ACANFD_FeatherM4CAN Arduino library,
for Adafruit Feather M4 CAN
Version 1.0.1

Pierre Molinaro

March 9, 2022

Contents
1 \Versions
2 Features

3 CAN Interfaces

3.1 CAND . . .
3.2 CANL . . e e e e e e e e
4 Data flow

5 Asimple example: LoopBackDemoCANFD_CAN1

6 The CANMessage class

7 The CANFDMessage class
7.1 Properties
7.2 Thedefaultconstructor e
7.3 Constructor from CANMESSAZE v v v v v e e
7.4 Thetypeproperty o
7.5 Thelenproperty
7.6 Theidx property
7.7 Thepadmethod e
7.8 Theisvalidmethod e
8 Transmit FIFO
8.1 ThedriverTransmitFIFOSizemethod
8.2 ThedriverTransmitFIFOCountmethod

10
10
10
11
11
12
12
12
12

CONTENTS

8.3 ThedriverTransmitFIFOPeakCountmethod 13

9 Transmit buffers (TxBuffer;) 14
10 Receive FIFOs 14
11 Payload size 14
11.1 The ACANFD_FeatherM4CAN_Settings: :wordCountForPayload static method 15

12 Message RAM 15
13 Sending frames: the tryToSendReturnStatusFD method 16
13.1 Testing a send buffer: the sendBufferNotFullForIndexmethod 17

13.2 Usageexample 17

14 Retrieving received messages using the receiveFD@ method 18
14.1 Driverreceive FIFOOSIZE o o o o e 19

14.2 ThedriverReceiveFIFO@Sizemethod 20
143 ThedriverReceiveFIFO@OCount method 20
14.4 ThedriverReceiveFIFO@PeakCountmethod 20
14.5 The resetDriverReceiveFIFO@PeakCountmethod 20

15 Acceptance filters 20
16 The ACANFD_FeatherM4CAN: :begin method reference 21
16.1 Theprototype 21
16.2 Theerrorcode 21
16.2.1 The kTxBufferCountGreaterThan32errorcode 21

17 ACANFD_FeatherM4CAN_Settings class reference 21
17.1 The ACANFD_FeatherM4CAN_Settings constructor: computation of the CAN bit settings . . 21
17.2 The CANBitSettingConsistencymethod. 26

17.3 TheactualArbitrationBitRatemethod 27
17.4 The exactArbitrationBitRatemethod 27

17.5 TheexactDataBitRatemethod 28
17.6 The ppmFromDesiredArbitrationBitRatemethod 28
17.7 The ppmFromDesiredDataBitRatemethod 28
17.8 ThearbitrationSamplePointFromBitStartmethod 28
17.9 ThedataSamplePointFromBitStartmethod 28
17.10 Properties of the ACANFD_FeatherM4CAN_Settingsclass 29
17.10.1 The mModuleMode Property o i 29

17.10.2 The mEnableRetransmissionproperty o 29

17.10.3 The mTransceiverDelayCompensationproperty 30

18 Other ACANFD_FeatherM4CAN methods 30
18.1 TheerrorCountersmethod 30
ACANFD_FeatherM4CAN Arduino library 2

1 Versions

Version Date Comment

1.0.1 March 9, 2022 Added constraint settings.mHardwareTransmitTxFIFOSize > 2.
Added constraint settings.mHardwareDedicacedTxBufferCount < 30.
Fixed tryToSendReturnStatusFD, this method was returning error 1 in release
1.0.0.

1.0.0 March 8, 2022 Initial release.

2 Features

The ACANFD_FeatherM4CAN library is a CANFD (Controller Area Network with Flexible Data) Controller driver for
the Adafruit Feather M4 CAN" board running Arduino. It handles CANFD frames.

This library is compatible with other ACAN librairies.
It has been designed to make it easy to start and to be easily configurable:
» handles the CAN@ and CAN1 CANFD modules;
» default configuration sends and receives any frame — no default filter to provide;
» efficient built-in CAN bit settings computation from arbitration and data bit rates;
» user can fully define its own CAN bit setting values;
» driver and controller transmit buffer sizes are customisable;
« driver and controller receive buffer size is customisable;
» overflow of the driver receive buffer is detectable;
» the message RAM allocation is customizable and the driver checks no overflow occurs;

» internal loop back, external loop back controller modes are selectable.

3 CAN Interfaces

The Adafruit Feather M4 CAN board contains a ATSAME51)19 that implements two CANFD modules: CAN@
and CANL.

Thttps://www.adafruit.com/product/4759

ACANFD_FeatherM4CAN Arduino library 3

https://www.adafruit.com/product/4759

3.1 CANe

3.1 CANo

The microcontroller CAN® pins are available on the board connector: D12 is CAN®_TX, D13 is CAN@_RX (see figure
1). For connecting to a CAN bus, you should add a CANFD transceiver. Note D13 is also connected to builtin
red led.

N g
RST 3V ARfGND A@

/

Figure 1 — CANGO pins

3.2 CAN1

The microcontroller CAN1 pins are not available on the board connector, but CANH and CANL pins (see figure
2). The board includes a 3V-logic compatible transceiver?. Note the library handles two additional signals:
PIN_CAN_STANDBY is configured as low digital output (turning off transceiver's STANDBY mode), and pin &4 is
configured as high digital output (turning on transceiver’s power).

4 Data flow

The figure 3 illustrate default message flow of sending and receiving CANFD messages for CAN@ and CAN1
modules.

Sending messages. The ACANFD_FeatherM4CAN driver defines a driver transmit FIFO (default size: 20 mes-
sages), and configures the module with a hardware transmit FIFO with a size of 24 messages, and 8 individual
TxBuffer whose capacity is one message.

A message is defined by an instance of the CANFDMessage or CANMessage class. For sending a message, user
code calls the tryToSendReturnStatusFD method — see section 13 page 16 for details, and the idx property
of the sent message should be:

2https://learn.adafruit.com/adafruit-feather-ma-can-express/pinouts

ACANFD_FeatherM4CAN Arduino library 4

https://learn.adafruit.com/adafruit-feather-m4-can-express/pinouts

BenbEbesnend —

Figure 2 — CAN1 pins

User code

sendBufferNotFullForIndex availableFD®
tryToSendReturnStatusFD receiveFDO

ACANFD_FeatherM4CAN driver

idx 1 P l> 8
0
. lost Driver
. Drn/:/;: o Reception FIFOO
ransmi
10
10]

CAN; module
Hardware Hardware

Transmit FIFO Receive FIFOO

TxBufferg TxBuffers;

Reception Filters
[Pass all]
\ 1
CAN Protocol Engine
)
| TXCAN | | RXCAN; |
v

Figure 3 — Message flow in ACANFD_FeatherM4CAN driver and CAN: module, default configuration

» O (default value), for sending via driver transmit FIFO and hardware transmit FIFO,

ACANFD_FeatherM4CAN Arduino library

» 1, for sending via TxBuffery;

» 8, for sending via TxBuffer;.

If the idx property is greater than 8, the message is lost.

You can call the sendBufferNotFullForIndex method (section 13.1 page 17) for testing if a send buffer is
not full.

Receiving messages. The CAN Protocol Engine transmits all correct frames to the reception filters. By default,
they are configured as pass-all, see section 15 page 20 for configuring them. Messages that pass the filters
are stored in the Hardware Reception FIFOO; its size is 64 messages by default. The interrupt service routine
transfers the messages from this FIFOO to the Driver Receive FIFOO. The size of the Driver Receive Buffer is 10
by default — see section 14.1 page 19 for changing the default value. Two user methods are available:

» the availableFDe method returns false if the Driver Receive FIFOO is empty, and true otherwise;

» the receiveFD0 method retrieves messages from the Driver Receive FIFOO — see section 14 page 18.

