryToSend method is called until the gSentFrameCount does not exceed the MESSAGE_COUNT.

if (gSentFrameCount < MESSAGE_COUNT) {

// --- call tryToSend method

....

}

5.3.1 Intensive check by Polling

LoopBackCheck-PollingIntensive.ino file test the process by the Polling of Status register

flag. The 10,000 messages are tested by the example code. The message count value can be

changed as required.

(a) CAN bit rate 125 kbit/s

(b) CAN bit rate 1 Mbit/s

(c) CAN bit rate 400 kbit/s

Figure. 5.4 Output: LoopBackCheck-PollingIntensive

This demo works well for the Higher CAN bit rates. When operated with slow CAN bit rates

below 125 kbit/s, the controller does not receive the complete message count sent. In Figure 5.4
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(a) the sent message count completes but the receive count stops at 6896 message count. This

failure is unpredictable as slow CAN bit rate works well in all other conditions.

5.3.2 Intensive check with Interrupt

LoopBackCheck-InterruptIntensive.ino code runs intensive check in Self-Test mode by

handling the interrupt. The interrupt source is allocated and handled by the ISR static member

function of the ESP32ACAN driver. It handles the receive interrupt and transmit interrupt.

(a) CAN bit rate 25 kbit/s

(b) CAN bit rate 250 kbit/s

(c) CAN bit rate 800 kbit/s

Figure. 5.5 Output: LoopBackCheck-InterruptIntensive

All the valid CAN bit rates have been tested with this example and have returned a successful

result. The total message count 10,000, is successfully transmitted and received by the ESP32

CAN module. The count values are printed in serial monitor every 5 ms, to verify the sequence of

the control. CAN_STATUS register flags the TX_STATUS bit indicating the controller transmission

state. After completion of transmission and reception of the 10,000 messages, CAN_STATUS

register flags the TX_COMPLETE_STATUS and TX_BUFFER_STATUS released. There are no errors

countered in the phase transmission and reception for all valid CAN bit rate.

5.4 Normal Operation Mode

Previous tests were performed in Self-Test mode which are concluded to be working efficient

for the cases except slow CAN bit rate in polling method. Next test in controller normal mode is

performed with MCP2515 and MCP2517 can controller in the ESP32 MiniKit development board.
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5.4.1 Test with MCP2515 CAN controller

Both ESP32 CAN and MCP2515 CAN controller are connected with MCP2562 CAN Transceiver.

The development board is built with two CAN port for each CAN controller. Each CAN port

lines; CAN-HIGH and CAN-LOW lines are terminated with a 120Ω resistor by turning on the

switch. For ESP32 CAN test with MCP2515, any one of the corresponding CAN ports are

linked. The ACAN2515 library created by Prof. Pierre Molinaro can be downloaded from

https://github.com/pierremolinaro/acan2515.

Figure. 5.6 ESP32 CAN and MCP2515 Test Setup

ESP32 MCP2515

RSTMCP2515_RST
27

INTMCP2515_INT
0 Vcc10kΩ

nCSMCP2515_CS
17 Vcc 10kΩ

SCKSCK
26

SDIMOSI
19

SDOMISO
18

Figure. 5.7 MCP2515 Connection with ESP32 using VSPI pins

The MCP2515 CAN controller is connected to the ESPS32 through SPI bus. The pins are

configured by SPI.begin

SPI.begin (MCP_SCK , MCP_SDO , MCP_SDI) ;

For the object declaration and property settings of the ACAN2515 driver see the document

https://github.com/pierremolinaro/acan2515/blob/master/extras/acan2515.pdf

https://github.com/pierremolinaro/acan2515
https://github.com/pierremolinaro/acan2515/blob/master/extras/acan2515.pdf
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Figure. 5.8 Test with MCP2515 bit rate 625 kbit/s

Figure. 5.9 Test with MCP2515 bit rate 25 kbit/s

Figure 5.8, shows the test result for CAN bit rate 625 kbit/s. All the message sent by the ESP32

CAN are received by MCP2515 and vice versa. The transmission and reception are successful.

Figure 5.9, a message count of 5000 is transmitted at CAN bit rate 25 kbit/s. The red highlighted

column shows the MCP2515 stops sending message at 400 count. This is caused because of

the arbitration of message sent by ESP32 to MCP2515. After a period the MCP2515 continues

sending the message and finally all the sent message are received.

5.5 Acceptance Filter Settings

Acceptance Filter settings can be set for the receiver to accept the particular message with the

ID required. For details of the ESP32 CAN acceptance filter See section 3.4.

ESP32CANFilterSettings.ino example source code details working with the acceptance

filter function.

