
ACAN_ESP32 library for ESP32
Version 1.0.6

Pierre Molinaro

February 14, 2022

Contents

1 Versions 2

2 Features 3

3 ESP32 builtin CAN Controller 3

4 Data flow 4

5 A simple example: LoopBackDemo 5

6 The CANMessage class 8

7 Driver instance 9

8 Pin selection 9

9 Sending frames 10
9.1 Driver transmit buffer size . 11
9.2 The driverTransmitBufferSize method . 11
9.3 The driverTransmitBufferCount method . 11
9.4 The driverTransmitBufferPeakCount method . 11
9.5 The resetDriverTransmitBufferPeakCount method . 12

10 Retrieving received messages using the receive method 12
10.1 Driver receive buffer size . 13
10.2 The driverReceiveBufferSize method . 13
10.3 The driverReceiveBufferCount method . 13
10.4 The driverReceiveBufferPeakCount method . 14
10.5 The resetDriverReceiveBufferPeakCount method . 14

1

1 VERSIONS

11 Filtering received messages 14
11.1 Accept only standard frames . 15
11.2 Accept only extended frames . 16
11.3 Standard frame single filter . 16

11.3.1 Example 1 . 16
11.3.2 Example 2 . 17

11.4 Extended frame single filter . 17
11.4.1 Example 1 . 17
11.4.2 Example 2 . 18

11.5 Standard frame dual filter . 18
11.5.1 Example . 19

11.6 Extended frame dual filter . 19
11.6.1 Example . 20

11.7 Defining your own filter . 21

12 The ACAN_ESP32::begin method reference 22
12.1 The ACAN_ESP32::begin method prototype . 22
12.2 The error code . 22

12.2.1 CAN Bit setting too far from desired rate . 23
12.2.2 CAN Bit inconsistent configuration error . 23

13 ACAN_ESP32_Settings class reference 23
13.1 The ACAN_ESP32_Settings constructor: computation of the CAN bit settings 23
13.2 The CANBitSettingConsistency method . 27
13.3 The actualBitRate method . 27
13.4 The exactBitRate method . 28
13.5 The ppmFromDesiredBitRate method . 28
13.6 The samplePointFromBitStart method . 29
13.7 Properties of the ACAN_ESP32_Settings class . 29

13.7.1 The mRequestedCANMode property . 30

1 Versions

Releases before 1.0.3 do not compile on ESP32 Arduino 2.x.x.

2

3 ESP32 BUILTIN CAN CONTROLLER

Version Date Comment
1.0.6 February 14, 2022 Added resetDriverTransmitBufferPeakCount method (section

9.5 page 12) and resetDriverReceiveBufferPeakCount method
(section 10.5 page 14).

1.0.5 October 1, 2021 Added data_s64, data_s32, data_s16 and data_s8 to CANMessage

class union members, see section 6 page 8 (thanks to tomtom0707).
1.0.4 August 14, 2021 Corrected typo in library description.
1.0.3 August 13, 2021 Updated for ESP32 Arduino 2.0.0-rc1.
1.0.2 June 26, 2021 Fixed tryToSend bug (thanks to DirkMeintjies).
1.0.1 April 26, 2021 Adding reception filters.

For some bit rate settings, RJW value was invalid.
Error codes have been changed (section 12.2 page 22).

1.0.0 April 18, 2021 Initial release.

2 Features

The ACAN_ESP32 library is a CAN (”Controller Area Network”) driver for Teensy 3.1 / 3.2, 3.5, 3.6. It has been
designed to make it easy to start and to be easily configurable:

• default configuration sends and receives any frame – no default filter to provide;

• efficient built-in CAN bit settings computation from user bit rate;

• user can fully define its own CAN bit setting values;

• reception filters are easily defined;

• driver transmit buffer size is customisable;

• driver receive buffer size is customisable;

• overflow of the driver receive buffer is detectable;

• loop back, self reception, listing only controller modes are selectable;

• Tx pin and Rx pins are selectable.

3 ESP32 builtin CAN Controller

ESP32 builtin CAN Controller is not official. In section 4.1.18 page 36 of the ESP32 datasheet1, it is very
shortly documented as a TWAI2 controller. Actually, it is a CAN 2.0B controller. Specifically, this CAN module
implements most of the functionality of an SJA10003.

1Espressif Systems, ESP32 Series Datasheet, Version 3.6, 2021, https://www.espressif.com/sites/default/files/
documentation/esp32_datasheet_en.pdf

2TWAI: Two-Wire Automotive Interface.
3Philips, SJA1000 Stand-alone CAN controller data sheet, 2000 January 4, https://www.nxp.com/docs/en/data‐sheet/SJA1000.

pdf

3

https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.nxp.com/docs/en/data-sheet/SJA1000.pdf
https://www.nxp.com/docs/en/data-sheet/SJA1000.pdf

4 DATA FLOW

This library is based upon the Mohamed Irfanulla MOHAMED ABDULLA Master4. You can find a copy of
this thesis in the extras directory. The corresponding code is on the https://github.com/irfanafa/

ESP32ACAN repository.

4 Data flow

The figure 1 illustrates message flow for sending and receiving CAN messages.

User code

ACAN_ESP32 driver

available
receive

dispatchReceivedMessagetryToSend

Builtin CAN controller

Driver reception Buffer
(FIFO)

Driver transmit Buffer
(FIFO)

CAN Protocol Engine

CAN Tx CAN Rx

Data frame
transmit buffer

Reception filters

Reception FIFO

Figure 1 – Message flow in ACAN_ESP32 driver and Builtin CAN controller

Builtin CAN controller is hardware, a module of the ESP32 micro-controller. It is a CAN 2.0B controller, it
implements most of the functionality of a SJA1000 controller :

• one transmit buffer;

• a 64-byte receive FIFO;

• 8 8-bits registers for handling receive filters.
4Mohamed Irfanulla MOHAMED ABDULLA, Development of ESP32 CAN Driver, École Centrale de Nantes, France, 28 August 2019.

4

https://github.com/irfanafa/ESP32ACAN
https://github.com/irfanafa/ESP32ACAN

5 A SIMPLE EXAMPLE: LOOPBACKDEMO

Sending messages. The CAN hardware makes sending data frames different from sending remote frames.
For both, user code calls the tryToSend method – see section 9 page 10. The frames are stored in the Driver
Transmit Buffer, before to be moved by the message interrupt service routine into the data frame transmit buffer.
The size of the Driver Transmit Buffer is 16 by default – see section 9.1 page 11 for changing the default value.

Receiving messages. The CAN CAN Protocol Engine transmits all correct frames to the reception filters. By
default, they are configured as pass-all. Messages that pass the filters are stored in the 64-byte Reception
FIFO. Its depth depends from the received message size: a standard frame with n data bytes occupies n + 3

bytes in the FIFO; an extended frame with n data bytes occupies n+ 5 bytes in the FIFO. If, when receiving a
frame that passes the filters, there is not enough room in the FIFO, the frame is lost. The message interrupt
service routine transfers the messages from Reception FIFO to the Driver Receive Buffer. The size of the Driver
Receive Buffer is 32 by default – see section 10.1 page 13 for changing the default value. Two user methods
are available:

• the available method returns false if the Driver Receive Buffer is empty, and true otherwise;

• the receive method retrieves messages from the Driver Receive Buffer – see section 10 page 12;

Sequentiality. The ACAN_ESP32 driver and the configuration of the CAN controller ensures sequentiality of
data messages. This means that if an user program calls tryToSend first for a message M1 and then for a
messageM2, the messageM1 will be always retrieved by receive or dispatchReceivedMessage before the
message M2.

5 A simple example: LoopBackDemo

The following code is a sample code for introducing the ACAN_ESP32 library. It demonstrates how to configure
the driver, to send a CAN message, and to receive a CAN message.

Note that, unlike other microcontrollers, the loopback mode requires the connection with a transceiver. The
figure 2 shows a connection with a MCP2562 transceiver. The ACAN_ESP32 driver uses by default GPIO5 as
CAN transmit signal, and GPIO4 as CAN receive signal. Other pins can be used, see section 8 page 9.