5 Asimple example: LoopBackDemoCANFD_CAN1

The LoopBackDemoCANFD_CAN1 sketch is a sample code for introducing the ACANFD_FeatherM4CAN library. It
demonstrates how to configure the library, to send a CANFD message, and to receive a CANFD message.

Note: this code runs without any CAN connection, the CAN1 module is configured in EXTERNAL_LOOP_BACK
mode (see section 17.10.1 page 29); the CAN1 module receives every CANFD frame it sends, and emitted
frames can be observed on CANH/CANL pins.

ACANFD_FeatherM4CAN configuration.

#define CANO_MESSAGE_RAM_SIZE (©)
#define CAN1_MESSAGE_RAM_SIZE (1728)

#include <ACANFD_FeatherM4CAN.h>

Before including the ACANFD_FeatherM4CAN library, you should define the CANO_MESSAGE_RAM_SIZE and the
CAN1_MESSAGE_RAM_SIZE macro names.

Each CANFD module uses a private Message RAM (section 12 page 15) that is in the first 64 kio of the microcon-
troller SRAM. Its size depends from the current module configuration, and cannot exceed 4,352 32-bits words
(17,408 bytes). Here, CAN@_MESSAGE_RAM_SIZE value is ©, meaning that the CAN® module is not configured;
its TXxCAN and RxCAN pins can be freely used for an other function. CAN1_MESSAGE_RAM_SIZE value is 1728,
therefore CAN1 module Message RAM has a capacity of 1,728 32-bit words (6,912 bytes), that corresponds
to the default configuration.

Note you should include <ACANFD_FeatherM4CAN. h> only once, from the . ino source file. From an other C++
file, you should include <ACANFD_FeatherM4CAN-from-cpp.h>.

ACANFD_FeatherM4CAN Arduino library 6

If you include <ACANFD_FeatherM4CAN. h> from several files, the can@ and / or canl variables are multiply-
defined, therefore you get a link error.

The setup function.

void setup () {

//--- Switch on builtin led
pinMode (LED_BUILTIN, OUTPUT) ;
digitalWrite (LED_BUILTIN, HIGH) ;

//--- Start serial
Serial.begin (115200) ;
//--- Wait for serial (blink led at 10 Hz during waiting)

while (!Serial) {
delay (50) ;
digitalWrite (LED_BUILTIN, !digitalRead (LED_BUILTIN)) ;

Builtin led is used for signaling. It blinks led at 10 Hz during until serial monitor is ready.

ACANFD_FeatherM4CAN_Settings settings (1000 * 1000, DataBitRateFactor::x2) ;

Configuration is a four-step operation. This line is the first step. It instanciates the settings object of the
ACANFD_FeatherM4CAN_Settings class. The constructor has two parameters: the desired CAN arbitration
bit rate (here, 1 Mbit/s), and the data bit rate, given by a multiplicative factor of the arbitration bit rate; here,
the data bit rate is 1 Mbit/s * 2 = 2 Mbit/s. It returns a settings object fully initialized with CAN bit settings
for the desired arbitration and data bit rates, and default values for other configuration properties.

‘settings.mModuleMode = ACANFD_FeatherM4CAN_Settings::EXTERNAL_LOOP_BACK ;

Thisis the second step. You can override the values of the properties of settings object. Here, the mModuleMode
property is set to EXTERNAL_LOOP_BACK — its value is NORMAL_FD by default. Setting this property enables ex-
ternal loop back, that is you can run this demo sketch even it you have no connection to a physical CAN network.
The section 17.10 page 29 lists all properties you can override.

const uint32_t errorCode = canl.beginFD () ;

This is the third step, configuration of the CAN1 driver with settings values (for configuring the CAN@ module,
use the cane variable). The driver is configured for being able to send any (base / extended, data / remote,
CAN / CANFD) frame, and to receive all (base / extended, data / remote, CAN / CANFD) frames. If you want to
define reception filters, see section 15 page 20.

if (errorCode != 0) {
Serial.print ()

Serial.println (errorCode, HEX) ;

Last step: the configuration of the can driver returns an error code, stored in the errorCode constant. It has
the value 0 if all is ok — see section 16.2 page 21.

The pseudoRandomValue function.

ACANFD_FeatherM4CAN Arduino library 7

This function generates values that are used for generating random CANFD messages.

The global variables.

static const uint32_t PERIOD = 1000 ;
static uint32_t gBlinkDate PERIOD ;
static uint32_t gSentCount 0 ;
static uint32_t gReceiveCount = 0 ;

static CANFDMessage gSentFrame ;

static bool gOk = true ;

The gBlinkDate global variable is used for sending a CAN message every second. The gSentCount global
variable counts the number of sent messages. The sent message is stored in the gSentFrame variable. While
gok is true, the received message is compared to the sent message. If they are different, gok is set to false,
and no more message is sent. The gReceivedCount global variable counts the number of sucessfully received
messages.

The loop function.

void loop () {
if (gBlinkDate <= millis ()) {
gBlinkDate += PERIOD ;
digitalWrite (LED_BUILTIN, !digitalRead (LED_BUILTIN)) ;
if (gok) {
build random CANFD frame
const uint32_t sendStatus = canl.tryToSendReturnStatusFD (gSentFrame) ;
if (sendStatus == 0) {
gSentCount += 1 ;

Serial.print ()
Serial.println (gSentCount) ;

}else{
Serial.print ()
Serial.println (sendStatus) ;

}

}
}
//--- Receive frame

CANFDMessage frame ;
if (gOk && canl.receiveFDO (frame)) {
bool sameFrames = ... compare frame and gSentFrame ... ;
if (sameFrames) {
gReceiveCount += 1 ;
Serial.print ()
Serial.println (gReceiveCount) ;
}else{
gOk = false ;

Print error

ACANFD_FeatherM4CAN Arduino library 8

6 The CANMessage class

Note. The CANMessage classis declaredinthe CANMessage . h header file. The class declarationis protected by
an include guard that causes the macro GENERIC_CAN_MESSAGE_DEFINED to be defined. The ACAN3 (version
1.0.3 and above) driver, the ACAN2515* driver and the ACAN2517° driver contain an identical CANMessage.h
file header, enabling using ACAN driver, ACAN2515 driver, ACAN2517 driver and ACAN2517FD driver ina same
sketch.

A CAN message is an object that contains all CAN 2.0B frame user informations. All properties are initialized
by default, and represent a base data frame, with an identifier equal to 0, and without any data. In this library,
the CANMessage class is only used by a CANFDMessage constructor (section 7.3 page 11).

class CANMessage {
public : uint32_t id = @ ; // Frame identifier
public : bool ext = false ; // false -> standard frame, true -> extended frame
public : bool rtr = false ; // false -> data frame, true -> remote frame
public : uint8_t idx = © ; // This field is used by the driver
public : uint8_t len = @ ; // Length of data (@ ... 8)

public : union {

uint64_t data64 5 // Caution: subject to endianness
int64_t data_s64 ; // Caution: subject to endianness
uint32_t data32 [2] ; // Caution: subject to endianness
int32_t data_s32 [2] ; // Caution: subject to endianness
float dataFloat [2] ; // Caution: subject to endianness
uintl6_t datalé [4] ; // Caution: subject to endianness

intl6_t data_s16 [4] ; // Caution: subject to endianness
int8_t data_s8 [8] ;
uint8_t data [8] = {0, 0, @, 0, 0, 0, O, O} ;

Yo

}os

Note the message datas are defined by an union. So message datas can be seen as height bytes, four 16-bit
unsigned integers, two 32-bit, one 64-bit or two 32-bit floats. Be aware that multi-byte integers and floats
are subject to endianness (Cortex M4 processors of Teensy 3.x are little-endian).

