ACANFD_FeatherM4CAN Arduino library,
for Adafruit Feather M4 CAN
Version 1.2.0

Pierre Molinaro

March 12, 2022

Contents
1 \Versions
2 Features

3 CAN Interfaces

3.1 CAND . . . e
3.2 CANT . .
4 Data flow

5 Asample sketch: LoopBackDemoCANFD_CAN1

6 The CANMessage class

7 The CANFDMessage class
7.1 Properties
7.2 Thedefaultconstructor e
7.3 Constructor from CANMESSAgE v v v v i e e e e
7.4 Thetypeproperty o
7.5 Thelenproperty o
7.6 Theidxproperty
7.7 Thepadmethod e
7.8 TheisValidmethod e

8 Transmit FIFO
8.1 ThedriverTransmitFIFOSizemethod
8.2 ThedriverTransmitFIFOCountmethod

CONTENTS

83 ThedriverTransmitFIFOPeakCountmethod 15

9 Transmit buffers (TxBuffer;) 15
10 Receive FIFOs 16
11 Payload size 16
11.1 The ACANFD_FeatherM4CAN_Settings::wordCountForPayload static method 17

12 Message RAM 17
13 Sending frames: the tryToSendReturnStatusFD method 18
13.1 Testing a send buffer: the sendBufferNotFullForIndex method 19
13.2 Usageexample 19

14 Retrieving received messages using the receiveFD; method 20
14.1 Driverreceive FIFO@sSize o 0 21
14.2 ThedriverReceiveFIF0iSizemethod 22

143 ThedriverReceiveFIFQiCountmethod, 22
14.4 ThedriverReceiveFIFQiPeakCountmethod 22

145 The resetDriverReceiveFIFOiPeakCountmethod 22

15 Acceptance filters 22
15.1 Acceptancefilters forstandardframes L o 22
15.1.1 Defining standard framefilters o 23

15.1.2 Addsinglefilter 24

15.1.3 Adddualfilter 24

15.1.4 Addrangefilter 24

15.1.5 Addclassicfilter 25

15.2 Acceptance filters forextended frames 26
15.2.1 Defining extended framefilters 26

15.2.2 Addsinglefilter 26

15.2.3 Adddualfilter 27

15.2.4 Addrangefilter 28

15.2.5 Addclassicfilter 28

16 The dispatchReceivedMessage method 29
16.1 Dispatching non matching standardframes 29

16.2 Dispatching non matching extended frames 30

17 ThedispatchReceivedMessageFIF00 method 30
18 ThedispatchReceivedMessageFIF01 method 31
19 The ACANFD_FeatherM4CAN: : beginFD method reference 32
1917 The prototypes o o 32
19.2 Theerrorcodes o i i 32
ACANFD_FeatherM4CAN Arduino library 2

CONTENTS

19.2.1 The kTxBufferCountGreaterThan32errorcode 32

20 ACANFD_FeatherM4CAN_Settings class reference 33
20.1 The ACANFD_FeatherM4CAN_Settings constructor: computation of the CAN bit settings . 33
20.2 The CANBitSettingConsistencymethod 38
20.3 TheactualArbitrationBitRatemethod 38
20.4 TheexactArbitrationBitRatemethod, 39
20.5 TheexactDataBitRatemethod 39
20.6 The ppmFromDesiredArbitrationBitRatemethod 39
20.7 The ppmFromDesiredDataBitRatemethod 40
20.8 ThearbitrationSamplePointFromBitStartmethod 40
20.9 ThedataSamplePointFromBitStartmethod. 40
20.10 Properties of the ACANFD_FeatherM4CAN_Settingsclass 40
20.10.1 The mModuleMode property o o o 40
20.10.2 The mEnableRetransmissionproperty 41
20.10.3 The mTransceiverDelayCompensationproperty 41

21 Other ACANFD_FeatherM4CAN methods 42
211 ThegetStatusmethod 42
21.1.1 The txErrorCountmethod 42
21.1.2 The rxErrorCount method 42
21.1.3 The isBusOffmethod 42
21.1.4 The transceiverDelayCompensationOffset method 42

ACANFD_FeatherM4CAN Arduino library 3

1 Versions

Version Date

1.2.0 March 12, 2022

1.1.0 March 10, 2022

1.0.1 March 9, 2022

1.0.0 March 8, 2022
2 Features

Comment

Added dispatchReceivedMessage method.

Added dispatchReceivedMessageFIF0@ method.

Added dispatchReceivedMessageFIF01 method.

Added LoopBackDemoCANFD_CAN1_dispatch sample sketch.

Added handling Rx FIFO 1.

Added receive standard filters.

Added receive extended filters.

Added LoopBackDemoCANFD_CAN1_StandardFilters sample sketch.
Added LoopBackDemoCANFD_CAN1_ExtendedFilters sample sketch.
Added constraint settings.mHardwareTransmitTxFIF0Size > 2.
Added constraint settings.mHardwareDedicacedTxBufferCount < 30.
Fixed tryToSendReturnStatusFD, this method was returning error 1 in release
1.0.0.

Initial release (buggy, removed).

The ACANFD_FeatherM4CAN library is a CANFD (Controller Area Network with Flexible Data) Controller driver for
the Adafruit Feather M4 CAN" board running Arduino. It handles CANFD frames.

This library is compatible with other ACAN librairies and ACAN2517FD library.

It has been designed to make it easy to start and to be easily configurable:

handles the CAN@ and CAN1 CANFD modules;

» default configuration sends and receives any frame — no default filter to provide;

» efficient built-in CAN bit settings computation from arbitration and data bit rates;

» user can fully define its own CAN bit setting values;

» up to 128 standard reception filters can be easily defined;

» up to 128 extended reception filters can be easily defined;

» driver and controller transmit buffer sizes are customisable;

» driver and controller receive buffer size is customisable;

» overflow of the driver receive buffer is detectable;

Thttps://www.adafruit.com/product/4759

ACANFD_FeatherM4CAN Arduino library 4

https://www.adafruit.com/product/4759

» the message RAM allocation is customizable and the driver checks no overflow occurs;

» internal loop back, external loop back controller modes are selectable.

3 CAN Interfaces

The Adafruit Feather M4 CAN board contains a ATSAMES51J19 that implements two CANFD modules: CANO
and CAN1.

3.1 CANO

The microcontroller CAN® pins are available on the board connector: D12 is CAN@_TX, D13 is CAN@_RX (see
figure 1). For connecting to a CAN bus, you should add a CANFD transceiver. Note D13 is also connected to
builtin red led.

Figure 1 — CANO pins

3.2 CAN1

The microcontroller CAN1 pins are not available on the board connector, but CANH and CANL pins (see figure
2). The board includes a 3V-logic compatible transceiver?. Note the library handles two additional signals:
PIN_CAN_STANDBY is configured as low digital output (turning off transceiver's STANDBY mode), and pin 4 is
configured as high digital output (turning on transceiver’s power).

2https://learn.adafruit.com/adafruit-feather-m4-can-express/pinouts

ACANFD_FeatherM4CAN Arduino library 5

https://learn.adafruit.com/adafruit-feather-m4-can-express/pinouts

Figure 2 — CAN1 pins

4 Data flow

The figure 3 illustrates default message flow of sending and receiving CANFD messages for CAN@ and CAN1
modules.

Sending messages. The ACANFD_FeatherM4CAN driver defines a driver transmit FIFO (default size: 20 mes-
sages), and configures the module with a hardware transmit FIFO with a size of 24 messages, and 8 individual
TxBuffer whose capacity is one message.

A message is defined by an instance of the CANFDMessage or CANMessage class. For sending a message,
user code calls the tryToSendReturnStatusFD method — see section 13 page 18 for details, and the idx
property of the sent message should be:

0 (default value), for sending via driver transmit FIFO and hardware transmit FIFO;

1, for sending via TxBuffery;

8, for sending via TxBuffer;.

If the idx property is greater than 8, the message is lost.

You can call the sendBufferNotFullForIndex method (section 13.1 page 19) for testing if a send buffer is
not full.

Receiving messages. The CAN Protocol Engine transmits all correct frames to the reception filters. By default,
they are configured as pass-all to FIF00, see section 15 page 22 for configuring them. Messages that pass
the filters are stored in the Hardware Reception FIFOO or in the Hardware Reception FIFO1. The interrupt service
routine transfers the messages from the FIFOs to the Driver Receive FIFOi. The size of the Driver Receive FIFO O
is 10 by default — see section 14.1 page 21 for changing the default value. Two user methods are available:

ACANFD_FeatherM4CAN Arduino library 6

User code

sendBufferNotFullForIndex availableFD@ availableFD1
tryToSendReturnStatusFD receiveFD@ receiveFD1

ACANFD_FeatherM4CAN driver

idx
1 8 > 8
4 '
) lost Driver Driver
Driver Reception FIFOO Reception FIFO1

Tran FIFO

CAN; module
Hardware Hardware Hardware

Transmit FIFO Receive FIFOO Receive FIFO1

TxBufferq ‘ ’ TxBuffers ‘
))

Reception Filters
[Pass all to FIFO 0]

A A T

CAN Protocol Engine

l T
| TXCANi — RXCANi
v N

Figure 3 — Message flow in ACANFD_FeatherM4CAN driver and CAN: module, default configuration

» the availableFD@ method returns false if the Driver Receive FIFOO is empty, and true otherwise;
» the receiveFD0@ method retrieves messages from the Driver Receive FIFOO — see section 14 page 20;
» the availableFD1 method returns false if the Driver Receive FIFO1is empty, and true otherwise;

» the receiveFD1 method retrieves messages from the Driver Receive FIFO1 — see section 14 page 20.

5 A sample sketch: LoopBackDemoCANFD_CAN1

The LoopBackDemoCANFD_CAN1 sketch is a sample code for introducing the ACANFD_FeatherM4CAN library.
It demonstrates how to configure the library, to send a CANFD message, and to receive a CANFD message.

Note: this code runs without any CAN connection, the CAN1 module is configured in EXTERNAL_LOOP_BACK
mode (see section 20.10.1 page 40); the CAN1 module receives every CANFD frame it sends, and emitted
frames can be observed on CANH/CANL pins.

ACANFD_FeatherM4CAN configuration.

#define CAN@_MESSAGE_RAM_SIZE (0)

ACANFD_FeatherM4CAN Arduino library 7

#define CAN1_MESSAGE_RAM_SIZE (1728)
#include <ACANFD_FeatherM4CAN.h>

Before including the ACANFD_FeatherM4CAN library, you should define the CAN@_MESSAGE_RAM_SIZE and
the CAN1_MESSAGE_RAM_SIZE macro hames.

Each CANFD module uses a private Message RAM (section 12 page 17) that s in the first 64 kio of the microcon-
troller SRAM. Its size depends from the current module configuration, and cannot exceed 4,352 32-bits words
(17,408 bytes). Here, CANO_MESSAGE_RAM_SIZE value is @, meaning that the CAN@ module is not configured;
its TXCAN and RxCAN pins can be freely used for an other function. CAN1_MESSAGE_RAM_SIZE value is 1728,
therefore CAN1 module Message RAM has a capacity of 1,728 32-bit words (6,912 bytes), that corresponds
to the default configuration.