MCP2562
TxD

1

RxD
4

VSS
2

STBY
8

VIO

5

VDD

3

+5V

CAN transmit

CAN receive
GND

ESP32

VCC

VCC = 3.3V

GND

CANH
7

CANL
6

120 Ω

Figure 2 – Connecting an ESP32 to a MCP2562 CAN transceiver

The LoopBackDemo sketch is:

1 #include <ACAN_ESP32.h>

5

5 A SIMPLE EXAMPLE: LOOPBACKDEMO

2

3 static const uint32_t DESIRED_BIT_RATE = 1000UL * 1000UL ; // 1 Mb/s

4

5 void setup() {

6 //‐‐‐ Configure builtin led

7 pinMode (LED_BUILTIN, OUTPUT) ;

8 digitalWrite (LED_BUILTIN, HIGH) ;

9 //‐‐‐ Start serial

10 Serial.begin (115200) ;

11 //‐‐‐ Wait for serial (blink led at 10 Hz during waiting)

12 while (!Serial) {

13 delay (50) ;

14 digitalWrite (LED_BUILTIN, !digitalRead (LED_BUILTIN)) ;

15 }

16 //‐‐‐ Configure ESP32 CAN

17 Serial.println ("Configure ESP32 CAN") ;

18 ACAN_ESP32_Settings settings (DESIRED_BIT_RATE) ; // CAN bit rate

19 settings.mRequestedCANMode = ACAN_ESP32_Settings::LoopBackMode; // Select loopback mode

20 // settings.mRxPin = GPIO_NUM_4 ; // Optional, default Tx pin is GPIO_NUM_4

21 // settings.mTxPin = GPIO_NUM_5 ; // Optional, default Rx pin is GPIO_NUM_5

22 const uint32_t errorCode = ACAN_ESP32::can.begin (settings) ;

23 if (errorCode == 0) {

24 Serial.print ("Bit Rate prescaler: ") ;

25 Serial.println (settings.mBitRatePrescaler) ;

26 Serial.print ("Time Segment 1: ") ;

27 Serial.println (settings.mTimeSegment1) ;

28 Serial.print ("Time Segment 2: ") ;

29 Serial.println (settings.mTimeSegment2) ;

30 Serial.print ("SJW: ") ;

31 Serial.println (settings.mRJW) ;

32 Serial.print ("Triple Sampling: ") ;

33 Serial.println (settings.mTripleSampling ? "yes" : "no") ;

34 Serial.print ("Actual bit rate: ") ;

35 Serial.print (settings.actualBitRate ()) ;

36 Serial.println (" bit/s") ;

37 Serial.print ("Exact bit rate ? ") ;

38 Serial.println (settings.exactBitRate () ? "yes" : "no") ;

39 Serial.print ("Sample point: ") ;

40 Serial.print (settings.samplePointFromBitStart ()) ;

41 Serial.println ("%") ;

42 Serial.println ("Configuration OK!");

43 }else {

44 Serial.print ("Configuration error 0x") ;

45 Serial.println (errorCode, HEX) ;

46 }

47 }

48

6

5 A SIMPLE EXAMPLE: LOOPBACKDEMO

49 static uint32_t gBlinkLedDate = 0;

50 static uint32_t gReceivedFrameCount = 0 ;

51 static uint32_t gSentFrameCount = 0 ;

52

53 void loop() {

54 CANMessage frame ;

55 if (gBlinkLedDate < millis ()) {

56 gBlinkLedDate += 500 ;

57 digitalWrite (LED_BUILTIN, !digitalRead (LED_BUILTIN)) ;

58 Serial.print ("Sent: ") ;

59 Serial.print (gSentFrameCount) ;

60 Serial.print ("\t") ;

61 Serial.print ("Receive: ") ;

62 Serial.print (gReceivedFrameCount) ;

63 Serial.print ("\t") ;

64 Serial.print (" STATUS 0x") ;

65 Serial.print (CAN_STATUS, HEX) ;

66 Serial.print (" RXERR ") ;

67 Serial.print (CAN_RX_ECR) ;

68 Serial.print (" TXERR ") ;

69 Serial.println (CAN_TX_ECR) ;

70 frame.len = 8 ;

71 const bool ok = ACAN_ESP32::can.tryToSend (frame) ;

72 if (ok) {

73 gSentFrameCount += 1 ;

74 }

75 }

76 while (ACAN_ESP32::can.receive (frame)) {

77 gReceivedFrameCount += 1 ;

78 }

79 }

Line 1. This line includes the ACAN_ESP32 library.

Line 3. Declaration of the baud rate, in bit/s.

Line 18. Configuration is a four-step operation. This line is the first step. It instanciates the settings object
of the ACAN_ESP32_Settings class. The constructor has one parameter: the wished CAN bit rate. It returns
a settings object fully initialized with CAN bit settings for the wished bit rate, and default values for other
configuration properties.

Line 19. This is the second step. You can override the values of the properties of settings object. Here,
the mRequestedCANMode properties is set to ACAN_ESP32_Settings::LoopBackMode – it is NormalMode by
default. If you want to change CAN transmit and receive pins, write here the new settings (see section 8 page
9). The section 13.7 page 29 lists all properties you can override.

Line 20, 21. This is the third step, configuration of theACAN_ESP32::candriver withsettings values. Default
CAN Tx pin is GPIO_NUM_5, default Rx pin is GPIO_NUM_4; here, you can choose your own pins (see section 8
page 9).

7

6 THE CANMESSAGE CLASS

Line 22. This is the third step, configuration of the ACAN_ESP32::candriver with settings values. You cannot
change the ACAN_ESP32::can name – see section 7 page 9. The driver is configured for being able to send
any (standard / extended, data / remote) frame, and to receive all (standard / extended, data / remote) frames.
If you want to define reception filters, see section 11 page 14.

Lines 23 to 46. Last step: the configuration of the ACAN_ESP32::can driver returns an error code, stored in
the errorCode constant. It has the value 0 if all is ok – see section 12.2 page 22.

Line 49. The gBlinkLedDate global variable is used for sending a CAN message every 0.5 s.

Line 50. The gReceivedFrameCount global variable counts the number of received messages.

Line 51. The gSentFrameCount global variable counts the number of sent messages.

Line 54. The message object is fully initialized by the default constructor, it represents a standard data frame,
with an identifier equal to 0, and without any data – see section 6 page 8.

Line 55. It tests if it is time to blink the led, print send and receive counters, and to send a message.

Line 70. Set the message length. In a real code, we set here message data, identifier, and for an extended
frame the ext boolean property.

Line 71. We try to send the data message. Actually, we try to transfer it into the Driver transmit buffer. The
transfer succeeds if the buffer is not full. The tryToSend method returns false if the buffer is full, and true

otherwise. Note the returned value only tells if the transfer into the Driver transmit buffer is successful or not:
we have no way to know if the frame is actually sent on the the CAN network.

Lines 72 to 74. We act the successfull transfer by setting gSendDate to the next send date and incrementing
the gSentCount variable. Note if the transfer did fail, the send date is not changed, so the tryToSendmethod
will be called on the execution of the loop function.

Line 76. As the CAN controller is configured in loop back mode (see lines 7 and 8), all sent messages are
received. The receive method returns false if no message is available from the driver reception buffer. It
returns true if a message has been successfully removed from the driver reception buffer. This message is
assigned to the message object.

Line 77. It a message has been received, the gReceivedFrameCount is incremented and displayed.

6 The CANMessage class

Note. The CANMessage class is declared in the CANMessage.h header file. The class declaration is protected
by an include guard that causes the macro GENERIC_CAN_MESSAGE_DEFINED to be defined. The ACAN2515
driver contains an identical CANMessage.h file header, enabling using both ACAN driver and ACAN2515 driver
in a sketch.