The idx property is not used in CAN frames, but it is used for selecting the transmit buffer (see section 13
page 16).

3The ACAN driver is a CAN driver for FlexCAN modules integrated in the Teensy 3.x microcontrollers, https://github.com/
pierremolinaro/acan

“The ACAN2515 driver is a CAN driver for the MCP2515 CAN controller, https://github.com/pierremolinaro/acan2515.

5The ACAN2517 driver is a CAN driver for the MCP2517FD CAN controllerin CAN 2.0B mode, https://github.com/pierremolinaro/
acan2517.

ACANFD_FeatherM4CAN Arduino library 9

https://github.com/pierremolinaro/acan
https://github.com/pierremolinaro/acan
https://github.com/pierremolinaro/acan2515
https://github.com/pierremolinaro/acan2517
https://github.com/pierremolinaro/acan2517

7 The CANFDMessage class

Note. The CANFDMessage class is declared in the CANFDMessage . h header file. The class declaration is pro-
tected by an include guard that causes the macro GENERIC_CANFD_MESSAGE_DEFINED to be defined. This
allows an other library to freely include this file without any declaration conflict.

A CANFD message is an object that contains all CANFD frame user informations.

Example: The message object describes an extended frame, with identifier equal to ©x123, that contains 12
bytes of data:

CANFDMessage message ; // message is fully initialized with default values
message.id = 0x123 ; // Set the message identifier (it is © by default)
message.ext = true ; // message is an extended one (it is a base one by default)
message.len = 12 ; // message contains 12 bytes (@ by default)

message.data [@] = @x12 ; // First data byte is ©x12

message.data [11] = OxCD ; // 11th data byte is ©@xCD

7.1 Properties
class CANFDMessage {

public : uint32_t id; // Frame identifier

public : bool ext ; // false -> base frame, true -> extended frame
public : Type type ;

public : uint8_t idx ; // Used by the driver

public : uint8_t len ; // Length of data (@ ... 64)

public : union {
uint64_t data64 [8] ; // Caution: subject to endianness
uint32_t data32 [16] ;5 // Caution: subject to endianness
uintl6_t datalée [32] 5 // Caution: subject to endianness

float dataFloat [16] ; // Caution: subject to endianness
uint8_t data [64] ;
Y

Y

Note the message datas are defined by an union. So message datas can be seen as 64 bytes, 32 x 16-bit
unsigned integers, 16 x 32-bit, 8 x 64-bit or 16 x 32-bit floats. Be aware that multi-byte integers are subject
to endianness (Cortex M4 processors of Teensy 3.x are little-endian).

7.2 The default constructor

All properties are initialized by default, and represent a base data frame, with an identifier equal to 0, and
without any data (table 2).

ACANFD_FeatherM4CAN Arduino library 10

7.3 Constructor from CANMessage

Property Initial value Comment

id 0

ext false Base frame

type CANFD_WITH_BIT_RATE_SWITCH CANFD frame, with bit rate switch
idx 0

len 0 No data

data - unitialized

Table 2 — CANFDMessage default constructor initialization

7.3 Constructor from CANMessage

class CANFDMessage {

éA&FDMessage (const CANMessage & inCANMessage) ;

s
All properties are initialized from the inCANMessage (table 3). Note that only data64[@] is initialized from
inCANMessage.data64.

Property Initial value

id inCANMessage.1id

ext inCANMessage.ext

type inCANMessage.rtr ? CAN_REMOTE : CAN_DATA
idx inCANMessage.idx

len inCANMessage.len

datab4[@] 1inCANMessage.data64

Table 3 — CANFDMessage constructor CANMessage

7.4 The type property

The type property value is an instance of an enumerated type:

class CANFDMessage {

public: typedef enum : uint8_t {
CAN_REMOTE,
CAN_DATA,
CANFD_NO_BIT_RATE_SWITCH,
CANFD_WITH_BIT_RATE_SWITCH

} Type ;

Y

The type property specifies the frame format, as indicated in the table 4.

ACANFD_FeatherM4CAN Arduino library 11

7.5 The len property

type property Meaning Constraint on len
CAN_REMOTE CAN 2.0B remote frame 0..8
CAN_DATA CAN 2.0B data frame w8

0
CANFD_NO_BIT_RATE_SWITCH CANFD frame, no bit rate switch 0... 8, 12, 16, 20, 24, 32, 48, 64
CANFD_WITH_BIT_RATE_SWITCH CANFD frame, bit rate switch 0..8,12,16, 20, 24, 32, 48, 64

Table 4 — CANFDMessage type property

7.5 The len property

Note that 1en property contains the actual length, not its encoding in CANFD frames. So valid values are:
0, 1,..8, 12,16, 20, 24, 32, 48, 64. Having other values is an error that prevents frame to be sent by the
ACANFD_FeatherM4CAN: : tryToSendReturnStatusFD method. You can use the pad method (see section 7.7
page 12) for padding with ©x@e bytes to the next valid length.

7.6 The idx property

The idx property is not used in CANFD frames, but it is used for selecting the transmit buffer (see section 13
page 16).

7.7 The pad method

‘void CANFDMessage::pad (void) ;

The CANFDMessage: : pad method appends zero bytes to datas for reaching the next valid length. Valid lengths
are: 0, 1, .., 8,12, 16, 20, 24, 32, 48, 64. If the length is already valid, no padding is performed. For example:

CANFDMessage frame ;
frame.length = 21 ; // Not a valid value for sending
frame.pad () ;
// frame.length is 24, frame.data [21], frame.data [22], frame.data [23] are ©

7.8 The isvalid method

‘bool CANFDMessage::isValid (void) const ;

Not all settings of CANFDMessage instances represent a valid frame. Valid lengths are: 0O, 1, .., 8, 12, 16, 20,
24,32, 48, 64. For example, there is no CANFD remote frame, so a remote frame should have its length lower
than or equal to 8. There is no constraint on extended / base identifier (ext property).

The isvalid returns true if the contraints on the 1en property are checked, as indicated the table 4 page 12,
and false otherwise.

ACANFD_FeatherM4CAN Arduino library 12

8 Transmit FIFO

The transmit FIFO (see figure 3 page 5) is composed by:

» the driver transmit FIFO, whose size is positive or zero (default 20); you can change the default size by
setting the mDriverTransmitFIFOSize property of your settings object;

» the hardware transmit FIFO, whose size is between 1 and 32 (default 24); you can change the default size
by setting the mHardwareTransmitTxFIFOSize property of your settings object.

For sending a message throught the Transmit FIFO, call the tryToSendReturnStatusFD method with a mes-
sage whose idx property is zero:

» if the controller transmit FIFO is not full, the message is appended to it, and tryToSendReturnStatusFD
returns o;

» otherwise, if the driver transmit FIFOis not full, the message is appended toit, and tryToSendReturnStatusFD
returns ©; the interrupt service routine will transfer messages from driver transmit FIFO to the hardware
transmit FIFO while it is not full;

» otherwise, both FIFOs are full, the message is not stored and tryToSendReturnStatusFD returns the
kTransmitBufferOverflow error.

The transmit FIFO ensures sequentiality of emission.