The acceptance filter settings function parameters:
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• acceptSingleFilterStandard (Code ID, Code byte1, Code byte2, Mask ID,

Mask byte1, Mask byte2)

• acceptSingleFilterExtended (Code ID, Mask ID)

• acceptDualFilterStandard (Code ID1, Code ID2, Code byte1, Mask ID1, Mask

ID2, Mask byte1)

• acceptDualFilterExtended (Code ID1, Code ID2, Mask ID1, Mask ID2)

const ESP32ACANFilter filter = acceptSingleFilterStandard (0

x205 , 0, 0, 0x0A0 , 0xFF , 0xFF); // Single Filter

//const ESP32ACANFilter filter = acceptDualFilterStandard (0

x205 ,0x2A5 ,0,0x000 ,0x000 ,0); // Dual Filter

const uint16_t errorCode = can.begin(settings , filter);

The ESP32ACANFilter class instance object filter passed with the function containing the

Code and Mask register parameters.

This example code uses the two message ID used in the Section 3.4. Message ID1 : 0x205 and

Message ID2 : 0x2A5. The message ID are standard frame format, and they are tested for both

dual and single filter settings with the respective function.

(a) Single Filter Standard Format Frame (b) Dual Filter Standard Format Frame

Figure. 5.10 Output: Acceptance Filter Settings

In Figure 5.10: (a), Acceptance filter settings using Single Filter Mode. The Code and Mask

register value are displayed for verification purpose. The message ID accepted by the receiver

are 0x205, 0x2A5, 0x285, 0x225. In single filter mode the required two message IDs are

not decoded properly, therefore for better result Dual Filter mode is used. The output for dual

filter mode in Figure 5.10: (b); the accepted message IDs are 0x205, 0x2A5.
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Conclusion

The basics of CAN protocol is well documented in this report. The ESP32 CAN peripheral regis-

ters are studied from NXP SJA1000 CAN controller and reproduced for the ESP32 compatibility,

and this is also documented.

The project has covered the implementation of the Driver Development from beginning till end.

The driver features are easy to adapt and configured for the corresponding applications.

The driver features that improvise the CAN Controller are:

1. efficient CAN-bit settings computation from user bit rate.

2. easy definition of acceptance filter settings.

3. Any mode selection; Normal, Self-Test, ListenOnly.

4. Both Standard and Extended CAN message frame can be handled.

These features are well organized in the driver and are tested with the sample codes of the

library.

From the test output, it is concluded that the ESP32 CAN controller exhibits satisfying operation

with the driver. Only the slow CAN bit rate test by Polling demo failed and the cause for the

failure is unpredictable. But it is obvious that the ESP32 CAN controller works well in slow

CAN bit rate settings from the Interrupt control. Complete successful performance of the ESP32

CAN Controller cannot be justified as there is one case that the controller does not satisfy.

Improvements of the driver can be done on the handling of other interrupts, multiple task

operation by utilizing the two cores in ESP32. This driver CAN be adapted and modified for any

ESP32 projects.
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Appendix A

ESP32 CAN Driver

The ESP32 CAN Driver is available in GitHub. It can be downloaded or cloned from:

https://github.com/irfanafa/ESP32ACAN.

The Downloaded Zip can be added to the Arduino IDE:

ARDUINO IDE → Sketch → Include Library → Add .Zip Library... → ESP32ACAN.zip

CAN-DRIVER v1.0

Initial Release - ESP32 CAN REGISTER DEFINITION

test-ESP32CANSettings-on-desktop - CAN Bit Timing Calculator test on desktop compiler

(This can be tested on any C++ compiler)

src/ESP32CANRegisters - Defines the ESP32 CAN Registers Address.

src/ESP32ACANSettings.h - CAN Bit time calculator and Settings class.

src/ESP32ACANSettings.cpp - CAN Bit time calculator and Settings class.

examples : ARDUINO FILES

examples/ESP32CANBitTimingSettings - Check the bit timing for desired bit rate.

examples/ESP32CANRegisterTest - Checks the CAN register access.

CAN-Driver v1.1

src/ESP32ACAN.h - driver functions.

src/ESP32ACAN.cpp

src/CANMessage.h - CAN Message format properties.

Self testing the ESP32 CAN Controller. Handling both extended and standard frame formats.

The sequence of message controlled by Polling method (using Buffer Status Flags). The CAN

Controller reponds well for higher CAN bit rates (250 kbit/s and above), but fails for Slow bit

rates (125 kbit/s and below). The loss of frames can be seen with the Intensive Check.

examples : ARDUINO FILES

https://github.com/irfanafa/ESP32ACAN
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examples/LoopBackCheck-Polling

examples/LoopBackCheck-IntensivePolling - Sends 10000 messages.

CAN-Driver v1.2

src/ACANBuffer16.h

Message control method by handling Interrupts. Driver buffers are added. The size of the

Driver buffers can be changed in src/ESP32ACANSettings.h. The Driver works in NormalMode

operation.