A CAN message is an object that contains all CAN frame user informations. All properties are initialized by
default, and represent a standard data frame, with an identifier equal to 0, and without any data.

class CANMessage {

public : uint32_t id = 0 ; // Frame identifier

public : bool ext = false ; // false ‐> standard frame, true ‐> extended frame

8

8 PIN SELECTION

public : bool rtr = false ; // false ‐> data frame, true ‐> remote frame

public : uint8_t idx = 0 ; // This field is used by the driver

public : uint8_t len = 0 ; // Length of data (0 ... 8)

public : union {

uint64_t data64 ; // Caution: subject to endianness

int64_t data_s64 ; // Caution: subject to endianness

uint32_t data32 [2] ; // Caution: subject to endianness

int32_t data_s32 [2] ; // Caution: subject to endianness

float dataFloat [2] ; // Caution: subject to endianness

uint16_t data16 [4] ; // Caution: subject to endianness

int16_t data_s16 [4] ; // Caution: subject to endianness

int8_t data_s8 [8] ;

uint8_t data [8] = {0, 0, 0, 0, 0, 0, 0, 0} ;

} ;

} ;

Note the message datas are defined by an union. So message datas can be seen as height bytes, four 16-bit
unsigned integers, two 32-bit, one 64-bit or two 32-bit floats. Be aware that multi-byte integers and floats
are subject to endianness (ESP32 processor is little-endian).

7 Driver instance

The driver instance name is ACAN_ESP32::can. You cannot choose its name, it is defined by the library.

Note. The driver variable is an ACAN_ESP32 class static property. This choice may seem strange. However, a
common error is to declare its own driver variable:

ACAN_ESP32 myCAN ; // Don't do that, it is an error !!!

Declaring a driver variable as ACAN_ESP32 class static property5 enables the compiler to raise an error if you
try to declare your own driver variable.

8 Pin selection

By default, CAN transmit pin is GPIO5, and CAN receive pin is GPIO4.

For using other pins, just set mTxPin and / or mRxPin properties of settings object. For example:

ACAN_ESP32_Settings settings (125 * 1000) ;

settings.mTxPin = GPIO_NUM_2 ;

settings.mRxPin = GPIO_NUM_13 ;

const uint32_t errorCode = ACAN_ESP32::can.begin (settings) ;

The mTxPin and mRxPin properties type is gpio_num_t, so you should use the GPIO_NUM_n names.
5The ACAN_ESP32 constructor is declared private.

9

9 SENDING FRAMES

Note. Particular care must be taken in the choice of pins. Indeed, some pins ouput a PWM at boot, others re-
quire a high or low level, … The https://randomnerdtutorials.com/esp32‐pinout‐reference‐gpios/

shows what pins are best to use as inputs, outputs and which ones you need to be cautious.

For example, it is a bad choice to use GPIO0 as CAN transmit pins: it outputs PWM signal at boot, disturbing the
CAN bus. Using GPIO12 as CAN receive pin provide a boot failure: if the CAN bus is recessive, the transceiver
outputs a high level on its RxD pin, and boot fails if GPIO12 is pulled high.

9 Sending frames

Call the method tryToSend for sending frames; it returns:

• true if the message has been successfully transmitted to driver transmit buffer; note that does not
mean that the CAN frame has been actually sent;

• false if the message has not been successfully transmitted to driver transmit buffer, it was full.

So it is wise to systematically test the returned value. One way is to use a global variable to note if message has
been successfully transmitted to driver transmit buffer. For example, for sending a message every 2 seconds:

static uint32_t gSendDate = 0 ;

void loop () {

CANMessage message ;

if (gSendDate < millis ()) {

// Initialize message properties

const bool ok = ACAN_ESP32::can.tryToSend (message) ;

if (ok) {

gSendDate += 2000 ;

}

}

}

An other hint to use a global boolean variable as a flag that remains true while the frame has not been sent.

static bool gSendMessage = false ;

void loop () {

...

if (frame_should_be_sent) {

gSendMessage = true ;

}

...

if (gSendMessage) {

CANMessage message ;

// Initialize message properties

const bool ok = ACAN_ESP32::can.tryToSend (message) ;

10

https://randomnerdtutorials.com/esp32-pinout-reference-gpios/

9.1 Driver transmit buffer size 9 SENDING FRAMES

if (ok) {

gSendMessage = false ;

}

}

...

}

9.1 Driver transmit buffer size

By default, driver transmit buffer size is 16. You can change this default value by setting themDriverTransmitBufferSize
property of settings variable:

ACAN_ESP32_Settings settings (125 * 1000) ;

settings.mDriverTransmitBufferSize = 30 ;

const uint32_t errorCode = ACAN_ESP32::can.begin (settings) ;

...

As the size of CANMessage class is 16 bytes, the actual size of the driver transmit buffer is the value of
settings.mDriverTransmitBufferSize * 16.

9.2 The driverTransmitBufferSize method

It returns the size of the driver transmit buffer, that is the value of settings.mDriverTransmitBufferSize.

const uint32_t s = ACAN_ESP32::can.driverTransmitBufferSize () ;

9.3 The driverTransmitBufferCount method

The transmitBufferCount method returns the current number of messages in the transmit buffer.

const uint32_t n = ACAN_ESP32::can.driverTransmitBufferCount () ;

9.4 The driverTransmitBufferPeakCount method

The transmitBufferPeakCount method returns the peak value of message count in the transmit buffer.

const uint32_t max = ACAN_ESP32::can.driverTransmitBufferPeakCount () ;

Il the transmit buffer is full when tryToSend is called, the return value is false. In such case, the following
calls of driverTransmitBufferPeakCount will return driverTransmitBufferSize ()+1.

So, when driverTransmitBufferPeakCount returns a value lower or equal to driverTransmitBufferSize
(), it means that calls to tryToSend have always returned true.

11

9.5 The resetDriverTransmitBufferPeakCount method10 RETRIEVING RECEIVED MESSAGES USING THE RECEIVE METHOD

9.5 The resetDriverTransmitBufferPeakCount method

This method assign the current number of messages in the transmit buffer to the peak value of message
count in the transmit buffer.

ACAN_ESP32::can.resetDriverTransmitBufferPeakCount () ;

10 Retrieving received messages using the receive method

This is a basic example:

void setup () {

ACAN_ESP32_Settings settings (125 * 1000) ;

...

const uint32_t errorCode = ACAN_ESP32::can.begin (settings) ; // No receive filter

...

}

void loop () {

CANMessage message ;

if (ACAN_ESP32::can.receive (message)) {

// Handle received message

}

}

The receive method:

• returns false if the driver receive buffer is empty, message argument is not modified;

• returns true if a message has been has been removed from the driver receive buffer, and the message

argument is assigned.

You need to manually dispatch the received messages. If you did not provide any receive filter, you should
check the rtr bit (remote or data frame?), the ext bit (standard or extended frame), and the id (identifier
value). The following snippet dispatches three messages:

void setup () {

ACAN_ESP32_Settings settings (125 * 1000) ;

...

const uint32_t errorCode = ACAN_ESP32::can.begin (settings) ; // No receive filter

...

}

void loop () {

CANMessage message ;

if (ACAN_ESP32::can.receive (message)) {

if (!message.rtr && message.ext && (message.id == 0x123456)) {

12

10.1 Driver receive buffer size 10 RETRIEVING RECEIVED MESSAGES USING THE RECEIVE METHOD

handle_myMessage_0 (message) ; // Extended data frame, id is 0x123456

}else if (!message.rtr && !message.ext && (message.id == 0x234)) {

handle_myMessage_1 (message) ; // Standard data frame, id is 0x234

}else if (message.rtr && !message.ext && (message.id == 0x542)) {

handle_myMessage_2 (message) ; // Standard remote frame, id is 0x542

}

}

...

}

The handle_myMessage_0 function has the following header:

void handle_myMessage_0 (const CANMessage & inMessage) {

...

}

So are the header of the handle_myMessage_1 and the handle_myMessage_2 functions.

10.1 Driver receive buffer size

By default, the driver receive buffer size is 32.

You can change this default value by setting the mDriverReceiveBufferSize property of settings variable:

ACAN_ESP32_Settings settings (125 * 1000) ;

settings.mDriverReceiveBufferSize = 100 ;

const uint32_t errorCode = ACAN_ESP32::can.begin (settings) ;

...