8.1 ThedriverTransmitFIFOSize method

ThedriverTransmitFIFOSize method returns the allocated size of this driver transmit FIFO, that is the value
of settings.mDriverTransmitFIFOSize when the begin method is called.

‘const uint32_t s = can@.driverTransmitFIFO0Size () ;

8.2 ThedriverTransmitFIFOCount method

ThedriverTransmitFIFOCount method returns the current number of messages in the driver transmit FIFO.

‘const uint32_t n = can@.driverTransmitFIFOCount () ;

8.3 ThedriverTransmitFIFOPeakCount method

The driverTransmitFIFOPeakCount method returns the peak value of message countin the driver transmit
FIFO

const uint32_t max = can@.driverTransmitFIFOPeakCount () ;

ACANFD_FeatherM4CAN Arduino library 13

Ifthe transmit FIFQis fullwhen tryToSendReturnStatusFDis called, the return value of this call is kTransmitBufferOverflow
Insuch case, the following calls of driverTransmitBufferPeakCount () willreturndriverTransmitFIFOSize
()+1.

So, when driverTransmitFIFOPeakCount() returns a value lower or equal to transmitFIFOSize (), it
means that calls to tryToSendReturnStatusFD do not provide any overflow of the driver transmit FIFO.

9 Transmit buffers (TxBuffer;)

You can use settings.mHardwareDedicacedTxBufferCount TxBuffers for sending messages. A TxBuffer
has a capacity of 1 message. So it is either empty, either full. You can call the sendBufferNotFullForIndex
method (section 13.1 page 17) for testing if a TxBuffer is empty or full.

The settings.mHardwareDedicacedTxBufferCount property can be set to any integer value between 0 and
32.

10 Receive FIFOs

A CAN module contains two receive FIFOs, FIF0@ and FIFO1. Currently, only FIFO0Q is handled, FIFO1 is not
configured.

the receive FIFO; (0 < 7 < 1, see figure 3 page 5) is composed by:

» the hardware receive FIFO; (in the Message RAM, see section 12 page 15), whose size is between 0 and
64 (default 64); you can change the default size by setting the mHardwareRxFIFO;Size property of your
settings object;

« the driver receive FIFO; (in library software), whose size is positive (default 10); you can change the default
size by setting the mDriverReceiveFIFO;Size property of your settings object.

The receive FIFO mechanism ensures sequentiality of reception.

11 Payload size

Hardware transmit FIFO, TxBuffers and hardware receive FIFOs objects are stored in the Message RAM, the
details of Message RAM usage computation are presented in section 12 page 15. The size of each object
depends on the setting applied to the corresponding FIFO or buffer.

By default, all objects accept frames up to 64 data bytes. The size of each object is 72 bytes. If your application
sends and / or receives messages with less than 64 bytes, you can reduce Message RAM size by setting the
payload properties of ACANFD_FeatherM4CAN_Settings class, as described in table 5. The type of theses
properties is the ACANFD_FeatherM4CAN_Settings: :Payload enumeration type, and defines 8 values (table
6).

ACANFD_FeatherM4CAN Arduino library 14

11.1 The ACANFD_FeatherM4CAN_Settings: :wordCountForPayload static method

Object Size specification Default value Applies to
mHardwareTransmitBufferPayload PAYLOAD 64 BYTES Hardware transmit FIFO, TxBuffers
mHardwareRxFIFO@Payload PAYLOAD 64 BYTES Hardware receive FIFO O

Table 5 — Payload properties of ACANFD_FeatherM4CAN_Settings class

Object Size specification Handles frames upto Object Size
ACANFD_FeatherM4CAN_Settings::PAYLOAD_8 BYTES 8bytes 4 words = 16 bytes
ACANFD_FeatherM4CAN_Settings::PAYLOAD_12 BYTES 12 bytes 5 words = 20 bytes
ACANFD_FeatherM4CAN_Settings::PAYLOAD_16_BYTES 16 bytes 6 words = 24 bytes
ACANFD_FeatherM4CAN_Settings: :PAYLOAD_20_BYTES 20 bytes 7 words = 28 bytes
ACANFD_FeatherM4CAN_Settings: :PAYLOAD_24_BYTES 24 bytes 8 words = 32 bytes
ACANFD_FeatherM4CAN_Settings: :PAYLOAD_32_BYTES 32 bytes 10 words = 40 bytes
ACANFD_FeatherM4CAN_Settings::PAYLOAD_48 BYTES 48 bytes 14 words = 56 bytes
ACANFD_FeatherM4CAN_Settings::PAYLOAD_64 BYTES 64 bytes 18 words = 72 bytes

Table 6 — ACANFD_FeatherM4CAN_Settings object size from payload size specification

11.1 The ACANFD_FeatherM4CAN_Settings: :wordCountForPayload static method
‘ uint32_t ACANFD_FeatherM4CAN_Settings::wordCountForPayload (const Payload inPayload);

This static method returns the object word size for a given payload specification, following table 6.

12 Message RAM

Each CAN module of the ATSAME51G19A uses a Message RAM for storing TxBuffers, hardware transmit FIFO,
hardware receives FIFO, and reception filters.

The two Message RAM have a width of 32 bits and are part of ATSAME51G19A SRAM, and they should be
located in the first 64 kio (0x2000 ' 0000 — 0x2000' FFFF). Their size is less than 4352 words (17,408 bytes).

A message RAM contains®:

standard filters (0-128 elements, 0-128 words);

» extended filters (0-64 elements, 0-128 words);
» receive FIFO O (0-64 elements, 0-1152 words);
« receive FIFO 1 (0-64 elements, 0-1152 words);
» Rx Buffers (0-64 elements, 0-1152 words);
» Tx Event FIFO (0-32 elements, 0-64 words);

» Tx Buffers (0-32 elements, 0-576 words);

6See DS60001507G, section 39.9.1 page 1177.

ACANFD_FeatherM4CAN Arduino library 15

So its size cannot exceed 4352 words (17,408 bytes).

The current release of this library allows to define only the following elements:

» receive FIFO O (0-64 elements, 0-1152 words);

» Tx Buffers (0-32 elements, 0-576 words);

Its size is therefore actually limited to 1,728 words (6,912 bytes).

There are five properties of ACANFD_FeatherM4CAN_Settings class that affect the actual message RAM size:

» the mHardwareRxFIFO@Size property sets the hardware receive FIFO O element count (0-64);

» the mHardwareRxFIFO@Payload property sets the size of the hardware receive FIFO O element (table
6);

» the mHardwareTransmitTxFIFOSize property sets the hardware transmit FIFO element count (0-32);
» the mHardwareDedicacedTxBufferCount property set the number of dedicaced TxBuffers (0-32);

» themHardwareTransmitBufferPayload property sets the size of the TxBuffers and hardware transmit
FIFO element (table 6).

The ACANFD_FeatherM4CAN: :messageRamRequiredSize method returns the required word size.

The ACANFD_FeatherM4CAN: :begin method checks the message RAM allocated size is greater or equal to
the required size. Otherwise, it raises the error code kMessageRamTooSmall. It checks also the message RAM
is in the first 64 kio of the SRAM. Otherwise, it raises the error code kMessageRamNotInFirst6e4kio.

13 Sending frames: the tryToSendReturnStatusFD method

The ACANFD_FeatherM4CAN: : tryToSendReturnStatusFD method sends CAN 2.0B and CANFD frames:
‘ uint32_t ACANFD_FeatherM4CAN::tryToSendReturnStatusFD (const CANFDMessage & inMessage);
You call the tryToSendReturnStatusFD method for sending a message in the CAN network. Note this func-

tion returns before the message is actually sent; this function only adds the message to a transmit buffer. It
returns:

kInvalidMessage (value: 1) if the message is not valid (see section 7.8 page 12);

» kTransmitBufferIndexTooLarge (value: 2)if the idx property value does not specify a valid transmit
buffer (see below);

» kTransmitBufferOverflow (value: 3)if the transmit buffer specified by the idx property value is full;

» 0 (no error) if the message has been successfully added to the transmit buffer specified by the idx
property value.