NormalMode Test with - MCP2515 and MCP2517

examples : ARDUINO FILES

examples/LoopBackCheck-Interrupt

examples/LoopBackCheck-IntensiveInterrupt - Sends 10000 messages.

examples/ESP32CANTestWith-ACAN2515 - test with MCP2515 Normal Mode operation.

CAN-Driver v2.0

src/ESP32AcceptanceFilters.h

Driver work with reception filters. Single and Dual Filter settings for Standard and Extended

Frame can be set. The only message ID defined are accepted and handled by the receiver.

examples : ARDUINO FILES

example/ESP32CANFilterSettings - works with filter settings.
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A.1 ESP32 CAN Driver Register Summary

Figure. A.1 ESP32 CAN peripheral register summary



Appendix B

CAN Handbook

B.1 Bit Rate

The number of bits per second that can be transmitted along a network. CAN Bit rates up to

1 Mbit/s are possible at network lengths below 40 m. Decreasing the bit rate allows longer

network distances (e.g.,500 m at 125 kbit/s). The speed of CAN may be different in different

systems. However, in a given system the bitrate is uniform and fixed.

B.2 Remote Data Request

A node that requires Data frame from another node on the network can request a transmission

by sending a Remote Frame. The Data frame and the corresponding Remote frame have the

same Identifier.

B.3 Priorities

The Identifier defines a static message priority during bus access. The highest priority is given

to the message with lowest number ID. For example in Figure Figure B.1, in three nodes, node 2

with lowest number is given highest priority.

Figure. B.1 CAN Message Priority
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B.4 CSMA/CD-CR

Carrier Sense Multiple Access (CSMA) and Collision Detection with Collision Resolution (CD-

CR) [6]. The CAN communication protocol is a Carrier Sense (CS), multiple-access protocol

with collision detection and arbitration on message priority, each node on a bus must wait for a

prescribed period of inactivity (inter-frame) before attempting to send a message. When there is

no activity in the bus, every node has an equal opportunity to transmit a message. If two nodes

transmit at the same time, a collision occurs. Collision resolution refers to “non destructive

bitwise arbitration”, messages remain intact even after collision occurs. To implement CSMA

CDCR, the physical layer needs to support Dominant and recessive bit states; in which dominant

bits wins arbitration over recessive bits.

B.5 Arbitration

The conflicts of bus access is resolved by the bit-wise arbitration. All arbitration takes place

without corruption or delay of the highest priority message, the message that losses the arbitration

is re-transmitted at the next available time. The mechanism of arbitration guarantees that neither

information nor time is lost. If a Data frame and a Remote frame with the same Identifier are

initiated at the same time, the Data frame prevails over the Remote frame Figure Figure B.2.

During simultaneous transmission of dominant and recessive bits, the resulting bus value will be

dominant. When a recessive level is sent, but a dominant level is monitored, the node has lost

arbitration and must withdraw without sending any further bits.

Figure. B.2 Bus Arbitration

B.6 Bit Stuffing

Bit stuffing is introduced at the protocol level to ensure there are enough edges (recessive to

dominant) in a CAN frame to maintain Synchronization in the network. It occurs after 5 like

bits in a row, either recessive or dominant. The protocol handler should add an additional bit of
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opposite polarity to the CAN frame to force an edge. The bits are added by CAN Transmitting

node and are removed by Receive node at the protocol level. It cannot be seen in user application.

B.7 Error Handling

The CAN node performs the error handling by detecting the error conditions. To ensure the

integrity of the messages these error conditions are defined in the CAN protocol. The error

conditions causes the CAN node to transmit error frames, which increments the internal transmit

or receive error counters. By using these counters the node is able to detect the source of error,

for instance Bus problems and subsequently disconnects from the CAN Bus.

Types of Error Detection:

1. Bit Error : When the transmitter node monitors a different signal on the bus from the orig-

inal sent signal. This error check is not done during the arbitration and acknowledgement

field, because the nodes will have equal access to bus in that time.

2. Bit Stuffing Error : The stuffing error occurs when any node that detects 6 consecutive

bit of the same polarity signal between the SOF and the end of CRC field.

3. CRC Error : When the CRC sequence received not identical to the CRC sequence

calculated.

4. ACK Error : An ACK error is detected by a transmitter whenever a dominant bit is not

monitor during the ACK slot.

5. Form Error : When a fixed form bit field (CRC delimiter, ACK delimiter, EOF field)

contains one or more irrelevant bits.

If any of these errors detected, the transmitter will send an error thus destroying the current

message and will transmit the original message on next idle bus time.

Each CAN controller has 3 error states:

Figure. B.3 CAN Error States

Change between the error states is done automatically by the CAN controller. The different

states depends on the value of error counters. TEC is Transmit Error Counter and REC is Receive

Error Counter exists in each CAN controller.
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