Note you should include <ACANFD_FeatherM4CAN. h> only once, from the . ino source file. From an other
C++ file, you should include <ACANFD_FeatherM4CAN-from—cpp. h>.

If you include <ACANFD_FeatherM4CAN. h> from several files, the can@ and / or can1 variables are multiply-
defined, therefore you get a link error.

The setup function.

void setup () {
//——— Switch on builtin led
pinMode (LED_BUILTIN, OUTPUT) ;
digitalWrite (LED_BUILTIN, HIGH) ;
//-— Start serial
Serial.begin (115200) ;
//-— Wait for serial (blink led at 1@ Hz during waiting)
while (!Serial) {
delay (50) ;
digitalWrite (LED_BUILTIN, !digitalRead (LED_BUILTIN)) ;
}

Builtin led is used for signaling. It blinks led at 10 Hz during until serial monitor is ready.

ACANFD_FeatherM4CAN_Settings settings (1000 x 1000, DataBitRateFactor::x2) ;

Configuration is a four-step operation. This line is the first step. It instanciates the settings object of the
ACANFD_FeatherM4CAN_Settings class. The constructor has two parameters: the desired CAN arbitration
bit rate (here, 1 Mbit/s), and the data bit rate, given by a multiplicative factor of the arbitration bit rate; here,
the data bit rate is 1 Mbit/s * 2 = 2 Mbit/s. It returns a settings object fully initialized with CAN bit settings
for the desired arbitration and data bit rates, and default values for other configuration properties.

‘settings.mModuleMode = ACANFD_FeatherM4CAN_Settings: :EXTERNAL_LOOP_BACK ;

Thisis the second step. You can override the values of the properties of settings object. Here, the mModuleMode
property is set to EXTERNAL_LOOP_BACK — its value is NORMAL_FD by default. Setting this property enables
external loop back, that is you can run this demo sketch even it you have no connection to a physical CAN
network. The section 20.10 page 40 lists all properties you can override.

ACANFD_FeatherM4CAN Arduino library 8

const uint32_t errorCode = canl.beginFD () ;

This is the third step, configuration of the CAN1 driver with settings values (for configuring the CAN@ module,
use the can@ variable). The driver is configured for being able to send any (base / extended, data / remote,
CAN / CANFD) frame, and to receive all (base / extended, data / remote, CAN / CANFD) frames. If you want to
define reception filters, see section 15 page 22.

if (errorCode != 0) {
Serial.print () 3
Serial.println (errorCode, HEX) ;

Last step: the configuration of the can driver returns an error code, stored in the errorCode constant. It has
the value 0 if all is ok — see section 19.2 page 32.

The pseudoRandomValue function.

This function generates values that are used for generating random CANFD messages.

static uint32_t pseudoRandomValue (void) {
static uint32_t gSeed = 0 ;
gSeed = 8253729U *x gSeed + 2396403U ;
return gSeed ;

The global variables.

static const uint32_t PERIOD = 1000 ;
static uint32_t gBlinkDate = PERIOD ;
static uint32_t gSentCount = 0 ;
static uint32_t gReceiveCount = 0 ;
static CANFDMessage gSentFrame ;

static bool g0k = true ;

The gBlinkDate global variable is used for sending a CAN message every second. The gSentCount global
variable counts the number of sent messages. The sent message is stored in the gSentFrame variable. While
gOkis true, the received message is compared to the sent message. If they are different, g0k is set to false, and
no more message is sent. The gReceivedCount global variable counts the number of sucessfully received
messages.

The loop function.

void loop () {
if (gBlinkDate <= millis ()) {
gBlinkDate += PERIOD ;
digitalWrite (LED_BUILTIN, !digitalRead (LED_BUILTIN)) ;
if (gok) {
. build random CANFD frame ...
const uint32_t sendStatus = canl.tryToSendReturnStatusFD (gSentFrame) ;
if (sendStatus == 0) {
gSentCount += 1 ;

ACANFD_FeatherM4CAN Arduino library 9

Serial.print ()

telse{
Serial.print (

¥

//——— Receive frame
CANFDMessage frame ;
if (gOk && canl.receiveFD@ (

if (sameFrames) {
gReceiveCount += 1 ;
Serial.print (

telse{
g0k = false ;
. Print error ...

6 The CANMessage class

Serial.println (gSentCount) ;

) ;

Serial.println (sendStatus) ;

frame)) {

bool sameFrames = ... compare frame and gSentFrame ... ;

)

Serial.println (gReceiveCount) ;

Note. The CANMessage class is declared in the CANMessage. h header file. The class declaration is protected
by an include guard that causes the macro GENERIC_CAN_MESSAGE_DEFINED to be defined. The ACAN2515

driver3, the ACAN2517 driver® and the ACAN2517FD driver® contain an identical CANMessage. h header file,

enabling using the ACANFD_FeatherM4CAN driver, the ACAN2515 driver, ACAN2517 driver and ACAN2517FD

driver in a same sketch.

A CAN message is an object that contains all CAN 2.0B frame user informations. All properties are initialized
by default, and represent a base data frame, with an identifier equal to 0, and without any data. In this library,

the CANMessage class is only used by a

class CANMessage {
public : uint32_t id = 0 ;
public : bool ext = false ;
public : bool rtr = false ;
public : uint8_t idx = 0 ;
public : uint8_t len = 0 ;
public : union {

CANFDMessage constructor (section 7.3 page 12).

// Frame identifier

// false —> standard frame, true —> extended frame
// false —> data frame, true —-> remote frame

// This field is used by the driver

// Length of data (0 ... 8)

3The ACAN2515 driver is a CAN driver for the MCP2515 CAN controller, https://github.com/pierremolinaro/acan2515.

4The ACAN2517 driver is a CAN driver for the MCP2517FD CAN controller in CAN 2.0B mode, https://github.com/

pierremolinaro/acan2517

5The ACAN2517FD driver is a CANFD driver for the MCP2517FD CAN controller in CANFD mode, https://github.com/

pierremolinaro/acan2517FD

ACANFD_FeatherM4CAN Arduino library

10

https://github.com/pierremolinaro/acan2515
https://github.com/pierremolinaro/acan2517
https://github.com/pierremolinaro/acan2517
https://github.com/pierremolinaro/acan2517FD
https://github.com/pierremolinaro/acan2517FD

uint64_t data64 ; // Caution: subject to endianness
int64_t data_s64 ; // Caution: subject to endianness
uint32_t data32 [2] ; // Caution: subject to endianness
int32_t data_s32 [2] ; // Caution: subject to endianness
float dataFloat [2] ; // Caution: subject to endianness
uintl6_t datal6 [4] ; // Caution: subject to endianness
int16_t data_s16 [4] ; // Caution: subject to endianness
int8_t data_s8 [81 ;

uint8_t data [8] = {0, 0, 0, 0, 0, 0, 0, 0} ;

Y
Y

Note the message datas are defined by an union. So message datas can be seen as height bytes, four 16-bit
unsigned integers, two 32-bit, one 64-bit or two 32-bit floats. Be aware that multi-byte integers and floats
are subject to endianness (Cortex M4 processor of the ATSAME51G19A is little-endian).

The idx property is not used in CAN frames, but:

» for areceived message, it contains the acceptance filter index (see section 16 page 29) or 255 if it does
not correspond to any filter;

» on sending messages, it is used for selecting the transmit buffer (see section 13 page 18).

7 The CANFDMessage class

Note. The CANFDMessage class is declared in the CANFDMessage. h header file. The class declaration is pro-
tected by an include guard that causes the macro GENERIC_CANFD_MESSAGE_DEFINED to be defined. This
allows an other library to freely include this file without any declaration conflict. The ACAN2517FD driver®
contains an identical CANFDMessage. h header file, enabling using the ACANFD_FeatherM4CAN driver and the
ACAN2517FD driver in a same sketch.

A CANFD message is an object that contains all CANFD frame user informations.

Example: The message object describes an extended frame, with identifier equal to @x123, that contains 12
bytes of data:

CANFDMessage message ; // message is fully initialized with default values
message.id = 0x123 ; // Set the message identifier (it is @ by default)
message.ext = true ; // message is an extended one (it is a base one by default)
message.len = 12 ; // message contains 12 bytes (@ by default)

message.data [0] = 0x12 ; // First data byte is 0x12

message.data [11] = @xCD ; // 11th data byte is @xCD

6The ACAN2517FD driver is a CANFD driver for the MCP2517FD CAN controller in CANFD mode, https://github.com/
pierremolinaro/acan2517FD

ACANFD_FeatherM4CAN Arduino library 11

https://github.com/pierremolinaro/acan2517FD
https://github.com/pierremolinaro/acan2517FD

7.1 Properties

7.1 Properties

public :

class CANFDMessage {

uint32_t id; // Frame identifier

public : bool ext ; // false —> base frame, true —> extended frame

public : Type type ;

public : uint8_t idx ; // Used by the driver

public : uint8_t len ; // Length of data (0 ... 64)

public : union {
uint64_t data64 [8] ; // Caution: subject to endianness
uint32_t data32 [16] ; // Caution: subject to endianness
uintl16_t datalée [32] ; // Caution: subject to endianness
float dataFloat [16] ; // Caution: subject to endianness
uint8_t data [64] ;

Y

i

Note the message datas are defined by an union. So message datas can be seen as 64 bytes, 32 x 16-bit
unsigned integers, 16 x 32-bit, 8 x 64-bit or 16 x 32-bit floats. Be aware that multi-byte integers are subject

to endianness (Cortex M4 processors of Teensy 3.x are little-endian).

7.2 The default constructor

All properties are initialized by default, and represent a base data frame, with an identifier equal to 0, and

without any data (table 2).

Property Initial value Comment

id 0

ext false Base frame

type CANFD_WITH_BIT_RATE_SWITCH CANFD frame, with bit rate switch
idx 0

len 0 No data

data - unitialized

Table 2 — CANFDMessage default constructor initialization

7.3 Constructor from CANMessage

class CANFDMessage {

CANFDMessage (const CANMessage & inCANMessage) ;

Y

ACANFD_FeatherM4CAN Arduino library 12

7.4 The type property

All properties are initialized from the inCANMessage (table 3). Note that only data64[@] is initialized from

inCANMessage.data64.

Property Initial value

id inCANMessage.
ext inCANMessage.
type inCANMessage.
idx inCANMessage.
len inCANMessage.

data64[0] inCANMessage.

id

ext

rtr ? CAN_REMOTE : CAN_DATA
idx

len

data64

Table 3 — CANFDMessage constructor CANMessage

7.4 The type property

The type property value is an instance of an enumerated type:

class CANFDMessage {

public: typedef enum : uint8_t {
CAN_REMOTE,
CAN_DATA,
CANFD_NO_BIT_RATE_SWITCH,
CANFD_WITH_BIT_RATE_SWITCH

} Type ;

¥ 3

The type property specifies the frame format, as indicated in the table 4.

type property Meaning Constraint on len
CAN_REMOTE CAN 2.0B remote frame 0..8
CAN_DATA CAN 2.0B data frame .8

0
CANFD_NO_BIT_RATE_SWITCH CANFD frame, no bit rate switch 0... 8, 12, 16, 20, 24, 32, 48, 64
0

CANFD_WITH_BIT_RATE_SWITCH CANFD frame, bit rate switch

.. 8,12, 16, 20, 24, 32, 48, 64

Table 4 — CANFDMessage type property

7.5 The len property

Note that len property contains the actual length, not its encoding in CANFD frames. So valid values are:
0, 1,..8, 12,16, 20, 24, 32, 48, 64. Having other values is an error that prevents frame to be sent by the
ACANFD_FeatherM4CAN: : tryToSendReturnStatusFD method. You can use the pad method (see section
7.7 page 14) for padding with @x00 bytes to the next valid length.