ACANFD_FeatherM4CAN Arduino library 16

13.1 Testing a send buffer: the sendBufferNotFullForIndex method

The idx property of the message specifies the transmit buffer:

» O for the transmit FIFO (section 8 page 13);

» 1..settings.mHardwareDedicacedTxBufferCount for a dedicaced TxBuffer (section 9 page 14).
The type property of inMessage specifies how the frame is sent:

» CAN_REMOTE, the frame is sent in the CAN 2.0B remote frame format;
= CAN_DATA, the frame is sent in the CAN 2.0B data frame format;

» CANFD_NO_BIT_RATE_SWITCH, the frame is sent in CANFD format at arbitration bit rate, regardless of
the ACANFD_FeatherM4CAN_Settings: :DATA_BITRATE_x,, setting;

» CANFD_WITH_BIT_RATE_SWITCH, withthe ACANFD_FeatherM4CAN_Settings::DATA BITRATE_x1set-
ting, the frame is sent in CANFD format at arbitration bit rate, and otherwise in CANFD format with bit
rate switch.

13.1 Testing a send buffer: the sendBufferNotFullForIndex method
‘bool ACANFD_FeatherM4CAN: :sendBufferNotFullForIndex (const uint32_t inTxBufferIndex);

This method returns true if the corresponding transmit buffer is not full, and false otherwise (table 7).

inTxBufferindex Operation
0 true if the transmit FIFO is not full, and false otherwise
1.. settings.mHardwareDedicacedTxBufferCount true if the TxBufferiis empty, and false if it is full

> settings.mHardwareDedicacedTxBufferCount false

Table 7 — Value returned by the sendBufferNotFullForIndex method

13.2 Usage example

A way is to use a global variable to note if the message has been successfully transmitted to driver transmit
buffer. For example, for sending a message every 2 seconds:

static uint32_t gSendDate = 0 ;

void loop () {
if (gSendDate < millis ()) {
CANFDMessage message ;
// Initialize message properties
const uint32_t sendStatus = can@.tryToSendReturnStatusFD (message) ;
if (sendStatus == 0) {
gSendDate += 2000 ;

ACANFD_FeatherM4CAN Arduino library 17

An other hint to use a global boolean variable as a flag that remains true while the message has not been
sent.

static bool gSendMessage = false ;
void loop () {

if (frame_should_be_sent) {

gSendMessage = true ;

if (gSendMessage) {
CANMessage message ;
// Initialize message properties
const uint32_t sendStatus = can@.tryToSendReturnStatusFD (message) ;
if (sendStatus == 0) {

gSendMessage = false ;

14 Retrieving received messages using the receiveFD@ method

‘bool ACANFD_FeatherM4CAN: :receiveFDO (CANFDMessage & outMessage) ;

If the receive FIFO 0 is not empty, the oldest message is removed, assigned to outMessage, and the method
returns true. If the receive FIFO 0 is empty, the method returns false.

This is a basic example:

void loop () {
CANFDMessage message ;
if (can@.receiveFDO (message)) {

// Handle received message

The receive method:

» returns false if the driver receive buffer is empty, message argument is not modified;

» returns true if a message has been has been removed from the driver receive buffer, and the message
argument is assigned.

The type property contains the received frame format:

ACANFD_FeatherM4CAN Arduino library 18

14.1 Driver receive FIFO O size

= CAN_REMOTE, the received frame is a CAN 2.0B remote frame;
» CAN_DATA, the received frame is a CAN 2.0B data frame;

» CANFD_NO_BIT_RATE_SWITCH, the frame received frame is a CANFD frame, received at at arbitration bit
rate;

= CANFD_WITH_BIT_RATE_SWITCH, the frame received frame is a CANFD frame, received with bit rate
switch.

You need to manually dispatch the received messages. If you did not provide any receive filter, you should
check the type property (remote or data frame?), the ext bit (base or extended frame), and the id (identifier
value). The following snippet dispatches three messages:

void loop () {
CANFDMessage message ;
if (can@.receive (message)) {
if (!message.rtr && message.ext && (message.id == 0x123456)) {
handle_myMessage_© (message) ; // Extended data frame, id is ©x123456
}else if (!message.rtr && !message.ext && (message.id == 0x234)) {
handle_myMessage_1 (message) ; // Base data frame, id is 0x234
}else if (message.rtr && !message.ext && (message.id == 0x542)) {

handle_myMessage 2 (message) ; // Base remote frame, id is ©x542

The handle_myMessage_0 function has the following header:

void handle_myMessage_© (const CANFDMessage & inMessage) {

So are the header of the handle_myMessage_1 and the handle_myMessage_2 functions.

14.1 Driver receive FIFO O size

By default, the driver receive FIFO O size is 10. You can change it by setting the mDriverReceiveFIF0@Size
property of settings variable before calling the begin method:

ACANFD_FeatherM4CAN_Settings settings (125 * 1000,
DataBitRateFactor::x4) ;
settings.mDriverReceiveFIF00Size = 100 ;

const uint32_t errorCode = can@.begin (settings) ;

As the size of CANFDMessage class is 72 bytes, the actual size of the driver receive FIFO 0 is the value of
settings.mDriverReceiveFIF0@Size * 72.

ACANFD_FeatherM4CAN Arduino library 19

14.2 The driverReceiveFIF00Size method

14.2 ThedriverReceiveFIF00Size method

ThedriverReceiveFIF00Size method returnsthe size of the driver FIFO O, thatis the value of themDriverReceiveFIF00
property of settings variable when the the begin method is called.

‘const uint32_t s = can@.driverReceiveFIF00Size () ;

14.3 ThedriverReceiveFIF0OCount method

The driverReceiveFIFO@Count method returns the current number of messages in the driver receive FIFO
0.

‘const uint32_t n = can@.driverReceiveFIFO@Count () ;

14.4 ThedriverReceiveFIF0@PeakCount method

The driverReceiveFIFO@PeakCount method returns the peak value of message count in the driver receive
FIFO 0.

‘const uint32_t max = can@.driverReceiveFIFO0OPeakCount () ;

If an overflow occurs, further calls of can@.receiveBufferPeakCount () returncan@.receiveBufferSize
()+1.

14.5 The resetDriverReceiveFIFOOPeakCount method

The resetDriverReceiveFIFO@PeakCount method assign the current count to the peak value.

‘can0.resetDriverReceiveFIFO@PeakCount O) ;

15 Acceptance filters

In the current release of the library, the only receive filters that can be defined are for remote frames:

» settingthemDiscardReceivedStandardRemoteFrames property of the ACANFD_FeatherM4CAN_Settings
class discards every received remote frame with a standard identifier;

» settingthemDiscardReceivedExtendedRemoteFrames property of the ACANFD_FeatherM4CAN_Settings
class discards every received remote frame with an extended identifier.

By default, theses properties are set to true, meaning all remote frames are received.

ACANFD_FeatherM4CAN Arduino library 20

16 The ACANFD_FeatherM4CAN: :begin method reference

16.1 The prototype
‘ uint32_t ACANFD_FeatherM4CAN::begin (const ACANFD_FeatherM4CAN_Settings & inSettings) ;
This prototype has one argument, a ACANFD_FeatherM4CAN_Settings instance that defines the settings. It

configures the controller in such a way that all messages are received (pass-all filter).