The actual size of the driver receive buffer is the value of settings.mDriverReceiveBufferSize * 16 (the
size of CANMessage class is 16 bytes).

10.2 The driverReceiveBufferSize method

The driverReceiveBufferSize method returns the size of the driver receive buffer, that is the value of
settings.mDriverReceiveBufferSize.

const uint32_t s = ACAN_ESP32::can.receiveBufferSize () ;

10.3 The driverReceiveBufferCount method

ThedriverReceiveBufferCountmethod returns the current number of messages in the driver receive buffer.

const uint32_t n = ACAN_ESP32::can.driverReceiveBufferCount () ;

13

10.4 The driverReceiveBufferPeakCount method 11 FILTERING RECEIVED MESSAGES

10.4 The driverReceiveBufferPeakCount method

The driverReceiveBufferPeakCount method returns the peak value of message count in the driver receive
buffer.

const uint32_t max = ACAN_ESP32::can.driverReceiveBufferPeakCount () ;

Note the driver receive buffer may overflow, if messages are not retrieved (by calls of the receive method or
thedispatchReceivedMessagemethod). If an overflow occurs, further calls of theACAN_ESP32::can.receive‐
BufferPeakCount () method return ACAN_ESP32::can.receiveBufferSize ()+1.

10.5 The resetDriverReceiveBufferPeakCount method

This method assign the current number of messages in the receive buffer to the peak value of message count
in the receive buffer.

ACAN_ESP32::can.resetDriverReceiveBufferPeakCount () ;

11 Filtering received messages

By default, no filtering of received message occurs, that is all network CAN frames are captured and trans-
ferred into the hardware CAN 64-byte RxFIFO, and then transferred info the driver receive buffer by the driver.

As SJA1000, ESP32 CAN module has 8 bytes dedicaced to received message filtering. This is very little, so the
filtering possibilities are very limited.

Six different filters are defined:

• accept only standard frames (section 11.1 page 15, demo sketch: ESP32CANAcceptOnlyStandardFilterDemo);

• accept only extended frames (section 11.2 page 16, demo sketch: ESP32CANAcceptOnlyExtendedFilterDemo);

• standard frame single filter (section 11.3 page 16, demo sketch: ESP32CANSingleStandardFilterDemo);

• extended frame single filter (section 11.4 page 17, demo sketch: ESP32CANSingleExtendedFilterDemo);

• standard frame dual filter (section 11.5 page 18, demo sketch: ESP32CANDualStandardFilterDemo);

• extended frame dual filter (section 11.6 page 19, demo sketch: ESP32CANDualExtendedFilterDemo).

If none of the above filters work for you, you can set your own (section 11.7 page 21).

A filter demo sketch iterates over:

• all standard data frames with no data (211 frames);

• all standard remote frames (211 frames);

• all extended data frames with no data (229 frames);

14

11.1 Accept only standard frames 11 FILTERING RECEIVED MESSAGES

• all extended remote frames (229 frames).

The frames are transmitted in this order:

• standard data frame with identifier 0x000;

• standard remote frame with identifier 0x000;

• standard data frame with identifier 0x001;

• standard remote frame with identifier 0x001;

• ...

• standard data frame with identifier 0x7FF;

• standard remote frame with identifier 0x7FF;

• extended data frame with identifier 0x00000000;

• extended remote frame with identifier 0x00000000;

• extended data frame with identifier 0x00000001;

• extended remote frame with identifier 0x00000001;

• ...

• extended data frame with identifier 0x1FFFFFFF;

• extended remote frame with identifier 0x1FFFFFFF.

So it takes a while!

Every minute a progress message is printed.

Every accepted frame is printed. So a huge number of lines can be printed! For example, the ESP32CANAc‐

ceptOnlyExtendedFilterDemo sketch accepts all extended frames, so229 data frames and229 remote frames
are received and printed.

11.1 Accept only standard frames

This filter accepts any (data and remote) standard frames, and rejects any extended frame.

Demo sketch: ESP32CANAcceptOnlyStandardFilterDemo.

void setup () {

...

ACAN_ESP32_Settings settings (...) ;

...

const ACAN_ESP32_Filter filter = ACAN_ESP32_Filter::acceptStandardFrames () ;

const uint32_t errorCode = ACAN_ESP32::can.begin (settings, filter) ;

...

}

15

11.2 Accept only extended frames 11 FILTERING RECEIVED MESSAGES

11.2 Accept only extended frames

This filter accepts any (data and remote) extended frames, and rejects any standard frame.

Demo sketch: ESP32CANAcceptOnlyExtendedFilterDemo.

void setup () {

...

ACAN_ESP32_Settings settings (...) ;

...

const ACAN_ESP32_Filter filter = ACAN_ESP32_Filter::acceptExtendedFrames () ;

const uint32_t errorCode = ACAN_ESP32::can.begin (settings, filter) ;

...

}

11.3 Standard frame single filter

This filter accepts standard frames that pass filter, and rejects any extended frame.

Demo sketch: ESP32CANSingleStandardFilterDemo.

The ACAN_ESP32_Filter::singleStandardFilter static function prototype is:

ACAN_ESP32_Filter singleStandardFilter (const ACAN_ESP32_Filter::Type inType,

const uint16_t inIdentifier,

const uint16_t inDontCareMask) ;

The three parameters are:

1. inType: you can choose to receive only the data frames (ACAN_ESP32_Filter::data), to receive only
the remote frames (ACAN_ESP32_Filter::remote), or both (ACAN_ESP32_Filter::dataAndRemote);

2. inIdentifier: the value of the identifier of the frames you want to receive; note: as a standard iden-
tifier consists of 11 bits, bits 11 to 15 of the supplied value are ignored;

3. inDontCareMask: here you specify the inIdentifier bits that are ignored for filtering (see examples
below); a zero value means only frame with identifier equal to inIdentifier matches.

11.3.1 Example 1

I only want to receive standard data frames with an identifier of 0x123.

void setup () {

...

ACAN_ESP32_Settings settings (...) ;

...

const ACAN_ESP32_Filter filter = ACAN_ESP32_Filter::singleStandardFilter (

ACAN_ESP32_Filter::data, 0x123, 0

) ;

16

11.4 Extended frame single filter 11 FILTERING RECEIVED MESSAGES

const uint32_t errorCode = ACAN_ESP32::can.begin (settings, filter) ;

...

}

11.3.2 Example 2

From the previous example, the last parameter is changed to 0x404.

void setup () {

...

ACAN_ESP32_Settings settings (...) ;

...

const ACAN_ESP32_Filter filter = ACAN_ESP32_Filter::singleStandardFilter (

ACAN_ESP32_Filter::data, 0x123, 0x404

) ;

const uint32_t errorCode = ACAN_ESP32::can.begin (settings, filter) ;

...

}

The 1-bits of 0x404 are the #2 and #10: 0x123 bits 2 and 10 are ignored for filtering. Therefore frames of
identifier 0x123, 0x127, 0x523 and 0x527 are received.

11.4 Extended frame single filter

This filter accepts extended frames that pass filter, and rejects any standard frame.

Demo sketch: ESP32CANSingleExtendedFilterDemo.

The ACAN_ESP32_Filter::singleExtendedFilter static function prototype is:

ACAN_ESP32_Filter singleExtendedFilter (const ACAN_ESP32_Filter::Type inType,

const uint32_t inIdentifier,

const uint32_t inDontCareMask) ;

The three parameters are:

1. inType: you can choose to receive only the data frames (ACAN_ESP32_Filter::data), to receive only
the remote frames (ACAN_ESP32_Filter::remote), or both (ACAN_ESP32_Filter::dataAndRemote);

2. inIdentifier: the value of the identifier of the frames you want to receive; note: as a extended iden-
tifier consists of 29 bits, bits 29 to 31 of the supplied value are ignored;

3. inDontCareMask: here you specify the inIdentifier bits that are ignored for filtering (see examples
below); a zero value means only frame with identifier equal to inIdentifier matches.