ACANFD_FeatherM4CAN Arduino library

13

7.6 The idx property

7.6 The idx property

The idx property is not used in CANFD frames, but it is used for selecting the transmit buffer (see section 13
page 18).

7.7 The pad method

‘void CANFDMessage: :pad (void) ;
The CANFDMessage: : pad method appends zero bytes to datas for reaching the next valid length. Valid lengths
are: 0,1, .., 8,12, 16, 20, 24, 32, 48, 64. If the length is already valid, no padding is performed. For example:

CANFDMessage frame ;
frame.length = 21 ; // Not a valid value for sending
frame.pad () ;
// frame.length is 24, frame.data [21], frame.data [22], frame.data [23] are @

7.8 The isValid method

‘bool CANFDMessage::isValid (void) const ;

Not all settings of CANFDMessage instances represent a valid frame. Valid lengths are: O, 1, ..., 8, 12, 16, 20,
24,32, 48, 64. For example, there is no CANFD remote frame, so a remote frame should have its length lower
than or equal to 8. There is no constraint on extended / base identifier (ext property).

The isValid returns true if the contraints on the len property are checked, as indicated the table 4 page 13,
and false otherwise.

8 Transmit FIFO

The transmit FIFO (see figure 3 page 7) is composed by:

« the driver transmit FIFO, whose size is positive or zero (default 20); you can change the default size by
setting the mDriverTransmitFIF0Size property of your settings object;

«» the hardware transmit FIFO, whose size is between 1 and 32 (default 24); you can change the default size
by setting the mHardwareTransmitTxFIF0Size property of your settings object.

For sending a message throught the Transmit FIFO, call the tryToSendReturnStatusFD method with a mes-
sage whose idx property is zero:

» if the controller transmit FIFO is not full, the message is appended to it, and tryToSendReturnStatusFD
returns 0;

ACANFD_FeatherM4CAN Arduino library 14

8.1 ThedriverTransmitFIF0Size method

» otherwise, if the driver transmit FIFOis not full, the message is appended toit, and tryToSendReturnStatusFD
returns 0; the interrupt service routine will transfer messages from driver transmit FIFO to the hardware
transmit FIFO while it is not full;

» otherwise, both FIFOs are full, the message is not stored and tryToSendReturnStatusFD returns the
kTransmitBufferOverflow error.

The transmit FIFO ensures sequentiality of emission.

8.1 ThedriverTransmitFIF0Size method
The driverTransmitFIF0Size method returns the allocated size of this driver transmit FIFO, that is the
value of settings.mDriverTransmitFIF0Size when the begin method is called.

‘const uint32_t s = can@.driverTransmitFIF0Size () ;

8.2 ThedriverTransmitFIFOCount method
The driverTransmitFIFOCount method returns the current number of messages in the driver transmit
FIFO.

‘const uint32_t n = can@.driverTransmitFIFOCount () ;

8.3 ThedriverTransmitFIFOPeakCount method
The driverTransmitFIFOPeakCount method returns the peak value of message count in the driver trans-
mit FIFO
const uint32_t max = can@.driverTransmitFIFOPeakCount () ;
Ifthe transmit FIFOis full when tryToSendReturnStatusFDis called, the returnvalue of this callis kTransmitBufferOverf 1

Insuch case, the following callsof driverTransmitBufferPeakCount () willreturndriverTransmitFIF0Size
()+1.

So, when driverTransmitFIFOPeakCount () returns a value lower or equal to transmitFIF0Size (), it
means that calls to tryToSendReturnStatusFD do not provide any overflow of the driver transmit FIFO.

9 Transmit buffers (TxBuffer;)

You can use settings.mHardwareDedicacedTxBufferCount TxBuffers for sending messages. A TxBuffer
has a capacity of 1 message. So it is either empty, either full. You can call the sendBufferNotFullForIndex
method (section 13.1 page 19) for testing if a TxBuffer is empty or full.

The settings.mHardwareDedicacedTxBufferCount property can be set to any integer value between O
and 32.

ACANFD_FeatherM4CAN Arduino library 15

10 Receive FIFOs

A CAN module contains two receive FIFOs, FIF0@ and FIFO1. By default, only FIF00 is enabled, FIFO1 is
not configured.

the receive FIFO; (0 < 7 < 1, see figure 3 page 7) is composed by:

« the hardware receive FIFO; (in the Message RAM, see section 12 page 17), whose size is between 0 and 64
(default 64 for CAN®, O for CAN1); you can change the default size by setting the mHardwareRxFIF0;Size
property of your settings object;

« the driver receive FIFO; (in library software), whose size is positive (default 10 for CAN®, O for CAN1);
you can change the default size by setting the mDriverReceiveFIF0;Size property of your settings
object.

The receive FIFO mechanism ensures sequentiality of reception.

11 Payload size

Hardware transmit FIFO, TxBuffers and hardware receive FIFOs objects are stored in the Message RAM, the
details of Message RAM usage computation are presented in section 12 page 17. The size of each object
depends on the setting applied to the corresponding FIFO or buffer.

By default, all objects accept frames up to 64 data bytes. The size of each object is 72 bytes. If your applica-
tion sends and / or receives messages with less than 64 bytes, you can reduce Message RAM size by setting
the payload properties of ACANFD_FeatherM4CAN_Settings class, as described in table 5. The type of the-
ses properties is the ACANFD_FeatherM4CAN_Settings: : Payload enumeration type, and defines 8 values
(table 6).

Object Size specification Default value Applies to
mHardwareTransmitBufferPayload PAYLOAD_64_BYTES Hardware transmit FIFO, TxBuffers
mHardwareRxFIFO@Payload PAYLOAD_64_BYTES Hardware receive FIFO 0

Table 5 — Payload properties of ACANFD_FeatherM4CAN_Settings class

Object Size specification Handles frames upto Object Size
ACANFD_FeatherM4CAN_Settings: :PAYLOAD_8_BYTES 8 bytes 4 words = 16 bytes
ACANFD_FeatherM4CAN_Settings: :PAYLOAD_12_BYTES 12 bytes 5 words = 20 bytes
ACANFD_FeatherM4CAN_Settings::PAYLOAD_16_BYTES 16 bytes 6 words = 24 bytes
ACANFD_FeatherM4CAN_Settings::PAYLOAD_20_BYTES 20 bytes 7 words = 28 bytes
ACANFD_FeatherM4CAN_Settings::PAYLOAD_24_BYTES 24 bytes 8 words = 32 bytes
ACANFD_FeatherM4CAN_Settings::PAYLOAD_32_BYTES 32 bytes 10 words = 40 bytes
ACANFD_FeatherM4CAN_Settings::PAYLOAD_48_BYTES 48 bytes 14 words = 56 bytes
ACANFD_FeatherM4CAN_Settings::PAYLOAD_64_BYTES 64 bytes 18 words = 72 bytes

Table 6 — ACANFD_FeatherM4CAN_Settings object size from payload size specification

ACANFD_FeatherM4CAN Arduino library 16

11.1 The ACANFD_FeatherM4CAN_Settings::wordCountForPayload static method

11.1 The ACANFD_FeatherM4CAN_Settings: :wordCountForPayload static method
‘uint32_t ACANFD_FeatherM4CAN_Settings: :wordCountForPayload (const Payload inPayload);

This static method returns the object word size for a given payload specification, following table 6.

12 Message RAM

Each CAN module of the ATSAME51G19A uses a Message RAM for storing TxBuffers, hardware transmit FIFO,
hardware receives FIFO, and reception filters.

The two Message RAM have a width of 32 bits and are part of ATSAME51G19A SRAM, and they should be
located in the first 64 kio (0x2000' 0000 — 0x2000 ' FFFF). Their size is less than 4352 words (17,408 bytes).

A message RAM contains’:

standard filters (0-128 elements, 0-128 words);

» extended filters (0-64 elements, 0-128 words);
» receive FIFO O (0-64 elements, 0-1152 words);
« receive FIFO 1 (0-64 elements, 0-1152 words);
» Rx Buffers (0-64 elements, 0-1152 words);
« Tx Event FIFO (0-32 elements, 0-64 words);

« Tx Buffers (0-32 elements, 0-576 words);

So its size cannot exceed 4352 words (17,408 bytes).

The current release of this library allows to define only the following elements:

standard filters (0-128 elements, 0-128 words);
» extended filters (0-64 elements, 0-128 words);

receive FIFO O (0-64 elements, 0-1152 words);

receive FIFO 1 (0-64 elements, 0-1152 words);

« Tx Buffers (0-32 elements, 0-576 words);

Its size is therefore actually limited to 3,136 words (12,144 bytes).

There are five properties of ACANFD_FeatherM4CAN_Settings class that affect the actual message RAM
size:

» the mHardwareRxFIF00Size property sets the hardware receive FIFO O element count (0-64);

7See DS60001507G, section 39.9.1 page 1177.

ACANFD_FeatherM4CAN Arduino library 17

» the mHardwareRxFIF0@Payload property sets the size of the hardware receive FIFO O element (table
6);

» the mHardwareRxFIF01Size property sets the hardware receive FIFO 1 element count (0-64);

» the mHardwareRxFIF01Payload property sets the size of the hardware receive FIFO 1 element (table
6);

» themHardwareTransmitTxFIF0Size property sets the hardware transmit FIFO element count (0-32);
» the mHardwareDedicacedTxBufferCount property set the number of dedicaced TxBuffers (0-32);

» the mHardwareTransmitBufferPayload property sets the size of the TxBuffers and hardware trans-
mit FIFO element (table 6).

The ACANFD_FeatherM4CAN: :messageRamRequiredSize method returns the required word size.

The ACANFD_FeatherM4CAN: :begin method checks the message RAM allocated size is greater or equal to
the required size. Otherwise, it raises the error code kMessageRamTooSmall. It checks also the message
RAM is in the first 64 kio of the SRAM. Otherwise, it raises the error code kMessageRamNotInFirst64kio.

13 Sending frames: the tryToSendReturnStatusFD method

The ACANFD_FeatherM4CAN: : tryToSendReturnStatusFD method sends CAN 2.0B and CANFD frames:
‘ uint32_t ACANFD_FeatherM4CAN::tryToSendReturnStatusFD (const CANFDMessage & inMessage);
You call the tryToSendReturnStatusFD method for sending a message in the CAN network. Note this func-

tion returns before the message is actually sent; this function only adds the message to a transmit buffer. It
returns:

kInvalidMessage (value: 1)if the message is not valid (see section 7.8 page 14);

» kTransmitBufferIndexToolLarge (value: 2)if the idx property value does not specify a valid transmit
buffer (see below);

» kTransmitBufferOverflow (value: 3)if the transmit buffer specified by the idx property value is full;

» 0 (no error) if the message has been successfully added to the transmit buffer specified by the idx
property value.