16.2 The error code

The ACANFD_FeatherM4CAN: :begin method returns an error code. The value @ denotes no error. Otherwise,
you consider every bit as an error flag, as described in table 8. An error code could report several errors. The
ACANFD_FeatherM4CAN class defines static constants for naming errors. Bits O to 16 denote a bit configura-
tion error, see table 10 page 27.

Bit Code Static constant Name Comment
0 ox1 kBitRatePrescalerIsZero See table 10 page 27
See table 10 page 27
16 0x1_0000 kDataSIWIsGreaterThanPhaseSegment2 See table 10 page 27
20 0x10_0000 kMessageRamTooSmall See section 12 page 15
21 ©x20_0000 kMessageRamNotInFirsté4kio See section 12 page 15
22 0x40_0000 kHardwareRxFIFO@SizeGreaterThan64 settings.mHardwareRxFIFO@Size > 64
23 0Ox80_0000 kHardwareTransmitFIFOSizeGreaterThan32 settings.mHardwareTransmitTxFIFOSize > 32
24 0x100_0000 kDedicacedTransmitTxBufferCountGreaterThan3@ settings.mHardwareDedicacedTxBufferCount > 30
25 0x200_0000 kTxBufferCountGreaterThan32 See section 16.2.1 page 21
26 0Ox400_0000 kHardwareTransmitFIFOSizelowerThan2 See settings.mHardwareTransmitTxFIFOSize < 2

Table 8 — The ACANFD_FeatherM4CAN: :begin method error code bits

16.2.1 The kTxBufferCountGreaterThan32 error code

There are 32 available TxBuffers, for hardware transmit FIFO and dedicaced TxBuffers. Therefore, the sum of
settings.mHardwareDedicacedTxBufferCountandsettings.mHardwareTransmitTxFIFOSize shouldbe
lower or equal to 32.

17 ACANFD_FeatherM4CAN_Settings class reference

Note. The ACANFD_FeatherM4CAN_Settings classis not Arduino specific. You can compile it on your desktop
computer with your favorite C++ compiler.

17.1 The ACANFD_FeatherM4CAN_Settings constructor: computation of the CAN bit
settings

ACANFD_FeatherM4CAN Arduino library 21

17.1 The ACANFD_FeatherM4CAN_Settings constructor: computation of the CAN bit settings

void setup () {

ACANFD_FeatherM4CAN_Settings::

ACANFD_FeatherM4CAN_Settings (const uint32_t inDesiredArbitrationBitRate,
const DataBitRateFactor inDataBitRateFactor,
const uint32_t inTolerancePPM = 1000) ;

The constructor of the ACANFD_FeatherM4CAN_Settings has two mandatory arguments: the desired arbi-
tration bit rate, and the data bit rate factor. It tries to compute the CAN bit settings for theses bit rates. If it
succeeds, the constructed object has its mArbitrationBitRateClosedToDesiredRate property setto true,
otherwise it is set to false. For example, for an 1 Mbit/s arbitration bit rate and an 8 Mbit/s data bit rate:

void setup () {
// Arbitration bit rate: 1 Mbit/s, data bit rate: 8 Mbit/s
ACANFD_FeatherM4CAN_Settings settings (1000 * 1000, DataBitRateFactor::x8) ;

// Here, settings.mArbitrationBitRateClosedToDesiredRate is true

Note the data bit rate is not defined by its frequency, but by its multiplicative factor from arbitration bit rate.
If you want a single bit rate, use DataBitRateFactor: :x1 as data bit rate factor.

There are 313 exact arbitration / data bit rate combinations (table 9 page 23).

But this does not mean there is no possibility to get such data bit rates factors. For example, we can have a
data bit rate of 4 Mbit/s, and an arbitration bit rate of 4/7 Mbit/s = 571 428 kbit/s:

void setup () {

ACANFD_FeatherM4CAN_Settings settings (571428, DataBitRateFactor::x7) ;

Serial.print ()

Serial.println (settings.mArbitrationBitRateClosedToDesiredRate) ; // 1 (--> is true)
Serial.print ()

Serial.println (settings.actualArbitrationBitRate ()) ; // 571428 bit/s

Serial.print () 3

Serial.println (settings.ppmFromDesiredArbitrationBitRate ()) ; // 1 ppm= 0,0001 %
Serial.print ()

Serial.println (settings.actualDataBitRate ()) ; // 4 Mbit/s

Due to integer computations, and the distance from desired arbitration bit rate is 1 ppm. “ppm” stands for
"part-per-million”, and 1 ppm = 1075, In other words, 10, 000 ppm = 1%.

By default, a desired bit rate is accepted if the distance from the computed actual bit rate is lower or equal
to 1,000 ppm = 0.1 %. You can change this default value by adding your own value as third argument of
ACANFD_FeatherM4CAN_Settings constructor. For example, with an arbitration bit rate equal to 727 kbit/s:

void setup () {

ACANFD_FeatherM4CAN_Settings settings (727 * 1000, DataBitRateFactor::x1, 100) ; // 100 ppm
Serial.print ()

ACANFD_FeatherM4CAN Arduino library 22

17.1 The ACANFD_FeatherM4CAN_Settings constructor: computation of the CAN bit settings

Arbitration Bit Rate

Serial
Serial
Serial
Serial

Serial

5

O 00 N O

12
12
15
16
19
24
25
31
37
40
48
60
64
76
93
100
125
150
187
200
250
320
384
480
600
750
960

.println
.print (
.println
.print (
.println

000
250
500
000
600
000
800
360
000
200
000
600
250
500
000
000
000
000
800
750
000
000
000
500
000
000
000
000
000
000
000
000

Valid Data Rate factors Arbitration Bit Rate Valid Data Rate factors
x8 x10 6 000 x8 x10

x5 x6 x8 x10 6 400 x10

x5 x8 x10 7 680 x10

X5 x6 x8 x10 9 375 x4 x5 x8 x10

x5 x8 x10 10 000 x4 x5 x6 x8 x10

x4 x5 x8 x10 12 500 x3 x4 x5 x6 x8 x10

x5 x6 x10 15 000 x4 x5 x8 x10

x5 15 625 x2 x3 x4 x6 x8

X3 x4 x5 x6 x8 x10 18 750 x2 x4 x5 x8 x10

x4 x5 x10 20 000 x2 x3 x4 x5 x6 x8 x10
x2 x4 x5 x8 x10 25 000 x2 x3 x4 x5 x6 x8 x10
x3 x5 30 000 x2 x4 x5 x8 x10