11.4.1 Example 1

I only want to receive extended data frames with an identifier of 0x12345678.

17

11.5 Standard frame dual filter 11 FILTERING RECEIVED MESSAGES

void setup () {

...

ACAN_ESP32_Settings settings (...) ;

...

const ACAN_ESP32_Filter filter = ACAN_ESP32_Filter::singleExtendedFilter (

ACAN_ESP32_Filter::data, 0x12345678, 0

) ;

const uint32_t errorCode = ACAN_ESP32::can.begin (settings, filter) ;

...

}

11.4.2 Example 2

From the previous example, the last parameter is changed to 0x20202.

void setup () {

...

ACAN_ESP32_Settings settings (...) ;

...

const ACAN_ESP32_Filter filter = ACAN_ESP32_Filter::singleExtendedFilter (

ACAN_ESP32_Filter::data, 0x12345678, 0x20202

) ;

const uint32_t errorCode = ACAN_ESP32::can.begin (settings, filter) ;

...

}

The 1-bits of 0x20202 are the #1 , #9 and #17: 0x12345678 bits 1, 9 and 17 are ignored for filtering. There-
fore frames of identifier 0x12345478, 0x1234547A, 0x12345678, 0x1234567A, 0x12365478, 0x1236547A,
0x12365678 and 0x1236567A are received. The table 1 shows how theses identifier values can be found.

Parameter Hex value Binary value
inIdentifier 0x12345678 1 0010 0011 0100 0101 0110 0111 1000

inDontCareMask 0x00020202 0 0000 0000 0010 0000 0010 0000 0010

Accepted identifiers 1 0010 0011 01x0 0101 01x0 0111 10x0

Table 1 – ACAN_ESP32Filter::singleExtendedFilter filter example

11.5 Standard frame dual filter

This filter accepts standard frames that pass one of the filters, and rejects any extended frame.

The ACAN_ESP32_Filter::dualStandardFilter static function prototype is:

ACAN_ESP32_Filter dualStandardFilter (const ACAN_ESP32_Filter::Type inType0,

const uint16_t inIdentifier0,

const uint16_t inDontCareMask0,

const ACAN_ESP32_Filter::Type inType1,

18

11.6 Extended frame dual filter 11 FILTERING RECEIVED MESSAGES

const uint16_t inIdentifier1,

const uint16_t inDontCareMask1) ;

The six parameters are:

1. inType0, inType1: you can choose to receive only the data frames (ACAN_ESP32_Filter::data), to re-
ceive only the remote frames (ACAN_ESP32_Filter::remote), or both (ACAN_ESP32_Filter::dataAndRemote);

2. inIdentifier0, inIdentifier1: the value of the identifier of the frames you want to receive; note: as
a standard identifier consists of 11 bits, bits 11 to 15 of the supplied value are ignored;

3. inDontCareMask0, inDontCareMask1: here you specify the inIdentifier bits that are ignored for
filtering (see examples below); a zero value means only frame with identifier equal to inIdentifier

matches.

The first three parameters inType0, inIdentifier0 and inDontCareMask0 define the first filter. The last
three parameters inType1, inIdentifier1 and inDontCareMask1 define the second one. The two filters
are independant. A frame is received if it passes one filter (or both).

11.5.1 Example

Demo sketch: ESP32CANDualStandardFilterDemo.

void setup () {

...

ACAN_ESP32_Settings settings (...) ;

...

const ACAN_ESP32_Filter filter = ACAN_ESP32_Filter::dualStandardFilter (

ACAN_ESP32_Filter::data, 0x123, 0x110,

ACAN_ESP32_Filter::remote, 0x456, 0x022

) ;

const uint32_t errorCode = ACAN_ESP32::can.begin (settings, filter) ;

...

}

For the first filter, the 1-bits of 0x110 are the #4 and #8: 0x123 bits 4 and 8 are ignored for filtering. Therefore
standard data frames of identifier 0x023, 0x033, 0x123 and 0x133 are received. For the second one, the 1-
bits of 0x022 are the #1 and #5: 0x456 bits 1 and 5 are ignored for filtering. Therefore remote data frames of
identifier 0x454, 0x456, 0x474 and 0x476 are also received.

11.6 Extended frame dual filter

This filter accepts extended frames that pass one of the filters, and rejects any standard frame.

The ACAN_ESP32_Filter::dualExtendedFilter static function prototype is:

ACAN_ESP32_Filter dualExtendedFilter (const uint32_t inIdentifier0,

19

11.6 Extended frame dual filter 11 FILTERING RECEIVED MESSAGES

const uint32_t inDontCareMask0,

const uint32_t inIdentifier1,

const uint32_t inDontCareMask1 ;

The four parameters are:

1. inIdentifier0, inIdentifier1: the value of the identifier of the frames you want to receive; note: as
a standard identifier consists of 29 bits, bits 29 to 31 of the supplied value are ignored; special case for
this filter, the 13 lower bits are also ignored;

2. inDontCareMask0, inDontCareMask1: here you specify the inIdentifier bits that are ignored for
filtering (see examples below); a zero value means only frame with identifier equal to inIdentifier

matches; as for the previous parameter, bits 0 to 12 and bits 29 to 31 are ignored.

The first two parameters inIdentifier0 and inDontCareMask0 define the first filter. The last two parame-
ters inIdentifier1 and inDontCareMask1 define the second one. The two filters are independant. A frame
is received if it passes one filter (or both).

Unlike other filters, it is not possible to filter by the type (data, remote) of the received frame. Both data and
remote extended frames with a given identifier are either accepted, either rejected.

11.6.1 Example

Demo sketch: ESP32CANDualExtendedFilterDemo.

void setup () {

...

ACAN_ESP32_Settings settings (...) ;

...

const ACAN_ESP32_Filter filter = ACAN_ESP32_Filter::dualExtendedFilter (

0x12345678, 0x00060000, // First filter

0x19876543, 0x0000A000 // Second filter

) ;

const uint32_t errorCode = ACAN_ESP32::can.begin (settings, filter) ;

...

}

The details of the filter operations are shown in table 2. Note that parameter bits 0 to 12 are always ignored
by this filter. For example, inIdentifier0 can have any value between 0x12344000 and 0x12345FFF with-
out modifying filtering result. Note also that inDontCareMask1 value is 0x00009000, the two 1-bits are #12
and #15. The bit #12 is always ignored this filter, therefore inDontCareMask1 can have any value between
0x00008000 and 0x00009FFFwithout modifying filtering result. Finally, this filter accepts data and remote ex-
tended frames whose identifiers are of the form 1 0010 0011 0xx0 010x xxxx xxxx xxxx (215 extended
data frames, 215 extended remote frames) or1 1001 1000 0111 x00x xxxx xxxx xxxx (214 extended data
frames, 214 extended remote frames).

20

11.7 Defining your own filter 11 FILTERING RECEIVED MESSAGES

Parameter Hex value Binary value
inIdentifier0 0x12345678 0001 0010 0011 0100 0101 0110 0111 1000

inDontCareMask0 0x00060000 0000 0000 0000 0110 0000 0000 0000 0000

Ignored bits xxx x xxxx xxxx xxxx

Accepted identifiers 1 0010 0011 0xx0 010x xxxx xxxx xxxx

Parameter Hex value Binary value
inIdentifier1 0x19876543 0001 1001 1000 0111 0110 0101 0100 0011

inDontCareMask1 0x00009000 0000 0000 0000 0000 1001 0000 0000 0000

Ignored bits xxx x xxxx xxxx xxxx

Accepted identifiers 1 1001 1000 0111 x00x xxxx xxxx xxxx

Table 2 – ACAN_ESP32Filter::dualExtendedFilter filter example

11.7 Defining your own filter

If none of the previous filters satisfy you, you can define your own filter. The properties of ACAN_ESP32Filter
are public, so you can set them as yout want:

void setup () {

...

ACAN_ESP32_Settings settings (...) ;

...