The idx property of the message specifies the transmit buffer:

» O for the transmit FIFO (section 8 page 14) ;

» 1..settings.mHardwareDedicacedTxBufferCount for a dedicaced TxBuffer (section 9 page 15).

The type property of inMessage specifies how the frame is sent:

ACANFD_FeatherM4CAN Arduino library 18

13.1 Testing a send buffer: the sendBufferNotFullForIndex method

» CAN_REMOTE, the frame is sent in the CAN 2.0B remote frame format;
» CAN_DATA, the frame is sent in the CAN 2.0B data frame format;

» CANFD_NO_BIT_RATE_SWITCH, the frame is sentin CANFD format at arbitration bit rate, regardless of
the ACANFD_FeatherM4CAN_Settings: :DATA_BITRATE_x,, setting;

» CANFD_WITH_BIT_RATE_SWITCH, with the ACANFD_FeatherM4CAN_Settings: :DATA_BITRATE_x1
setting, the frame is sent in CANFD format at arbitration bit rate, and otherwise in CANFD format with
bit rate switch.

13.1 Testing a send buffer: the sendBufferNotFullForIndex method
‘bool ACANFD_FeatherM4CAN: :sendBufferNotFullForIndex (const uint32_t inTxBufferIndex);

This method returns true if the corresponding transmit buffer is not full, and false otherwise (table 7).

inTxBufferindex Operation

0 true if the transmit FIFO is not full, and false otherwise
1..settings.mHardwareDedicacedTxBufferCount true if the TxBuffer: is empty, and false if it is full

> settings.mHardwareDedicacedTxBufferCount false

Table 7 — Value returned by the sendBufferNotFullForIndex method

13.2 Usage example

A way is to use a global variable to note if the message has been successfully transmitted to driver transmit
buffer. For example, for sending a message every 2 seconds:

static uint32_t gSendDate = 0 ;

void loop () {
if (gSendDate < millis ()) {
CANFDMessage message ;
// Initialize message properties
const uint32_t sendStatus = can@.tryToSendReturnStatusFD (message) ;
if (sendStatus == @) {
gSendDate += 2000 ;

An other hint to use a global boolean variable as a flag that remains true while the message has not been
sent.

static bool gSendMessage = false ;

void loop () {

ACANFD_FeatherM4CAN Arduino library 19

if (frame_should_be_sent) {
gSendMessage = true ;

if (gSendMessage) {
CANMessage message ;
// Initialize message properties
const uint32_t sendStatus = can@.tryToSendReturnStatusFD (message) ;
if (sendStatus == 0) {
gSendMessage = false ;

14 Retrieving received messages using the receiveFD: method

bool ACANFD_FeatherM4CAN::receiveFD@ (CANFDMessage & outMessage) ;
bool ACANFD_FeatherM4CAN::receiveFD1 (CANFDMessage & outMessage) ;

If the receive FIFO i is not empty, the oldest message is removed, assigned to outMessage, and the method
returns true. If the receive FIFO i is empty, the method returns false.

This is a basic example:

void loop () {
CANFDMessage message ;
if (can@.receiveFD@ (message)) {
// Handle received message

The receive method:

» returns false if the driver receive buffer is empty, message argument is not modified;

» returns true if a message has been has been removed from the driver receive buffer, and the message
argument is assigned.

The type property contains the received frame format:

» CAN_REMOTE, the received frame is a CAN 2.0B remote frame;

» CAN_DATA, the received frame is a CAN 2.0B data frame;

ACANFD_FeatherM4CAN Arduino library 20

14.1 Driver receive FIFO 7 size

» CANFD_NO_BIT_RATE_SWITCH, the frame received frame is a CANFD frame, received at at arbitration
bit rate;

» CANFD_WITH_BIT_RATE_SWITCH, the frame received frame is a CANFD frame, received with bit rate
switch.

You need to manually dispatch the received messages. If you did not provide any receive filter, you should
check the type property (remote or data frame?), the ext bit (base or extended frame), and the id (identifier
value). The following snippet dispatches three messages:

void loop () {
CANFDMessage message ;
if (can@.receiveFD@ (message)) {
if (!message.rtr &% message.ext && (message.id == 0x123456)) {
handle_myMessage_0@ (message) ; // Extended data frame, id is 0x123456
}else if (!message.rtr &% !message.ext &S (message.id == 0x234)) {

handle_myMessage_1 (message) ; // Base data frame, id is 0x234
}else if (message.rtr && !message.ext && (message.id == 0x542)) {
handle_myMessage_2 (message) ; // Base remote frame, id is 0x542
¥
}

The handle_myMessage_0 function has the following header:

void handle_myMessage_0 (const CANFDMessage & inMessage) {

So are the header of the handle_myMessage_1 and the handle_myMessage_2 functions.

14.1 Driver receive FIFO ; size

By default, the driver receive FIFO O size is 10 and the driver receive FIFO 1 size is 0. You can change them by
settingthemDriverReceiveFIF0@Size propertyandthemDriverReceiveFIF01Size property of settings
variable before calling the begin method:

ACANFD_FeatherM4CAN_Settings settings (125 * 1000,
DataBitRateFactor::x4) ;

settings.mDriverReceiveFIF00Size = 100 ;

const uint32_t errorCode = can@.begin (settings) ;

As the size of CANFDMessage class is 72 bytes, the actual size of the driver receive FIFO O is the value of
settings.mDriverReceiveFIF00Size * 72, and the actual size of the driver receive FIFO 1 is the value
of settings.mDriverReceiveFIF01Size % 72.

ACANFD_FeatherM4CAN Arduino library 21

14.2 ThedriverReceiveFIF0:Size method

14.2 ThedriverReceiveFIF0:Size method

ThedriverReceiveFIF0:Size method returns the size of the driver FIFO s, thatis the value of themDriver-
ReceiveFIF0iSize property of settings variable when the the begin method is called.

‘const uint32_t s = can@.driverReceiveFIF00Size () ;

14.3 The driverReceiveFIF0:;Count method

The driverReceiveFIF0iCount method returns the current number of messages in the driver receive FIFO
7.

‘const uint32_t n = can@.driverReceiveFIF0@Count () ;

14.4 ThedriverReceiveFIF0;PeakCount method

The driverReceiveFIF0iPeakCount method returns the peak value of message countin the driver receive
FIFO i.

‘const uint32_t max = can@.driverReceiveFIF0@PeakCount () ;
If an overflow occurs, further calls of can@.driverReceiveFIF0;PeakCount () returncan@.driverReceiveFIF0:Size
()+1.
14.5 The resetDriverReceiveFIF0:PeakCount method

The resetDriverReceiveFIF0iPeakCount method assign the current count to the peak value.

‘can@.resetDriverReceiveFIFO@PeakCount () ;

15 Acceptance filters

The microcontroller bases the filtering of the received frames on the nature of their identifier: standard or
extended. It is not possible to filter by length or by CAN2.0B / CANFD format. The only possibility is to reject
all remote frames.

15.1 Acceptance filters for standard frames

for an example sketch, see LoopBackDemoCANFD_CAN1_StandardFilters.

You have three ways to act on standard frame filtering;

» settingthemDiscardReceivedStandardRemoteFrames property of the ACANFD_FeatherM4CAN_Settings
class discards every received remote frame (it is false by default);

ACANFD_FeatherM4CAN Arduino library 22

15.1 Acceptance filters for standard frames

» themNonMatchingStandardFrameReception property value of the ACANFD_FeatherM4CAN_Settings
class is applied to every standard frame that do not match any filter; its value can be FIF0® (default),
FIFO1 or REJECT;

» define standard filters (as described from section 15.1.1 page 23), up to 128, none by default.

The standard frame filtering is illustrated by figure 4.

| Received Valid Standard Frame |

l yes
@—><mDisca rdReceivedStandardRemoteFrames ?)

no false (default) true
0 (default) (Standard Filter Cotﬁ
>0
Match filter 0 ? yes Action

¥

FIFOO FIFO1 REJECT

no | Append to FIFOO | | Append to FIFO1 |
: T yes -
Match last filter ? Action

FIFOO FIFO1 REJECT

e N
no | Append to FIFOO | | Append to FIFO1 |

Ve

—»(mNonMatchingStanda rdFrameReception)

FIFOO (default) FIFO1 REJECT

e l
| Append to FIFOO| [Append to FIFO1 |

Figure 4 — Standard frame filtering

15.1.1 Defining standard frame filters

ACANFD_FeatherM4CAN_Settings settings (..., ...) ;

ACANFD_FeatherM4CAN Arduino library 23

15.1 Acceptance filters for standard frames

ACANFD_FeatherM4CAN: :StandardFilters standardFilters ;
standardFilters.addSingle (@x55, ACANFD_FeatherM4CAN_FilterAction::FIF00) ;

//——— Reject standard frames that do not match any filter
settings.mNonMatchingStandardFrameReception = ACANFD_FeatherM4CAN_FilterAction::REJECT;

const uint32_t errorCode = canl.beginFD (settings, standardFilters) ;

The ACANFD_FeatherM4CAN: :StandardFilters class handles a standard frame filter list. Default con-
structor constructs an empty list. For appending filters, use the addSingle (section 15.1.2 page 24), addDual
(section 15.1.3 page 24), addRange (section 15.1.4 page 24) or addClassic (section 15.1.5 page 25) meth-
ods. Then, add the standardFilters as second argument of beginFD call.

Note. Do not forget to set settings.mNonMatchingStandardFrameReception to REJECT, otherwise all
frames rejected by the filters are appended to FIFO O (see figure 4 for detail).

15.1.2 Add single filter

bool StandardFilters::addSingle (const uintl6_t inIdentifier,
const ACANFD_FeatherM4CAN_FilterAction inAction,
const ACANFDCallBackRoutine inCallBack = nullptr) ;

This filter is valid if inIdentifier is lower or equal to @x7FF. The method returns true if the filter is valid,
and false otherwise. If the filter is valid, this method appends a filter that matches if the received standard
frame identifier is equal to inIdentifier. If the filter is not valid, the filter is not appended.

The last argument is optional and associates a callback routine to the filter. See section 16 page 29.

15.1.3 Add dual filter

bool StandardFilters::addDual (const uintl6_t inIdentifierl,
const uintl6_t inIdentifier2,
const ACANFD_FeatherM4CAN_FilterAction inAction,
const ACANFDCallBackRoutine inCallBack = nullptr) ;

This filter is valid if inIdentifierl is lower or equal to @x7FF and inIdentifier2 is lower or equal to
Ox7FF. The method returns true if the filter is valid, and false otherwise. If the filter is valid, this method
appends a filter that matches if the received standard frame identifier is equal to inIdentifierl oris equal
to inIdentifier2. If the filter is not valid, the filter is not appended.

The last argument is optional and associates a callback routine to the filter. See section 16 page 29.

15.1.4 Add range filter

bool StandardFilters::addRange (const uintl6_t inIdentifierl,

ACANFD_FeatherM4CAN Arduino library 24

15.1 Acceptance filters for standard frames

const uintl6_t inIdentifier2,
const ACANFD_FeatherM4CAN_FilterAction inAction,
const ACANFDCallBackRoutine inCallBack = nullptr) ;

This filter is valid if inIdentifierl is lower or equal to inIdentifier2 and inIdentifier2 is lower or
equal to @x7FF. The method returns true if the filter is valid, and false otherwise. If the filter is valid,
this method appends a filter that matches if the received standard frame identifier is greater or equal to
inIdentifierl andis lower or equal to inIdentifier2. If the filter is not valid, the filter is not appended.

The last argument is optional and associates a callback routine to the filter. See section 16 page 29.

15.1.5 Add classic filter

bool StandardFilters::addClassic (const uintl6_t inIdentifier,
const uintl6_t inMask,
const ACANFD_FeatherM4CAN_FilterAction inAction,
const ACANFDCallBackRoutine inCallBack = nullptr) ;

This filter is valid if all the following conditions are met:

» inIdentifier islower or equal to @x7FF;
» inMask is lower or equal to @x7FF;
» (inIdentifier & inMask)is equal to inIdentifier.
The method returns true if the filter is valid, and false otherwise. If the filter is valid, this method appends a

filter that matches if the received standard frame identifier verifies (receivedFrameIdentifier & inMask)
is equal to inIdentifier. That means:

» ifamaskbitisal, thereceived standard frame identifier corresponding bit should match the inIdentifier
corresponding bit;
» if 2 mask bit is a @, the received standard frame identifier corresponding bit can have any value, the
inIdentifier corresponding bit should be 0.
If the filter is not valid, the filter is not appended.
The last argument is optional and associates a callback routine to the filter. See section 16 page 29.

For example:

standardFilters.addClassic (@x405, 0x7D5, ACANFD_FeatherM4CAN_FilterAction::FIF00) ;

This filter is valid because (0x405 & 0x7D5) is equal to 0x405.

1 9 8 7 6 5 4 3 2 1 0

inIdentifier: 0x405 1 o o 0 06 0 o0 0 1 o0 1
inMask: @x7D5 1 1 1 1 1 © 1 0 1 o0 1
Matching identifiers 1 © @ @ © =z 0 =z 1 z 1

Therefore there are 8 matching identifiers: @x405, 0x407, 0x40B, 0x40F, 0x425, 0x427, 0x42B, 0x42F.

ACANFD_FeatherM4CAN Arduino library 25

15.2 Acceptance filters for extended frames

15.2 Acceptance filters for extended frames

for an example sketch, see LoopBackDemoCANFD_CAN1_ExtendedFilters.

You have three ways to act on extended frame filtering:

» settingthemDiscardReceivedExtendedRemoteFrames property of the ACANFD_FeatherM4CAN_Settings
class discards every received remote frame (it is false by default);

» themNonMatchingExtendedFrameReception propertyvalue of the ACANFD_FeatherM4CAN_Settings
class is applied to every extended frame that do not match any filter; its value can be FIF00 (default),
FIFO1 or REJECT;

» define extended filters (as described from section 15.2.1 page 26), up to 128, none by default.

The extended frame filtering is illustrated by figure 5.

15.2.1 Defining extended frame filters

ACANFD_FeatherM4CAN_Settings settings (..., ...) ;

ACANFD_FeatherM4CAN: :ExtendedFilters extendedFilters ;
extendedFilters.addSingle (@x55, ACANFD_FeatherM4CAN_FilterAction::FIF00) ;

//—— Reject extended frames that do not match any filter
settings.mNonMatchingExtendedFrameReception = ACANFD_FeatherM4CAN_FilterAction::REJECT;

const uint32_t errorCode = canl.beginFD (settings, extendedFilters) ;

The ACANFD_FeatherM4CAN: : ExtendedFilters class handles an extended frame filter list. Default con-
structor constructs an empty list. For appending filters, use the addSingle (section 15.2.2 page 26), addDual
(section 15.2.3 page 27), addRange (section 15.2.4 page 28) or addClassic (section 15.2.5 page 28) meth-
ods. Then, add the ExtendedFilters as second argument of beginFD call.

Note. Do not forget to set settings.mNonMatchingExtendedFrameReception to REJECT, otherwise all
frames rejected by the filters are appended to FIFO O (see figure 5 for detail).

15.2.2 Add single filter

bool ExtendedFilters::addSingle (const uint32_t inIdentifier,
const ACANFD_FeatherM4CAN_FilterAction inAction,
const ACANFDCallBackRoutine inCallBack = nullptr) ;

This filter is valid if inIdentifier is lower or equal to @x1FFF_FFFF. The method returns true if the filter
is valid, and false otherwise. If the filter is valid, this method appends a filter that matches if the received
extended frame identifier is equal to inIdentifier. If the filter is not valid, the filter is not appended.

The last argument is optional and associates a callback routine to the filter. See section 16 page 29.

ACANFD_FeatherM4CAN Arduino library 26

15.2 Acceptance filters for extended frames

| Received Valid Extended Frame |

es
Remote ? (mDisca rdReceivedExtendedRemoteFrames ?)

no false (default) true

0 (default) — \
(Extended Filter Count)

>0
Match filter 0 ? yes //Ac:ti%
FIFOO FIFO1 REJECT
no |Append to ;é| | Append{o FIFO1 |

A4

yes
Match last filter ? //Acti%
FIFOO IFO1 REJECT

F
e | ™~
no | Append to FIFOO| [Append to FIFO1 |

—»(mNonMatchingExtendedFrameReception)

FIFOO (default) FIFO1 REJECT

pd |
| Append to FIFOO | | Append to FIFO1 |

Figure 5 — Extended frame filtering

15.2.3 Add dual filter

bool ExtendedFilters::addDual (const uint32_t inIdentifierl,
const uint32_t inIdentifier2,
const ACANFD_FeatherM4CAN_FilterAction inAction,
const ACANFDCallBackRoutine inCallBack = nullptr) ;

This filter is valid if inIdentifierlis lower or equal to @x1FFF_FFFF and inIdentifier2 is lower or equal
to Ox1FFF_FFFF. The method returns true if the filter is valid, and false otherwise. If the filter is valid, this
method appends a filter that matches if the received extended frame identifier is equal to inIdentifierl or
is equal to inIdentifier2. If the filter is not valid, the filter is not appended.

The last argument is optional and associates a callback routine to the filter. See section 16 page 29.

ACANFD_FeatherM4CAN Arduino library 27

15.2 Acceptance filters for extended frames

15.2.4 Add range filter

bool ExtendedFilters::addRange (const uint32_t inIdentifierl,
const uint32_t inIdentifier2,
const ACANFD_FeatherM4CAN_FilterAction inAction,
const ACANFDCallBackRoutine inCallBack = nullptr) ;

This filter is valid if inIdentifierl is lower or equal to inIdentifier2 and inIdentifier2 is lower or
equal to @x1FFF_FFFF. The method returns true if the filter is valid, and false otherwise. If the filter is
valid, this method appends a filter that matches if the received extended frame identifier is greater or equal to
inIdentifierl andis lower or equal to inIdentifier2. If the filter is not valid, the filter is not appended.

The last argument is optional and associates a callback routine to the filter. See section 16 page 29.

15.2.5 Add classic filter

bool ExtendedFilters::addClassic (const uint32_t inIdentifier,
const uint32_t inMask,
const ACANFD_FeatherM4CAN_FilterAction inAction,
const ACANFDCallBackRoutine inCallBack = nullptr) ;

This filter is valid if all the following conditions are met:

» inIdentifier is lower or equal to @x1FFF_FFFF;
= inMask is lower or equal to @x1FFF_FFFF;

» (inIdentifier & inMask)is equal to inIdentifier.

The method returns true if the filter is valid, and false otherwise. If the filter is valid, this method appends a
filter that matches if the received extended frame identifier verifies (receivedFrameIdentifier & inMask)
is equal to inIdentifier. That means:

» ifamaskbitisal, thereceived extended frame identifier corresponding bit should match the inIdentifier
corresponding bit;
» if a mask bit is a @, the received extended frame identifier corresponding bit can have any value, the

inIdentifier corresponding bit should be 0.

If the filter is not valid, the filter is not appended.
The last argument is optional and associates a callback routine to the filter. See section 16 page 29.

For example:

extendedFilters.addClassic (0x6789, Ox1FFF67BD, ACANFD_FeatherM4CAN_FilterAction::FIF00) ;

This filter is valid because (0x6789 & 0x1FFF67BD) is equal to 0x6789.

ACANFD_FeatherM4CAN Arduino library 28

28..16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 O

inIdentifier: @x6789 0 1 1 1 0 0 0 1 0 o0 1
inMask: 0x1FFF67BD 1 1 1 1 6 1 1 1 1 o0 1
Matching identifiers 0 x 1 1 x 1 1 1 2z 1 1 1 0 2 1

Therefore there are 32 matching identifiers.

16 The dispatchReceivedMessage method

Sample sketch: the LoopBackDemoCANFD_CAN1_dispatch sketch shows how using the dispatchRecei-
vedMessage method.

Instead of calling the receiveFD@and the receiveFD1 methods, call the dispatchReceivedMessage method
in your loop function. For every message extracted from FIFO@ and FIFO1, it calls the callback function as-
sociated with the corresponding filter.

If you have not defined any filter, do not use this function, call the receiveFD®@ and / or the receiveFD1
methods.

void loop () {
canl.dispatchReceivedMessage () ; // Do not call canl.receiveFD@, canl.receiveFD1 any more

The dispatchReceivedMessage method handles one FIF0@ message and one FIFO1 message on each call.
Specifically:

» if FIFOQ and FIF0O1 are both empty, it returns false;

» if FIFOO@ is not empty, its oldest message is extracted and its associated callback is called; then, if FIFO1
is not empty, its oldest message is extracted and its associated callback is called; the true value is
returned.

If a filter definition does not name a callback function, the corresponding messages are lost.
The return value can used for emptying and dispatching all received messages:

void loop () {
while (canl.dispatchReceivedMessage ()) {

¥

16.1 Dispatching non matching standard frames

Following the figure 4 page 23, non matching standard frames are stored in FIFO®@ if mNonMatchingStandard-
FrameReception is equal to FIF0O, or in FIFO1 if mNonMatchingStandardFrameReception is equal to

ACANFD_FeatherM4CAN Arduino library 29

16.2 Dispatching non matching extended frames

FIFO1l. As theses frames do not correspond to a filter, there is no associated callback function by default.
Therefore, they are lost when the dispatchReceivedMessage method is called.

You can assign a callback function to themNonMatchingStandardMessageCallBack property of the ACANFD—
_FeatherM4CAN_Settings class. This provides a callback function to non matching standard frames, so they
are dispatched by a the dispatchReceivedMessage method. By default, mNonMatchingStandardMes—
sageCallBack valueis nullptr.

IfmNonMatchingStandardFrameReceptionisequal toREJECT, themNonMatchingStandardMessageCall-
Back value is never used.

16.2 Dispatching non matching extended frames

Following the figure 5 page 27, non matching extended frames are stored in FIF00 if mNonMatchingExtended-
FrameReception is equal to FIF00, or in FIFO1 if mNonMatchingExtendedFrameReception is equal to
FIFO1l. As theses frames do not correspond to a filter, there is no associated callback function by default.
Therefore, they are lost when the dispatchReceivedMessage method is called.

You can assign a callback function to themNonMatchingExtendedMessageCallBack property of the ACANFD—
_FeatherM4CAN_Settings class. This provides a callback function to non matching extended frames, so
they are dispatched by athedispatchReceivedMessage method. By default, mNonMatchingExtendedMes-
sageCallBack valueis nullptr.