ACAN_ESP32_Filter filter = ACAN_ESP32_Filter::acceptAll () ; // Providing a default value

filter.mACR0 = ... ;

...

filter.mAMR3 = ... ;

filter.mAMFSingle = ... ;

filter.mFormat = ... ;

const uint32_t errorCode = ACAN_ESP32::can.begin (settings, filter) ;

...

}

Read the SJ1000 Data sheet 6, section 6.4.15 from page 44. Section 6.3.9 from page 19 is irrelevant because
it is for basic mode, but the driver sets the SJA1000 to pelican mode.

When the ACAN_ESP32::begin method is executed:

• the mACR0 property of the filter parameter is set to the ACR0 control register;

• ...

• the mAMR3 property of the filter parameter is set to the AMR3 control register;

• the mAMFSingle boolean property of the filter parameter is set to the AFM bit MOD control register.

The mFormat boolean property of the filter parameter is particular. It does not correspond to any control
register, it is handled by the driver. The key point is that the SJA1000 filters are not designed to accept or reject

6Philips, SJA1000 Stand-alone CAN controller data sheet, 2000 January 4, https://www.nxp.com/docs/en/data‐sheet/SJA1000.
pdf

21

https://www.nxp.com/docs/en/data-sheet/SJA1000.pdf
https://www.nxp.com/docs/en/data-sheet/SJA1000.pdf

12 THE ACAN_ESP32::BEGIN METHOD REFERENCE

a frame based on its standard or extended format. The contents of the AMR0, ..., ACR3 registers are interpreted
differently depending on whether the received frame is standard or extended. Thus, a filter setting always
accepts, whatever the value of the AMR0, ..., ACR3 registers, some standard frames and some extended frames.

When the ACAN_ESP32::begin method is executed, the mFormat boolean property of the filter parameter
is set to the mAcceptedFrameFormat property of the ACAN_ESP32 class. This property is only used in the
ACAN_ESP32::handleRXInterrupt method for accepting or rejecting data or remote frames.

12 The ACAN_ESP32::begin method reference

12.1 The ACAN_ESP32::begin method prototype

The begin method prototype is:

uint32_t ACAN_ESP32::begin (const ACAN_ESP32_Settings & inSettings,

const ACAN_ESP32_Filter & inFilter = ACAN_ESP32_Filter::acceptAll ()) ;

The second parameter defines the receive filter and is optional; by default, the pass-all filter is provided.

12.2 The error code

The begin method returns an error code. The value 0 denotes no error. Otherwise, you consider every bit
as an error flag. An error code could report several errors. Bits from 0 to 9 are actually defined by the
ACAN_ESP32_Settings class and are also returned by the CANBitSettingConsistency method (see sec-
tion 13.2 page 27). Bits from 16 are defined by the ACAN_ESP32 class.

The ACAN_ESP32_Settings class defines static constant properties that can be used as mask error:

public: static const uint16_t kBitRatePrescalerIsZero = 1 << 0 ;

public: static const uint16_t kBitRatePrescalerIsGreaterThan64 = 1 << 1 ;

public: static const uint16_t kTimeSegment1IsZero = 1 << 2 ;

public: static const uint16_t kTimeSegment1IsGreaterThan16 = 1 << 3 ;

public: static const uint16_t kTimeSegment2IsLowerThan2 = 1 << 4 ;

public: static const uint16_t kTimeSegment2IsGreaterThan8 = 1 << 5 ;

public: static const uint16_t kTimeSegment2Is2AndTripleSampling = 1 << 6 ;

public: static const uint16_t kRJWIsZero = 1 << 7 ;

public: static const uint16_t kRJWIsGreaterThan4 = 1 << 8 ;

public: static const uint16_t kRJWIsGreaterThanTimeSegment2 = 1 << 9 ;

The ACAN_ESP32 class defines static constant properties that can be used as mask error:

public: static const uint32_t kNotInRestModeInConfiguration = 1 << 16 ;

public: static const uint32_t kCANRegistersError = 1 << 17 ;

public: static const uint32_t kTooFarFromDesiredBitRate = 1 << 18 ;

public: static const uint32_t kInconsistentBitRateSettings = 1 << 19 ;

public: static const uint32_t kCannotAllocateDriverReceiveBuffer = 1 << 20 ;

public: static const uint32_t kCannotAllocateDriverTransmitBuffer = 1 << 21 ;

22

13 ACAN_ESP32_SETTINGS CLASS REFERENCE

For example, you can write:

const uint32_t errorCode = ACAN_ESP32::can.begin (settings) ;

if (errorCode != 0) {

...

if ((errorCode & ACAN_ESP32::kTooFarFromDesiredBitRate) != 0) {

// Error: too far from desired bit rate

}

...

}

12.2.1 CAN Bit setting too far from desired rate

This error is raised when the mBitRateClosedToDesiredRate of the settings object is false. This means
that the ACAN_ESP32_Settings constructor cannot compute a CAN bit configuration close enough to the
wished bit rate. When the begin is called with settings.mBitRateClosedToDesiredRate false, this error
is reported. For example:

void setup () {

ACAN_ESP32_Settings settings (1) ; // 1 bit/s !!!

// Here, settings.mBitRateClosedToDesiredRate is false

const uint32_t errorCode = ACAN_ESP32::can.begin (settings) ;

// Here, errorCode == ACAN_ESP32::kCANBitConfigurationTooFarFromWishedBitRateErrorMask

}

This error is a fatal error, the driver and the CAN module are not configured. See section 13.1 page 23 for a
discussion about CAN bit setting computation.

12.2.2 CAN Bit inconsistent configuration error

This error is raised when you have changed the CAN bit properties (mBitRatePrescaler, mTimeSegment1,
mTimeSegment2, mRJW), and one or more resulting values are inconsistent. See section 13.2 page 27.

13 ACAN_ESP32_Settings class reference

13.1 The ACAN_ESP32_Settings constructor: computation of the CAN bit settings

The constructor of the ACAN_ESP32_Settings has one mandatory argument: the wished bit rate. It tries to
compute the CAN bit settings for this bit rate. If it succeeds, the constructed object has itsmBitConfigurationClosed‐
ToWishedRate property set to true, otherwise it is set to false. For example:

void setup () {

ACAN_ESP32_Settings settings (1 * 1000 * 1000) ; // 1 Mbit/s

// Here, settings.mBitRateClosedToDesiredRate is true

...

23

13.1 The ACAN_ESP32_Settings constructor: computation of the CAN bit settings13 ACAN_ESP32_SETTINGS CLASS REFERENCE

}

Of course, CAN bit computation always succeeds for classical bit rates: 1 Mbit/s, 500 kbit/s, 250 kbit/s, 125
kbit/s. But CAN bit computation can also succeed for some unusual bit rates, as 842 kbit/s. You can check the
result by computing actual bit rate, and the distance from the wished bit rate:

void setup () {

Serial.begin (9600) ;

ACAN_ESP32_Settings settings (842 * 1000) ; // 842 kbit/s

Serial.print ("mBitRateClosedToDesiredRate: ") ;

Serial.println (settings.mBitRateClosedToDesiredRate) ; // 1 (‐‐> is true)

Serial.print ("actual bit rate: ") ;

Serial.println (settings.actualBitRate ()) ; // 842105 bit/s

Serial.print ("distance: ") ;

Serial.println (settings.ppmFromDesiredBitRate ()) ; // 125 ppm

...

}

The actual bit rate is 842,105 bit/s, and its distance from wished bit rate is 124 ppm. ”ppm” stands for ”part-
per-million”, and 1 ppm = 10−6. In other words, 10, 000 ppm = 1%.

By default, a wished bit rate is accepted if the distance from the computed actual bit rate is lower or equal
to 1, 000 ppm = 0.1 %. You can change this default value by adding your own value as second argument of
ACAN_ESP32_Settings constructor:

void setup () {

Serial.begin (9600) ;

ACAN_ESP32_Settings settings (842 * 1000, 100) ; // 842 kbit/s, max distance is 100 ppm

Serial.print ("mBitRateClosedToDesiredRate: ") ;

Serial.println (settings.mBitRateClosedToDesiredRate) ; // 0 (‐‐> is false)

Serial.print ("actual bit rate: ") ;

Serial.println (settings.actualBitRate ()) ; // 842105 bit/s

Serial.print ("distance: ") ;

Serial.println (settings.ppmFromDesiredBitRate ()) ; // 125 ppm

...