IfmNonMatchingExtendedFrameReceptionisequal toREJECT, themNonMatchingExtendedMessageCall-
Back value is never used.

17 The dispatchReceivedMessageFIF00 method

The dispatchReceivedMessageFIF0@ method dispatches the messages stored in the FIF0@. The mes-
sages stored is FIFO1 are retrieved using the receiveFD1 method.

void loop () {
canl.dispatchReceivedMessageFIF0@ () ; // Do not call canl.receiveFD@ any more
CANFDMessage ;
if (canl.receiveFD1 (message)) {

. handle FIFO1l message ...

Instead of calling the receiveFD@ method, call the dispatchReceivedMessageFIF0@ method in your loop
function. For every message extracted from FIFO0®, it calls the callback function associated with the corre-
sponding filter.

If you have not defined any filter that targets the FIF0®, do not use this function (messages will be not dis-
patched and therefore lost), call the receiveFD@ method.

ACANFD_FeatherM4CAN Arduino library 30

The dispatchReceivedMessageFIF00 method handles one FIF0@ message on each call. Specifically:

» if FIF0O is empty, it returns false;

» if FIFOO is not empty, its oldest message is extracted and its associated callback is called and the true
value is returned.

If a filter definition does not name a callback function, the corresponding messages are lost.
The return value can used for emptying and dispatching all received messages:

void loop () {
while (canl.dispatchReceivedMessageFIF00 ()) {
¥
CANFDMessage ;
if (canl.receiveFD1 (message)) {
. handle FIFO1l message ...

18 The dispatchReceivedMessageFIF01 method

The dispatchReceivedMessageFIF01 method dispatches the messages stored in the FIFO1. The mes-
sages stored is FIF0O are retrieved using the receiveFD@ method.

void loop () {
canl.dispatchReceivedMessageFIFO1 () ; // Do not call canl.receiveFD1 any more
CANFDMessage ;
if (canl.receiveFD@ (message)) {
. handle FIF0O message ...

Instead of calling the receiveFD1 method, call the dispatchReceivedMessageFIF01 method in your loop
function. For every message extracted from FIFO1, it calls the callback function associated with the corre-
sponding filter.

If you have not defined any filter that targets the FIF01, do not use this function (messages will be not dis-
patched and therefore lost), call the receiveFD1 method.

The dispatchReceivedMessageFIF01 method handles one FIFO1 message on each call. Specifically:

» if FIFO1 is empty, it returns false;

» if FIFO1 is not empty, its oldest message is extracted and its associated callback is called and the true
value is returned.

ACANFD_FeatherM4CAN Arduino library 31

If a filter definition does not name a callback function, the corresponding messages are lost.
The return value can used for emptying and dispatching all received messages:

void loop () {
while (canl.dispatchReceivedMessageFIF01 ()) {
¥
CANFDMessage ;
if (canl.receiveFD@ (message)) {
. handle FIFOQ message ...

19 The ACANFD_FeatherM4CAN: : beginFD method reference

19.1 The prototypes

uint32_t ACANFD_FeatherM4CAN: :beginFD (const ACANFD_FeatherM4CAN_Settings & inSettings,
const StandardFilters & inStandardFilters = StandardFilters (),
const ExtendedFilters & inExtendedFilters = ExtendedFilters ()) ;

uint32_t ACANFD_FeatherM4CAN::beginFD (const ACANFD_FeatherM4CAN_Settings & inSettings,
const ExtendedFilters & inExtendedFilters) ;

The first argument is a ACANFD_FeatherM4CAN_Settings instance that defines the settings.

The second one is optional, and specifies the standard filter list (see section 15.1 page 22). By default, the
standard filter list is empty.

The third one is optional, and specifies the extended filter list (see section 15.2 page 26). By default, the
extended filter list is empty.

19.2 The error codes

The ACANFD_FeatherM4CAN: :beginFD method returns an error code. The value @ denotes no error. Oth-
erwise, you consider every bit as an error flag, as described in table 8. An error code could report several
errors. The ACANFD_FeatherM4CAN class defines static constants for naming errors. Bits O to 16 denote a
bit configuration error, see table 10 page 39.

19.2.1 The kTxBufferCountGreaterThan32 error code

There are 32 available TxBuffers, for hardware transmit FIFO and dedicaced TxBuffers. Therefore, the sum of
settings.mHardwareDedicacedTxBufferCountandsettings.mHardwareTransmitTxFIF0Size should
be lower or equal to 32.

ACANFD_FeatherM4CAN Arduino library 32

Bit Code Static constant Name Comment

0 oxl kBitRatePrescalerIsZero See table 10 page 39

P - See table 10 page 39

16 0x1_0000 kDataSJWIsGreaterThanPhaseSegment2 See table 10 page 39
20 0x10_0000 kMessageRamTooSmall See section 12 page 17
21 0x20_0000 kMessageRamNotInFirst64kio See section 12 page 17
22 0x40_0000 kHardwareRxFIF0@SizeGreaterThan64 settings.mHardwareRxFIF00Size > 64
23 0x80_0000 kHardwareTransmitFIFOSizeGreaterThan32 settings.mHardwareTransmitTxFIF0Size > 32
24 0x100_0000 kDedicacedTransmitTxBufferCountGreaterThan30 settings.mHardwareDedicacedTxBufferCount >30
25 0x200_0000 kTxBufferCountGreaterThan32 See section 19.2.1 page 32
26 0x400_0000 kHardwareTransmitFIFOSizelLowerThan2 See settings.mHardwareTransmitTxFIF0Size < 2
27 0x800_0000 kHardwareRxFIF01SizeGreaterThan64 settings.mHardwareRxFIFQ1Size > 64
28 0x1000_0000 kStandardFilterCountGreaterThan128 More than 128 standard filters, see section 15.1 page 22
29 0x2000_0000 kExtendedFilterCountGreaterThan128 More than 128 extended filters, see section 15.2 page 26

Table 8 — The ACANFD_FeatherM4CAN: : beginFD method error code bits

20 ACANFD_FeatherM4CAN_Settings class reference

Note. The ACANFD_FeatherM4CAN_Settings class is not Arduino specific. You can compile it on your desk-
top computer with your favorite C++ compiler.

20.1 The ACANFD_FeatherM4CAN_Settings constructor: computation of the CAN bit
settings

void setup () {

ACANFD_FeatherM4CAN_Settings::

ACANFD_FeatherM4CAN_Settings (const uint32_t inDesiredArbitrationBitRate,
const DataBitRateFactor inDataBitRateFactor,
const uint32_t inTolerancePPM = 1000) ;

The constructor of the ACANFD_FeatherM4CAN_Settings has two mandatory arguments: the desired ar-
bitration bit rate, and the data bit rate factor. It tries to compute the CAN bit settings for theses bit rates. If
it succeeds, the constructed object has its mArbitrationBitRateClosedToDesiredRate property set to
true, otherwise it is set to false. For example, for an 1 Mbit/s arbitration bit rate and an 8 Mbit/s data bit
rate:

void setup () {

// Arbitration bit rate: 1 Mbit/s, data bit rate: 8 Mbit/s
ACANFD_FeatherM4CAN_Settings settings (1000 *x 1000, DataBitRateFactor::x8) ;
// Here, settings.mArbitrationBitRateClosedToDesiredRate is true

Note the data bit rate is not defined by its frequency, but by its multiplicative factor from arbitration bit rate.
If you want a single bit rate, use DataBitRateFactor: : x1 as data bit rate factor.

There are 313 exact arbitration / data bit rate combinations (table 9 page 34).

ACANFD_FeatherM4CAN Arduino library 33

20.1 The ACANFD_FeatherM4CAN_Settings constructor: computation of the CAN bit settings
Arbitration Bit Rate Valid Data Rate factors Arbitration Bit Rate Valid Data Rate factors
5 000 x8 x10 6 000 x8 x10
6 250 x5 x6 x8 x10 6 400 x10
7 500 x5 x8 x10 7 680 x10
8 000 x5 x6 x8 x10 9 375 x4 x5 x8 x10
9 600 x5 x8 x10 10 000 x4 x5 x6 x8 x10
12 000 x4 x5 x8 x10 12 500 x3 x4 x5 x6 x8 x10
12 800 x5 x6 x10 15 000 x4 x5 x8 x10
15 360 x5 15 625 x2 x3 x4 x6 x8
16 000 x3 x4 x5 x6 x8 x10 18 750 x2 x4 x5 x8 x10
19 200 x4 x5 x10 20 000 x2 x3 x4 x5 x6 x8 x10
24 000 x2 x4 x5 x8 x10 25 000 x2 x3 x4 x5 x6 x8 x10
25 600 x3 x5 30 000 x2 x4 x5 x8 x10
31 250 x1 x2 x3 x4 x6 x8 32 000 x2 x3 x4 x5 x6 x10
37 500 x1 x2 x4 x5 x8 x10 38 400 x2 x5 x10
40 000 x1 x2 x3 x4 x5 x6 x8 x10 46 875 x1 x2 x4 x8
48 000 x1 x2 x4 x5 x8 x10 50 000 x1 x2 x3 x4 x5 x6 x8 x10
60 000 x1 x2 x4 x5 x8 x10 62 500 x1 x2 x3 x4 x6 x8
64 000 x1 x2 x3 x5 x6 x10 75 000 x1 x2 x4 x5 x8 x10
76 800 x1 x5 80 000 x1 x2 x3 x4 x5 x6 x8 x10
93 750 x1 x2 x4 x8 96 000 x1 x2 x4 x5 x10
100 000 x1 x2 x3 x4 x5 x6 x8 x10 120 000 x1 x2 x4 x5 x8 x10
125 000 x1 x2 x3 x4 x6 x8 128 000 x1 x3 x5
150 000 x1 x2 x4 x5 x8 x10 160 000 x1 x2 x3 x4 x5 x6 x10
187 500 x1 x2 x4 x8 192 000 x1 x2 x5 x10
200 000 x1 x2 x3 x4 x5 x6 x8 x10 240 000 x1 x2 x4 x5 x8 x10
250 000 x1 x2 x3 x4 x6 x8 300 000 x1 x2 x4 x5 x8 x10
320 000 x1 x2 x3 x5 x6 x10 375 000 x1 x2 x4 x8
384 000 x1 x5 400 000 x1 x2 x3 x4 x5 x6 x8 x10
480 000 x1 x2 x4 x5 x10 500 000 x1 x2 x3 x4 x6 x8
600 000 x1 x2 x4 x5 x8 x10 640 000 x1 x3 x5
750 000 x1 x2 x4 x8 800 000 x1 x2 x3 x4 x5 x6 x10
960 000 x1 x2 x5 x10 1 000 000 x1 x2 x3 x4 x6 x8

Table 9 — The 313 exact bit rates

But this does not mean there is no possibility to get such data bit rates factors. For example, we can have a
data bit rate of 4 Mbit/s, and an arbitration bit rate of 4/7 Mbit/s = 571 428 kbit/s:

Serial.
Serial.
Serial.
Serial.
Serial.
Serial.
Serial.

void setup () {

ACANFD_FeatherM4CAN_Settings settings (571428, DataBitRateFactor::x7) ;
Serial.

print ()

println (settings.mArbitrationBitRateClosedToDesiredRate) ; // 1 (true)
print ()

println (settings.actualArbitrationBitRate ()) ; // 571428 bit/s

print ()

println (settings.ppmFromDesiredArbitrationBitRate ()) ; // 1 ppm= 0,0001 %
print () 8

println (settings.actualDataBitRate ()) ; // 4 Mbit/s

Due to integer computations, and the distance from desired arbitration bit rate is 1 ppm. “ppm” stands for

ACANFD_FeatherM4CAN Arduino library

34

20.1 The ACANFD_FeatherM4CAN_Settings constructor: computation of the CAN bit settings

"part-per-million”, and 1 ppm = 10~5. In other words, 10,000 ppm = 1%.

By default, a desired bit rate is accepted if the distance from the computed actual bit rate is lower or equal
to 1,000 ppm = 0.1 %. You can change this default value by adding your own value as third argument of
ACANFD_FeatherM4CAN_Settings constructor. For example, with an arbitration bit rate equal to 727 kbit/s:

void setup () {

ACANFD_FeatherM4CAN_Settings settings (727 * 1000,
DataBitRateFactor::x1,
100) ; // 100 ppm

Serial.print ()

Serial.println (settings.mArbitrationBitRateClosedToDesiredRate) ; // 0 (false)
Serial.print ()

Serial.println (settings.actualArbitrationBitRate ()) ; // 727272 bit/s
Serial.print ()

Serial.println (settings.ppmFromDesiredArbitrationBitRate ()) ; // 375 ppm

The third argument does not change the CAN bit computation, it only changes the acceptance test for setting
the mArbitrationBitRateClosedToDesiredRate property. For example, you can specify that you want
the computed actual bit to be exactly the desired bit rate:

void setup () {

ACANFD_FeatherM4CAN_Settings settings (500 *x 1000,
DataBitRateFactor::x1,

@) ; // Max distance is @ ppm
Serial.print ()

Serial.println (settings.mArbitrationBitRateClosedToDesiredRate) ; // 1 (true)
Serial.print ()

Serial.println (settings.actualArbitrationBitRate ()) ; // 500,000 bit/s
Serial.print ()

Serial.println (settings.ppmFromDesiredArbitrationBitRate ()) ; // @ ppm

In any way, the bit rate computation always gives a consistent result, resulting an actual arbitration / data
bit rates closest from the desired bit rate. For example, we query a 423 kbit/s arbitration bit rate, and a 423
kbit/s * 3 = 1 269 kbit/s data bit rate:

void setup () {

ACANFD_FeatherM4CAN_Settings settings (423 *x 1000, DataBitRateFactor::x3) ;
Serial.print ()

Serial.println (settings.mArbitrationBitRateClosedToDesiredRate) ; // 0 (false)
Serial.print ()

Serial.println (settings.actualArbitrationBitRate ()) ; // 421 052 bit/s
Serial.print ()

ACANFD_FeatherM4CAN Arduino library 35

20.1 The ACANFD_FeatherM4CAN_Settings constructor: computation of the CAN bit settings

Serial.println (settings.actualDataBitRate ()) ; // 1 263 157 bit/s

Serial.

print (

) 3

Serial.println (settings.ppmFromDesiredArbitrationBitRate ()) ; // 4 603 ppm

The resulting bit rates settings are far from the desired values, the CAN bit decomposition is consistent. You

can get its details:

Serial
Serial
Serial
Serial
Serial
Serial

Serial.
Serial.
Serial.
Serial.
Serial.
Serial.
Serial.
Serial.
Serial.
Serial.
Serial.
Serial.
Serial.
Serial.
Serial.

Serial.
Serial.
Serial.
Serial.
Serial.
Serial.
Serial.

void setup () {

print (
println
print (
println
print (
println
print (
println
print (
println
print (
println
print (
println
print (

.println
.print (
.println
.print (
.println
.print (

println
print (
println
print (
println
print (
println

(settings.

(settings.

(settings.

(settings.

(settings.

(settings.

(settings.

(settings.

(settings.

(settings.

(settings.

(settings.

(settings.

(settings.

ACANFD_FeatherM4CAN_Settings settings (423 x 1000, DataBitRateFactor::x3) ;

)

mArbitrationBitRateClosedToDesiredRate) ; // @ (false)

)
actualArbitrationBitRate ()) ; // 421 052 bit/s

)
actualDataBitRate ()) ; // 1 263 157 bit/s
D 8
ppmFromDesiredArbitrationBitRate ()) ; // 4 603 ppm
) ¢

mBitRatePrescaler) ; // BRP =1

)
mArbitrationPhaseSegmentl) ; // PS1

)
mArbitrationPhaseSegment2) ; // PS2

)

22

10

mArbitrationSJw) ; // SIwW = 10
)
arbitrationSamplePointFromBitStart ()) ; // 69, meaning 69%
)
mDataPhaseSegmentl) ; // PS1
) 8
mDataPhaseSegment2) ; // PS2
)

22

10

mDataSJW) ; // SIW = 10
)
dataSamplePointFromBitStart ()) ; // 69, meaning 59%
)
CANBitSettingConsistency ()) ; // @0, meaning Ok

The samplePointFromBitStart method returns sample point, expressed in per-cent of the bit duration

from the beginning of the bit.

Note the computation may calculate a bit decomposition too far from the desired bit rate, but it is always
consistent. You can check this by calling the CANBitSettingConsistency method.

ACANFD_FeatherM4CAN Arduino library

36

20.1 The ACANFD_FeatherM4CAN_Settings constructor: computation of the CAN bit settings

You can change the property values for adapting to the particularities of your CAN network propagation time.
By example, you canincrementthemArbitrationPhaseSegment1 property value, and decrementthemArbi-
trationPhaseSegment2 property value in order to sample the CAN Rx pin later.

void setup () {

ACANFD_FeatherM4CAN_Settings settings (500 x 1000, DataBitRateFactor::x1) ;
Serial.print ()

Serial.println (settings.mArbitrationBitRateClosedToDesiredRate) ; // 1 (true)
settings.mArbitrationPhaseSegmentl —= 4 ; // 32 —> 28: safe, 1 <= PS1 <= 256
settings.mArbitrationPhaseSegment2 += 4 ; // 15 —> 19: safe, 1 <= PS2 <= 128
settings.mArbitrationSIW += 4 ;3 // 15 —> 19: safe, 1 <= SIW <= PS2
Serial.print () ;

Serial.println (settings.samplePointFromBitStart ()) ; // 58, meaning 58%

Serial.print () 8
Serial.println (settings.actualArbitrationBitRate ()) ; // 500000: ok, no change
Serial.print () 3

Serial.println (settings.CANBitSettingConsistency ()) ; // 0, meaning Ok

Be aware to always respect CAN bit timing consistency! The ATSAME51G19A constraints are:

mBitRatePrescaler < 32
mArbitrationPhaseSegmentl < 256
mArbitrationPhaseSegment2 < 128
mArbitrationSIW < mArbitrationPhaseSegment2
mDataPhaseSegmentl < 32

mDataPhaseSegment2 < 16

— N = = N =
INCINCIN NN NN

mDataSJIW < mDataPhaseSegment2

Miucrochips recommends using the same bit rate prescaler for arbitration and data bit rates.
Resulting actual bit rates are given by (SYSCLK = 48 MHz):

Actual Arbitration Bit Rate = SYSCLK

mBitRatePrescaler - (1 + mArbitrationPhaseSegmentl + mArbitrationPhaseSegment2)
SYSCLK

Actual Data Bit Rate =
ctuaibata Bt Rate mBitRatePrescaler - (1 + mDataPhaseSegmentl + mDataPhaseSegment2)

ACANFD_FeatherM4CAN Arduino library 37

20.2 The CANBitSettingConsistency method

And the sampling point (in per-cent unit) are given by:

1+ mArbitrationPhaseSegmentl
1+ mArbitrationPhaseSegmentl + mArbitrationPhaseSegment2
1 4+ mDataPhaseSegmentl
1 4+ mDataPhaseSegmentl + mDataPhaseSegment2

Arbitration Sampling Point = 100 -

Data Sampling Point = 100 -

20.2 The CANBitSettingConsistency method

This method checks the CAN bit decomposition (givenbymBitRatePrescaler,mArbitrationPhaseSegment1l,
mArbitrationPhaseSegment2, mArbitrationSJW, mDataPhaseSegmentl, mDataPhaseSegment2, mDataSJW
property values) is consistent.

void setup () {

ACANFD_FeatherM4CAN_Settings settings (500 x 1000, DataBitRateFactor::x2) ;
Serial.print ()

Serial.println (settings.mArbitrationBitRateClosedToDesiredRate) ; // 1 (true)
settings.mDataPhaseSegmentl = @ ; // Error, mDataPhaseSegmentl should be >= 1 (and <= 32)
Serial.print () ;

Serial.println (settings.CANBitSettingConsistency (), HEX) ; // !'= @, meaning error

The CANBitSettingConsistency method returns 0 if CAN bit decomposition is consistent. Otherwise, the
returned value is a bit field that can report several errors — see table 10.

The ACANFD_FeatherM4CAN_Settings class defines static constant properties that can be used as mask
error. For example:

‘public: static const uint32_t kBitRatePrescalerIsZero = 1 << 0 ;

20.3 The actualArbitrationBitRate method

TheactualArbitrationBitRate method returnstheactual bit computed frommBitRatePrescaler, mPro-

pagationSegment, mArbitrationPhaseSegmentl, mArbitrationPhaseSegment2, mArbitrationSJWprop-
erty values.

void setup () {

ACANFD_FeatherM4CAN_Settings settings (440 x 1000, DataBitRateFactor::x1) ;
Serial.print ()

Serial.println (settings.mArbitrationBitRateClosedToDesiredRate) ; // 0 (false)
Serial.print () ;

Serial.println (settings.actualArbitrationBitRate ()) ; // 444,444 bit/s

ACANFD_FeatherM4CAN Arduino library 38

20.4 TheexactArbitrationBitRate method

Bit Code Error Name Error
0 0x1 kBitRatePrescalerIsZero mBitRatePrescaler==0
1 0x2 kBitRatePrescalerIsGreaterThan32 mBitRatePrescaler > 32
2 0x4 KkArbitrationPhaseSegmentlIsZero mArbitrationPhaseSegmentl ==
3 0x8 KkArbitrationPhaseSegmentlIsGreaterThan256 mArbitrationPhaseSegmentl > 256
4 0x10 kArbitrationPhaseSegment2IsLowerThan2 mArbitrationPhaseSegment2 <2
5 0x20 kArbitrationPhaseSegment2IsGreaterThanl28 mArbitrationPhaseSegment2 > 128
6 0x40 kArbitrationSJWIsZero mArbitrationSJIW ==
7 0x80 kArbitrationSJWIsGreaterThanl28 mArbitrationSJw > 128
8 0x100 kArbitrationSJWIsGreaterThanPhaseSegment2 mArbitrationSJIW >mArbitrationPhaseSegment2
9 0x200 kArbitrationPhaseSegmentlIslAndTripleSampling (mArbitrationPhaseSegmentl == 1)and triple sampling
10 0x400 kDataPhaseSegmentlIsZero mDataPhaseSegmentl ==0
11 0x800 kDataPhaseSegmentlIsGreaterThan32 mDataPhaseSegmentl > 32
12 0x1000 kDataPhaseSegment2IsLowerThan2 mDataPhaseSegment2 < 2
13 0x2000 kDataPhaseSegment2IsGreaterThanl6 mDataPhaseSegment2 > 16
14 0x4000 kDataSJIWIsZero mDataSJW==0
15 0x8000 kDataSIWIsGreaterThanl6 mDataSJIW > 16
16 0x1_0000 kDataSJWIsGreaterThanPhaseSegment2 mDataSJW > mDataPhaseSegment2

Table 10 — The ACANFD_FeatherM4CAN_Settings: :CANBitSettingConsistency method error codes

Note. If CAN bit settings are not consistent (see section 20.2 page 38), the returned value is irrelevant.