}

The second argument does not change the CAN bit computation, it only changes the acceptance test for setting
the mBitRateClosedToDesiredRate property. For example, you can specify that you want the computed
actual bit to be exactly the wished bit rate:

void setup () {

Serial.begin (9600) ;

ACAN_ESP32_Settings settings (500 * 1000, 0) ; // 500 kbit/s, max distance is 0 ppm

Serial.print ("mBitRateClosedToDesiredRate: ") ;

Serial.println (settings.mBitRateClosedToDesiredRate) ; // 1 (‐‐> is true)

Serial.print ("actual bit rate: ") ;

Serial.println (settings.actualBitRate ()) ; // 500,000 bit/s

Serial.print ("distance: ") ;

24

13.1 The ACAN_ESP32_Settings constructor: computation of the CAN bit settings13 ACAN_ESP32_SETTINGS CLASS REFERENCE

Serial.println (settings.ppmFromDesiredBitRate ()) ; // 0 ppm

...

}

The slowest exact bit rate is 25 kbit/s.

In any way, the bit rate computation always gives a consistent result, resulting an actual bit rate closest from
the wished bit rate. For example:

void setup () {

Serial.begin (9600) ;

ACAN_ESP32_Settings settings (440 * 1000) ; // 440 kbit/s

Serial.print ("mBitRateClosedToDesiredRate: ") ;

Serial.println (settings.mBitRateClosedToDesiredRate) ; // 0 (‐‐> is false)

Serial.print ("actual bit rate: ") ;

Serial.println (settings.actualBitRate ()) ; // 444,444 bit/s

Serial.print ("distance: ") ;

Serial.println (settings.ppmFromDesiredBitRate ()) ; // 1001 ppm

...

}

You can get the details of the CAN bit decomposition. For example:

void setup () {

Serial.begin (9600) ;

ACAN_ESP32_Settings settings (440 * 1000) ; // 440 kbit/s

Serial.print ("mBitRateClosedToDesiredRate: ") ;

Serial.println (settings.mBitRateClosedToDesiredRate) ; // 0 (‐‐> is false)

Serial.print ("actual bit rate: ") ;

Serial.println (settings.actualBitRate ()) ; // 444,444 bit/s

Serial.print ("distance: ") ;

Serial.println (settings.ppmFromDesiredBitRate ()) ; // 1001 ppm

Serial.print ("Bit rate prescaler: ") ;

Serial.println (settings.mBitRatePrescaler) ; // BRP = 9

Serial.print ("Time segment 1: ") ;

Serial.println (settings.mTimeSegment1) ; // 15

Serial.print ("Time segment 2: ") ;

Serial.println (settings.mTimeSegment2) ; // 4

Serial.print ("Resynchronization Jump Width: ") ;

Serial.println (settings.mRJW) ; // SJW = 4

Serial.print ("Triple Sampling: ") ;

Serial.println (settings.mTripleSampling) ; // 0, meaning single sampling

Serial.print ("Sample Point: ") ;

Serial.println (settings.samplePointFromBitStart ()) ; // 80, meaning 80%

Serial.print ("Consistency: ") ;

Serial.println (settings.CANBitSettingConsistency ()) ; // 0, meaning Ok

...

}

25

13.1 The ACAN_ESP32_Settings constructor: computation of the CAN bit settings13 ACAN_ESP32_SETTINGS CLASS REFERENCE

The samplePointFromBitStartmethod returns sample point, expressed in per-cent of the bit duration from
the beginning of the bit.

Note the computation may calculate a bit decomposition too far from the wished bit rate, but it is always
consistent. You can check this by calling the CANBitSettingConsistency method.

You can change the property values for adapting to the particularities of your CAN network propagation time.
By example, you can increment the mTimeSegment1 value, and decrement the mTimeSegment2 value in order
to sample the CAN Rx pin later.

void setup () {

Serial.begin (9600) ;

ACAN_ESP32_Settings settings (500 * 1000) ; // 500 kbit/s

Serial.print ("mBitRateClosedToDesiredRate: ") ;

Serial.println (settings.mBitRateClosedToDesiredRate) ; // 1 (‐‐> is true)

settings.mTimeSegment1 ‐‐ ; // 15 ‐> 14: safe, 1 <= TS1 <= 16

settings.mTimeSegment2 ++ ; // 4 ‐> 5: safe, 2 <= TS2 <= 8 and SJW <= PS2

Serial.print ("Sample Point: ") ;

Serial.println (settings.samplePointFromBitStart ()) ; // 75, meaning 75%

Serial.print ("actual bit rate: ") ;

Serial.println (settings.actualBitRate ()) ; // 500000: ok, bit rate did not change

Serial.print ("Consistency: ") ;

Serial.println (settings.CANBitSettingConsistency ()) ; // 0, meaning Ok

...

}

Be aware to always respect CAN bit timing consistency! The constraints are:

2 ⩽ mBitRatePrescaler ⩽ 128

mBitRatePrescaler is even

1 ⩽ mTimeSegment1 ⩽ 16

Single sampling: 2 ⩽ mTimeSegment2 ⩽ 8

Triple sampling: 3 ⩽ mTimeSegment2 ⩽ 8

1 ⩽ mRJW ⩽ 4

mRJW ⩽ mTimeSegment2

Resulting actual bit rate is given by:

Actual bit rate =
80 MHz

mBitRatePrescaler · (1 + mTimeSegment1+ mTimeSegment2)

26

13.2 The CANBitSettingConsistency method 13 ACAN_ESP32_SETTINGS CLASS REFERENCE

And sampling points (in per-cent unit) are given by:

Sampling point (single sampling) = 100 · 1 + mTimeSegment1
1 + mTimeSegment1+ mTimeSegment2

Sampling first point (triple sampling) = 100 · mTimeSegment1
1 + mTimeSegment1+ mTimeSegment2

13.2 The CANBitSettingConsistency method

This method checks the CAN bit decomposition (given bymBitRatePrescaler, mTimeSegment1, mTimeSegment2,
mRJW property values) is consistent.

void setup () {

Serial.begin (9600) ;

ACAN_ESP32_Settings settings (500 * 1000) ; // 500 kbit/s

Serial.print ("mBitRateClosedToDesiredRate: ") ;

Serial.println (settings.mBitRateClosedToDesiredRate) ; // 1 (‐‐> is true)

settings.mTimeSegment1 = 0 ; // Error, mTimeSegment1 should be >= 1 (and <= 8)

Serial.print ("Consistency: 0x") ;

Serial.println (settings.CANBitSettingConsistency (), HEX) ; // 0x10, meaning error

...

}

The CANBitSettingConsistency method returns 0 if CAN bit decomposition is consistent. Otherwise, the
returned value is a bit field that can report several errors.

The ACAN_ESP32_Settings class defines static constant properties that can be used as mask error:

public: static const uint16_t kBitRatePrescalerIsZero = 1 << 0 ;

public: static const uint16_t kBitRatePrescalerIsGreaterThan64 = 1 << 1 ;

public: static const uint16_t kTimeSegment1IsZero = 1 << 2 ;

public: static const uint16_t kTimeSegment1IsGreaterThan16 = 1 << 3 ;

public: static const uint16_t kTimeSegment2IsLowerThan2 = 1 << 4 ;

public: static const uint16_t kTimeSegment2IsGreaterThan8 = 1 << 5 ;

public: static const uint16_t kTimeSegment2Is2AndTripleSampling = 1 << 6 ;

public: static const uint16_t kRJWIsZero = 1 << 7 ;

public: static const uint16_t kRJWIsGreaterThan4 = 1 << 8 ;

public: static const uint16_t kRJWIsGreaterThanTimeSegment2 = 1 << 9 ;

13.3 The actualBitRate method

The actualBitRate method returns the actual bit computed from mBitRatePrescaler, mTimeSegment1,
mTimeSegment2, mRJW property values.

void setup () {

Serial.begin (9600) ;

ACAN_ESP32_Settings settings (440 * 1000) ; // 440 kbit/s

27

13.4 The exactBitRate method 13 ACAN_ESP32_SETTINGS CLASS REFERENCE

Serial.print ("mBitRateClosedToDesiredRate: ") ;

Serial.println (settings.mBitRateClosedToDesiredRate) ; // 0 (‐‐> is false)

Serial.print ("actual bit rate: ") ;

Serial.println (settings.actualBitRate ()) ; // 444,444 bit/s

...