20.4 The exactArbitrationBitRate method
‘bool ACANFD_FeatherM4CAN_Settings::exactArbitrationBitRate (void) const ;

The exactArbitrationBitRate method returns true if the actual arbitration bit rate is equal to the desired
arbitration bit rate, and false otherwise.

Note. If CAN bit settings are not consistent (see section 20.2 page 38), the returned value is irrelevant.

20.5 The exactDataBitRate method
‘bool ACANFD_FeatherM4CAN_Settings::exactDataBitRate (void) const ;

The exactDataBitRate method returns true if the actual data bit rate is equal to the desired data bit rate,
and false otherwise.

Note. If CAN bit settings are not consistent (see section 20.2 page 38), the returned value is irrelevant.

20.6 The ppmFromDesiredArbitrationBitRate method
‘uint32_t ACANFD_FeatherM4CAN_Settings: :ppmFromDesiredArbitrationBitRate (void) const ;

The ppmFromDesiredArbitrationBitRate method returns the distance from the actual arbitration bit rate
to the desired arbitration bit rate, expressed in part-per-million (ppm): 1 ppm = 10~5. In other words, 10, 000 ppm =
1%.

ACANFD_FeatherM4CAN Arduino library 39

20.7 The ppmFromDesiredDataBitRate method

Note. If CAN bit settings are not consistent (see section 20.2 page 38), the returned value is irrelevant.

20.7 The ppmFromDesiredDataBitRate method

‘uint32_t ACANFD_FeatherM4CAN_Settings: :ppmFromDesiredDataBitRate (void) const ;

The ppmFromDesiredDataBitRate method returns the distance from the actual data bit rate to the desired
data bit rate, expressed in part-per-million (ppm): 1 ppm = 1076, In other words, 10, 000 ppm = 1%.

Note. If CAN bit settings are not consistent (see section 20.2 page 38), the returned value is irrelevant.

20.8 ThearbitrationSamplePointFromBitStart method

‘uint32_t ACANFD_FeatherM4CAN_Settings::arbitrationSamplePointFromBitStart (void) const ;
The arbitrationSamplePointFromBitStart method returns the distance of sample point from the start

of the arbitration CAN bit, expressed in part-per-cent (ppc): 1 ppc = 1% = 1072, Itis a good practice to get
sample point from 65% to 80%. The bit rate calculator tries to set the sample point at 80%.

Note. If CAN bit settings are not consistent (see section 20.2 page 38), the returned value is irrelevant.

20.9 The dataSamplePointFromBitStart method

‘uint32_t ACANFD_FeatherM4CAN_Settings::dataSamplePointFromBitStart (void) const ;
The dataSamplePointFromBitStart method returns the distance of sample point from the start of the

data CAN bit, expressed in part-per-cent (ppc): 1 ppc = 1% = 10~2. Itis a good practice to get sample point
from 65% to 80%. The bit rate calculator tries to set the sample point at 80%.

Note. If CAN bit settings are not consistent (see section 20.2 page 38), the returned value is irrelevant.

20.10 Properties of the ACANFD_FeatherM4CAN_Settings class

All properties of the ACANFD_FeatherM4CAN_Settings class are declared public and are initialized (table
11).

20.10.1 The mModuleMode property

This property defines the mode requested at this end of the configuration process: NORMAL_FD (default value),
INTERNAL_LOOP_BACK, EXTERNAL_LOOP_BACK

ACANFD_FeatherM4CAN Arduino library 40

20.10 Properties of the ACANFD_FeatherM4CAN_Settings class

Property

mDesiredArbitrationBitRate
mDataBitRateFactor
mBitRatePrescaler
mArbitrationPhaseSegmentl
mArbitrationPhaseSegment2
mArbitrationSJw

mDataPhaseSegmentl
mDataPhaseSegment2

mDataSJW

mTripleSampling

mBitSettingOk

mModuleMode

mDriverReceiveFIF00Size
mHardwareRxFIF00Size
mHardwareRxFIF0@Payload
mDriverReceiveFIF01Size
mHardwareRxFIF01Size
mHardwareRxFIFO1Payload
mEnableRetransmission
mDiscardReceivedStandardRemoteFrames
mDiscardReceivedExtendedRemoteFrames
mNonMatchingStandardFrameReception
mNonMatchingExtendedFrameReception
mTransceiverDelayCompensation
mDriverTransmitFIFOSize
mHardwareTransmitTxFIF0Size
mHardwareDedicacedTxBufferCount
mHardwareTransmitBufferPayload
mNonMatchingStandardMessageCallBack
mNonMatchingExtendedMessageCallBack

Type
uint32_t
DataBitRateFactor
uint8_t
uintl6_t
uint8_t
uint8_t
uint8_t
uint8_t
uint8_t

bool

bool
ModuleMode
uintl6_t
uint8_t
Payload
uintl6_t
uint8_t
Payload

bool

bool

bool
FilterAction
FilterAction
uint8_t
uint8_t
uint8_t
uint8_t
Payload
ACANFDCallBackRoutine
ACANFDCallBackRoutine

Initial value
Constructor argument
Constructor argument
32

256

128

128

32

16

16

true

true

NORMAL_FD

10

64
PAYLOAD_64_BYTES
0

0
PAYLOAD_64_BYTES
true

false

false

FIF0Q

FIF0O

5

20

24

8
PAYLOAD_64_BYTES
nullptr

nullptr

Comment

See section 20.1 page 33
See section 20.1 page 33
See section 20.1 page 33
See section 20.1 page 33
See section 20.1 page 33
See section 20.1 page 33
See section 20.1 page 33
See section 20.1 page 33
See section 20.1 page 33
See section 20.10.1 page 40
See section 14.1 page 21
See section 12 page 17

See section 12 page 17

See section 14.1 page 21
See section 12 page 17

See section 12 page 17

See section 20.10.2 page 41
See section 15 page 22

See section 15 page 22

See section 15 page 22

See section 15 page 22

See section 20.10.3 page 41
See section 8 page 14

See section 8 page 14

See section 9 page 15

See section 11 page 16

See section 16.1 page 29
See section 16.2 page 30

Table 11 — Properties of the ACANFD_FeatherM4CAN_Settings class

20.10.2 The mEnableRetransmission property

By default, a trame is automatically retransmitted is an error occurs during its transmission, or if its transmis-
sionis preempted by a higher priority frame. You can turn off this feature by setting the mEnableRetransmission

to false.

20.10.3 ThemTransceiverDelayCompensation property

Setting the Transmitter Delay Compensation is required when data bit rate switch is enabled and data phase bit
time that is shorter than the transceiver loop delay. The mTransceiverDelayCompensation property is by
default set to 8 by the ACANFD_FeatherM4CAN_Settings constructor.

For more details, see DS60001507G, sections 39.6.2.4, pages 1095 and 1096.

ACANFD_FeatherM4CAN Arduino library

41

21 Other ACANFD_FeatherM4CAN methods

21.1 The getStatus method

‘ACANFD_FeatherM4CAN::Status ACANFD_FeatherM4CAN: :getStatus (void) const ;

21.1.1 The txErrorCount method
uint16_t ACANFD_FeatherM4CAN::Status::txErrorCount (void) const ;

This method returns 256 if the bus status is Bus Off, and the Transmitter Error Counter value otherwise.

21.1.2 The rxErrorCount method
uint8_t ACANFD_FeatherM4CAN::Status::rxErrorCount (void) const ;

This method returns the Receive Error Counter value.

21.1.3 The isBusOff method
bool ACANFD_FeatherM4CAN: :Status::isBusOff (void) const ;

This method returns true if the bus status is Bus Off, and false otherwise.

21.1.4 The transceiverDelayCompensationOffset method
uint8_t ACANFD_FeatherM4CAN::Status::transceiverDelayCompensationOffset (void) const ;

This method returns Transceiver Delay Compensation Offset value.

ACANFD_FeatherM4CAN Arduino library

42

	Versions
	Features
	CAN Interfaces
	CAN0
	CAN1

	Data flow
	A sample sketch: LoopBackDemoCANFD_CAN1
	The CANMessage class
	The CANFDMessage class
	Properties
	The default constructor
	Constructor from CANMessage
	The type property
	The len property
	The idx property
	The pad method
	The isValid method

	Transmit FIFO
	The driverTransmitFIFOSize method
	The driverTransmitFIFOCount method
	The driverTransmitFIFOPeakCount method

	Transmit buffers (TxBufferi)
	Receive FIFOs
	Payload size
	The ACANFD_FeatherM4CAN_Settings::wordCountForPayload static method

	Message RAM
	Sending frames: the tryToSendReturnStatusFD method
	Testing a send buffer: the sendBufferNotFullForIndex method
	Usage example

	Retrieving received messages using the receiveFDi method
	Driver receive FIFO i size
	The driverReceiveFIFOiSize method
	The driverReceiveFIFOiCount method
	The driverReceiveFIFOiPeakCount method
	The resetDriverReceiveFIFOiPeakCount method

	Acceptance filters
	Acceptance filters for standard frames
	Defining standard frame filters
	Add single filter
	Add dual filter
	Add range filter
	Add classic filter

	Acceptance filters for extended frames
	Defining extended frame filters
	Add single filter
	Add dual filter
	Add range filter
	Add classic filter

	The dispatchReceivedMessage method
	Dispatching non matching standard frames
	Dispatching non matching extended frames

	The dispatchReceivedMessageFIFO0 method
	The dispatchReceivedMessageFIFO1 method
	The ACANFD_FeatherM4CAN::beginFD method reference
	The prototypes
	The error codes
	The kTxBufferCountGreaterThan32 error code

	ACANFD_FeatherM4CAN_Settings class reference
	The ACANFD_FeatherM4CAN_Settings constructor: computation of the CAN bit settings
	The CANBitSettingConsistency method
	The actualArbitrationBitRate method
	The exactArbitrationBitRate method
	The exactDataBitRate method
	The ppmFromDesiredArbitrationBitRate method
	The ppmFromDesiredDataBitRate method
	The arbitrationSamplePointFromBitStart method
	The dataSamplePointFromBitStart method
	Properties of the ACANFD_FeatherM4CAN_Settings class
	The mModuleMode property
	The mEnableRetransmission property
	The mTransceiverDelayCompensation property

	Other ACANFD_FeatherM4CAN methods
	The getStatus method
	The txErrorCount method
	The rxErrorCount method
	The isBusOff method
	The transceiverDelayCompensationOffset method