}

Note. If CAN bit settings are not consistent (see section 13.2 page 27), the returned value is irrelevant.

13.4 The exactBitRate method

The exactBitRate method returns true if the actual bit rate is equal to the wished bit rate, and false oth-
erwise.

void setup () {

Serial.begin (9600) ;

ACAN_ESP32_Settings settings (842 * 1000) ; // 842 kbit/s

Serial.print ("mBitRateClosedToDesiredRate: ") ;

Serial.println (settings.mBitRateClosedToDesiredRate) ; // 1 (‐‐> is true)

Serial.print ("actual bit rate: ") ;

Serial.println (settings.actualBitRate ()) ; // 842105 bit/s

Serial.print ("distance: ") ;

Serial.println (settings.ppmFromDesiredBitRate ()) ; // 125 ppm

Serial.print ("Exact: ") ;

Serial.println (settings.exactBitRate ()) ; // 0 (‐‐‐> false)

...

}

Note. If CAN bit settings are not consistent (see section 13.2 page 27), the returned value is irrelevant.

There are 22 exact bit rates: 25 kbit/s, 31250 bit/s, 32 kbit/s, 40 kbit/s, 50 kbit/s, 62500 bit/s, 64 kbit/s,
78125 bit/s, 80 kbit/s, 100 kbit/s, 125 kbit/s, 156250 bit/s, 160 kbit/s, 200 kbit/s, 250 kbit/s, 312500 bit/s,
320 kbit/s, 400 kbit/s, 500 kbit/s, 625 kbit/s, 800 kbit/s, 1 Mbit/s.

13.5 The ppmFromDesiredBitRate method

The ppmFromDesiredBitRate method returns the distance from the actual bit rate to the wished bit rate,
expressed in part-per-million (ppm): 1 ppm = 10−6. In other words, 10, 000 ppm = 1%.

void setup () {

Serial.begin (9600) ;

ACAN_ESP32_Settings settings (842 * 1000) ; // 842 kbit/s

Serial.print ("mBitRateClosedToDesiredRate: ") ;

Serial.println (settings.mBitRateClosedToDesiredRate) ; // 1 (‐‐> is true)

Serial.print ("actual bit rate: ") ;

Serial.println (settings.actualBitRate ()) ; // 842105 bit/s

Serial.print ("distance: ") ;

28

13.6 The samplePointFromBitStart method 13 ACAN_ESP32_SETTINGS CLASS REFERENCE

Serial.println (settings.ppmFromDesiredBitRate ()) ; // 125 ppm

...

}

Note. If CAN bit settings are not consistent (see section 13.2 page 27), the returned value is irrelevant.

13.6 The samplePointFromBitStart method

The samplePointFromBitStart method returns the distance of sample point from the start of the CAN bit,
expressed in part-per-cent (ppc): 1 ppc = 1% = 10−2. If triple sampling is selected, the returned value is the
distance of the first sample point from the start of the CAN bit. It is a good practice to get sample point from
65% to 80%.

void setup () {

Serial.begin (9600) ;

ACAN_ESP32_Settings settings (500 * 1000) ; // 500 kbit/s

Serial.print ("mBitRateClosedToDesiredRate: ") ;

Serial.println (settings.mBitRateClosedToDesiredRate) ; // 1 (‐‐> is true)

Serial.print ("Sample point: ") ;

Serial.println (settings.samplePointFromBitStart ()) ; // 80 ‐‐> 80%

...

}

Note. If CAN bit settings are not consistent (see section 13.2 page 27), the returned value is irrelevant.

13.7 Properties of the ACAN_ESP32_Settings class

All properties of the ACAN_ESP32_Settings class are declared public and are initialized (table 3).

Property Type Initial value Comment
mTxPin gpio_num_t GPIO_NUM_5 See section 8 page 9
mRxPin gpio_num_t GPIO_NUM_4 See section 8 page 9
mDesiredBitRate uint32_t Initialized by constructor See section 13.1 page 23
mBitRatePrescaler uint8_t Initialized by constructor See section 13.1 page 23
mTimeSegment1 uint8_t Initialized by constructor See section 13.1 page 23
mTimeSegment2 uint8_t Initialized by constructor See section 13.1 page 23
mRJW uint8_t Initialized by constructor See section 13.1 page 23
mTripleSampling bool Initialized by constructor See section 13.1 page 23
mBitRateClosedToDesiredRate bool Initialized by constructor See section 13.1 page 23
mRequestedCANMode CANMode NormalMode See section 13.7.1 page 30
mDriverReceiveBufferSize uint16_t 32 See section 10.1 page 13
mDriverTransmitBufferSize uint16_t 16 See section 9.1 page 11

Table 3 – Properties of the ACAN_ESP32_Settings class

29

13.7 Properties of the ACAN_ESP32_Settings class 13 ACAN_ESP32_SETTINGS CLASS REFERENCE

13.7.1 The mRequestedCANMode property

This property has three possible values, as described in the table 4. It corresponds to the LOM and STM bits of
the MODE control register. The default value is ACAN_ESP32_Settings::NormalMode.

Value Comment, from SJA1000 datasheet
ACAN_ESP32_Settings::NormalMode An acknowledge is required for successful transmission.
ACAN_ESP32_Settings::ListenOnlyMode In this mode the CAN controller would give no acknowledge to the CAN-

bus, even if a message is received successfully; the error counters are
stopped at the current value. This mode of operation forces the CAN con-
troller to be error passive. Message transmission is not possible. The lis-
ten only mode can be used e.g. for software driven bit rate detection and
‘hot plugging’. All other functions can be used like in normal mode.

ACAN_ESP32_Settings::LoopBackMode In this mode a full node test is possible without any other active node
on the bus using the self reception request command; the CAN controller
will perform a successful transmission, even if there is no acknowledge
received.

Table 4 – Values of the mRequestedCANMode property of the ACAN_ESP32_Settings class

30

	Versions
	Features
	ESP32 builtin CAN Controller
	Data flow
	A simple example: LoopBackDemo
	The CANMessage class
	Driver instance
	Pin selection
	Sending frames
	Driver transmit buffer size
	The driverTransmitBufferSize method
	The driverTransmitBufferCount method
	The driverTransmitBufferPeakCount method
	The resetDriverTransmitBufferPeakCount method

	Retrieving received messages using the receive method
	Driver receive buffer size
	The driverReceiveBufferSize method
	The driverReceiveBufferCount method
	The driverReceiveBufferPeakCount method
	The resetDriverReceiveBufferPeakCount method

	Filtering received messages
	Accept only standard frames
	Accept only extended frames
	Standard frame single filter
	Example 1
	Example 2

	Extended frame single filter
	Example 1
	Example 2

	Standard frame dual filter
	Example

	Extended frame dual filter
	Example

	Defining your own filter

	The ACAN_ESP32::begin method reference
	The ACAN_ESP32::begin method prototype
	The error code
	CAN Bit setting too far from desired rate
	CAN Bit inconsistent configuration error

	ACAN_ESP32_Settings class reference
	The ACAN_ESP32_Settings constructor: computation of the CAN bit settings
	The CANBitSettingConsistency method
	The actualBitRate method
	The exactBitRate method
	The ppmFromDesiredBitRate method
	The samplePointFromBitStart method
	Properties of the ACAN_ESP32_Settings class
	The mRequestedCANMode property