X1 x2 x3 x4 x6 x8 32 900 x2 x3 x4 x5 x6 x10

x1 x2 x4 x5 x8 x10 38 400 x2 x5 x10

x1 x2 x3 x4 x5 x6 x8 x10 46 875 x1 x2 x4 x8

X1 x2 x4 x5 x8 x10 50 000 x1 x2 x3 x4 x5 x6 x8 x10
x1 x2 x4 x5 x8 x10 62 500 x1 x2 x3 x4 x6 x8

x1 x2 x3 x5 x6 x10 75 000 x1 x2 x4 x5 x8 x10

x1 x5 80 000 x1 x2 x3 x4 x5 x6 x8 x10
x1 x2 x4 x8 96 000 x1 x2 x4 x5 x10

x1 x2 x3 x4 x5 x6 x8 x10 120 000 x1 x2 x4 x5 x8 x10

X1 x2 x3 x4 x6 x8 128 000 x1 x3 x5

x1 x2 x4 x5 x8 x10 160 000 x1 x2 x3 x4 x5 x6 x10
x1 x2 x4 x8 192 000 x1 x2 x5 x10

x1 x2 x3 x4 x5 x6 x8 x10 240 000 x1 x2 x4 x5 x8 x10

x1 x2 x3 x4 x6 x8 300 000 x1 x2 x4 x5 x8 x10

x1 x2 x3 x5 x6 x10 375 000 x1 x2 x4 x8

x1 x5 400 000 x1 x2 x3 x4 x5 x6 x8 x10
x1 x2 x4 x5 x10 500 000 x1 x2 X3 x4 x6 x8

x1 x2 x4 x5 x8 x10 640 000 x1 x3 x5

X1 x2 x4 x8 800 000 x1 x2 x3 x4 x5 x6 x10
x1 x2 x5 x10 1 000 000 x1 x2 x3 x4 x6 x8

Table 9 — The 313 exact bit rates

(settings.mArbitrationBitRateClosedToDesiredRate) ; // © (--> is false)
)
(settings.actualArbitrationBitRate ()) ; // 727272 bit/s
)
(settings.ppmFromDesiredArbitrationBitRate ()) ; // 375 ppm

The third argument does not change the CAN bit computation, it only changes the acceptance test for setting
themArbitrationBitRateClosedToDesiredRate property. For example, you can specify that you want the
computed actual bit to be exactly the desired bit rate:

void setup () {

Serial.print (

ACANFD_FeatherM4CAN_Settings settings (500 * 1000,

DataBitRateFactor::x1,
9) ; // Max distance is @ ppm

)

Serial.println (settings.mArbitrationBitRateClosedToDesiredRate) ; // 1 (--> is true)

ACANFD_FeatherM4CAN Arduino library 23

17.1 The ACANFD_FeatherM4CAN_Settings constructor: computation of the CAN bit settings

Serial.

Serial.

print (

print (

)

Serial.println (settings.actualArbitrationBitRate ()) ; // 500,000 bit/s

)

Serial.println (settings.ppmFromDesiredArbitrationBitRate ()) ; // © ppm

In any way, the bit rate computation always gives a consistent result, resulting an actual arbitration / data
bit rates closest from the desired bit rate. For example, we query a 423 kbit/s arbitration bit rate, and a 423
kbit/s * 3 = 1 269 kbit/s data bit rate:

Serial
Serial

Serial

Serial.
Serial.
Serial.
Serial.

Serial.

void setup () {

.print (
.println
.print (

println
print (
println
print (
println

(settings.

(settings.

(settings.

(settings.

ACANFD_FeatherM4CAN_Settings settings (423 * 1000, DataBitRateFactor::x3) ;

)
mArbitrationBitRateClosedToDesiredRate) ; // © (--> is false)

)
actualArbitrationBitRate ()) ; // 421 052 bit/s
)
actualDataBitRate ()) ; // 1 263 157 bit/s

)
ppmFromDesiredArbitrationBitRate ()) ; // 4 603 ppm

The resulting bit rates settings are far from the desired values, the CAN bit decomposition is consistent. You

can get its details:

Serial
Serial
Serial
Serial
Serial
Serial
Serial
Serial

Serial

Serial.
Serial.
Serial.
Serial.
Serial.
Serial.
Serial.

Serial.

Serial.

void setup () {

print (
println
print (
println
print (
println
print (
println

.print (
.println
.print (
.println
.print (
.println
.print (
.println
.print (

println

(settings.

(settings.

(settings.

(settings.

(settings.

(settings.

(settings.

(settings.

(settings.

ACANFD_FeatherM4CAN_Settings settings (423 * 1000, DataBitRateFactor::x3) ;

)
mArbitrationBitRateClosedToDesiredRate) ; // © (--> is false)

)
actualArbitrationBitRate ()) ; // 421 052 bit/s
)
actualDataBitRate ()) ; // 1 263 157 bit/s

)
ppmFromDesiredArbitrationBitRate ()) ; // 4 603 ppm
)
mBitRatePrescaler) ; // BRP =1
)
mArbitrationPhaseSegmentl) ; // PS1
)
mArbitrationPhaseSegment2) ; // PS2
)

22

10

mArbitrationSIW) ; // SIW = 10
)
arbitrationSamplePointFromBitStart ()) ; // 69, meaning 69%

ACANFD_FeatherM4CAN Arduino library 24

17.1 The ACANFD_FeatherM4CAN_Settings constructor: computation of the CAN bit settings

Serial
Serial
Serial
Serial
Serial

Serial

Serial.
Serial.
Serial.

Serial.

.print (
.println
.print (
.println
.print (
.println

print (
println
print (
println

(settings

(settings

(settings

(settings.

(settings.

)
.mDataPhaseSegmentl) ; // PS1 = 22

)
.mDataPhaseSegment2) ; // PS2 = 10

)

.mDatasiW) ; // SIW = 1@

)
dataSamplePointFromBitStart ()) ; // 69, meaning 59%
)
CANBitSettingConsistency ()) ; // @, meaning Ok

The samplePointFromBitStart method returns sample point, expressed in per-cent of the bit duration from

the beginning of the bit.

Note the computation may calculate a bit decomposition too far from the desired bit rate, but it is always
consistent. You can check this by calling the CANBitSettingConsistency method.

You can change the property values for adapting to the particularities of your CAN network propagation time.
By example, you canincrement the mArbitrationPhaseSegmentl property value, and decrement the mArbi-
trationPhaseSegment2 property value in order to sample the CAN Rx pin later.

Serial.

void setup () {

print (

ACANFD_FeatherM4CAN_Settings settings (500 * 1000, DataBitRateFactor::x1) ;

)

Serial.println (settings.mArbitrationBitRateClosedToDesiredRate) ; // 1 (--> is true)
settings.mArbitrationPhaseSegmentl -= 4 ; // 32 -> 28: safe, 1 <= PS1 <= 256
settings.mArbitrationPhaseSegment2 += 4 ; // 15 -> 19: safe, 1 <= PS2 <= 128

settings.mArbitrationSIW += 4 ;5 // 15 -> 19: safe, 1 <= SIW <= PS2
Serial.print ()

Serial.println (settings.samplePointFromBitStart ()) ; // 58, meaning 58%
Serial.print ()

Serial.println (settings.actualArbitrationBitRate ()) ; // 500000: ok, no change
Serial.print ()

Serial.println (settings.CANBitSettingConsistency ()) ; // ©, meaning Ok

Be aware to always respect CAN bit timing consistency! The ATSAME51G19A constraints are:

ACANFD_FeatherM4CAN Arduino library 25

17.2 The CANBitSettingConsistency method

mBitRatePrescaler < 32
mArbitrationPhaseSegmentl < 256
mArbitrationPhaseSegment2 < 128
mArbitrationSIW < mArbitrationPhaseSegment2
mDataPhaseSegmentl < 32

mDataPhaseSegment2 < 16

— N = = N e
NN NN NN N

mDataSJW < mDataPhaseSegment2

Miucrochips recommends using the same bit rate prescaler for arbitration and data bit rates.
Resulting actual bit rates are given by (SYSCLK = 48 MHz):

SYSCLK
mBitRatePrescaler - (1 + mArbitrationPhaseSegmentl + mArbitrationPhaseSegment2)
SYSCLK
mBitRatePrescaler - (1 + mDataPhaseSegmentl + mDataPhaseSegment2)

Actual Arbitration Bit Rate =

Actual Data Bit Rate =

And the sampling point (in per-cent unit) are given by:

1 4+ mArbitrationPhaseSegmentl
1 4+ mArbitrationPhaseSegmentl + mArbitrationPhaseSegment2
1 4+ mDataPhaseSegmentl
1 4+ mDataPhaseSegmentl + mDataPhaseSegment2

Arbitration Sampling Point = 100 -

Data Sampling Point = 100 -

17.2 The CANBitSettingConsistency method

This method checks the CAN bit decomposition (given by mBitRatePrescaler, mArbitrationPhaseSegment1,
mArbitrationPhaseSegment2, mArbitrationSJIW, mDataPhaseSegmentl, mDataPhaseSegment2, mDataSIW
property values) is consistent.

void setup () {

ACANFD_FeatherM4CAN_Settings settings (500 * 1000, DataBitRateFactor::x2) ;

Serial.print ()

Serial.println (settings.mArbitrationBitRateClosedToDesiredRate) ; // 1 (--> is true)
settings.mDataPhaseSegmentl = © ; // Error, mDataPhaseSegmentl should be >= 1 (and <= 32)
Serial.print ()

Serial.println (settings.CANBitSettingConsistency (), HEX) ; // != @, meaning error

The CANBitSettingConsistency method returns 0 if CAN bit decomposition is consistent. Otherwise, the
returned value is a bit field that can report several errors — see table 10.

ACANFD_FeatherM4CAN Arduino library 26

17.3 The actualArbitrationBitRate method

The ACANFD_FeatherM4CAN_Settings class defines static constant properties that can be used as mask er-

ror. For example:

public:
Bit Code
] ox1
1 ox2
2 ox4
3 ox8
4 0x10
5 0x20
6 0x40
7 0x80
8 0x100
9 0x200
10 0x400
11 0x800
12 0x1000
13 0x2000
14 0x4000
15 0x8000
16 0x1_0000

static const uint32_t kBitRatePrescalerIsZero =

Error Name

kBitRatePrescalerIsZero
kBitRatePrescalerIsGreaterThan32
kArbitrationPhaseSegmentlIsZero
kArbitrationPhaseSegmentl1IsGreaterThan256
kArbitrationPhaseSegment2IsLowerThan2
kArbitrationPhaseSegment2IsGreaterThan128
kArbitrationSJWIsZero
kArbitrationSJWIsGreaterThan128
kArbitrationSJIWIsGreaterThanPhaseSegment2
kArbitrationPhaseSegmentl1IslAndTripleSampling
kDataPhaseSegmentlIsZero
kDataPhaseSegmentlIsGreaterThan32
kDataPhaseSegment2IsLowerThan2
kDataPhaseSegment2IsGreaterThanl6
kDataSJIWIsZero

kDataSJWIsGreaterThanlé
kDataSJWIsGreaterThanPhaseSegment2

1 << 0 ;

Error

mBitRatePrescaler ==0

mBitRatePrescaler > 32
mArbitrationPhaseSegmentl ==
mArbitrationPhaseSegmentl > 256
mArbitrationPhaseSegment2 < 2
mArbitrationPhaseSegment2 > 128
mArbitrationSIW ==

mArbitrationSIW > 128
mArbitrationSJIW > mArbitrationPhaseSegment2
(mArbitrationPhaseSegmentl == 1) and triple sampling
mDataPhaseSegmentl ==0
mDataPhaseSegmentl > 32
mDataPhaseSegment2 < 2

mDataPhaseSegment2 > 16

mDataSIW ==

mDataSIW > 16

mDataSJIW > mDataPhaseSegment2

Table 10 — The ACANFD_FeatherM4CAN_Settings: :CANBitSettingConsistency method error codes

17.3 The actualArbitrationBitRate method

The actualArbitrationBitRate method returns the actual bit computed from mBitRatePrescaler, mPro-

pagationSegment, mArbitrationPhaseSegmentl, mArbitrationPhaseSegment2, mArbitrationSJIWprop-

erty values.

Note.

void setup () {

Serial.print (

Serial.print (
Serial.println (settings.actualArbitrationBitRate ()) ; //

17.4 The exactArbitrationBitRate method

ACANFD_FeatherM4CAN_Settings settings (440 * 1000, DataBitRateFactor::x1) ;

)

Serial.println (settings.mArbitrationBitRateClosedToDesiredRate) ; // @ (--> is false)

E]

444,444 bit/s

If CAN bit settings are not consistent (see section 17.2 page 26), the returned value is irrelevant.

‘bool ACANFD_FeatherM4CAN_Settings::exactArbitrationBitRate (void) const ;

ACANFD_FeatherM4CAN Arduino library

27

17.5 The exactDataBitRate method

The exactArbitrationBitRate method returns true if the actual arbitration bit rate is equal to the desired
arbitration bit rate, and false otherwise.

Note. If CAN bit settings are not consistent (see section 17.2 page 26), the returned value is irrelevant.

17.5 The exactDataBitRate method
‘bool ACANFD_FeatherM4CAN_Settings::exactDataBitRate (void) const ;

The exactDataBitRate method returns true if the actual data bit rate is equal to the desired data bit rate,
and false otherwise.

Note. If CAN bit settings are not consistent (see section 17.2 page 26), the returned value is irrelevant.

17.6 The ppmFromDesiredArbitrationBitRate method
‘uint32_t ACANFD_FeatherM4CAN_Settings::ppmFromDesiredArbitrationBitRate (void) const ;

The ppmFromDesiredArbitrationBitRate method returns the distance from the actual arbitration bit rate
to the desired arbitration bit rate, expressed in part-per-million (ppm): 1 ppm = 10, In other words, 10, 000 ppm =
1%.

Note. If CAN bit settings are not consistent (see section 17.2 page 26), the returned value is irrelevant.

17.7 The ppmFromDesiredDataBitRate method
‘uint32_t ACANFD_FeatherM4CAN_Settings::ppmFromDesiredDataBitRate (void) const ;

The ppmFromDesiredDataBitRate method returns the distance from the actual data bit rate to the desired
data bit rate, expressed in part-per-million (ppm): 1 ppm = 105, In other words, 10, 000 ppm = 1%.

Note. If CAN bit settings are not consistent (see section 17.2 page 26), the returned value is irrelevant.

17.8 The arbitrationSamplePointFromBitStart method
‘uint32_t ACANFD_FeatherM4CAN_Settings::arbitrationSamplePointFromBitStart (void) const ;

The arbitrationSamplePointFromBitStart method returns the distance of sample point from the start
of the arbitration CAN bit, expressed in part-per-cent (ppc): 1 ppc = 1% = 1072, Itis a good practice to get
sample point from 65% to 80%. The bit rate calculator tries to set the sample point at 80%.

Note. If CAN bit settings are not consistent (see section 17.2 page 26), the returned value is irrelevant.

17.9 The dataSamplePointFromBitStart method

‘uint32_t ACANFD_FeatherM4CAN_Settings::dataSamplePointFromBitStart (void) const ;

ACANFD_FeatherM4CAN Arduino library 28

17.10 Properties of the ACANFD_FeatherM4CAN_Settings class

The dataSamplePointFromBitStart method returns the distance of sample point from the start of the data
CAN bit, expressed in part-per-cent (ppc): 1 ppc = 1% = 1072 Itis a good practice to get sample point from
65% to 80%. The bit rate calculator tries to set the sample point at 80%.

Note. If CAN bit settings are not consistent (see section 17.2 page 26), the returned value is irrelevant.

17.10 Properties of the ACANFD_FeatherM4CAN_Settings class

All properties of the ACANFD_FeatherM4CAN_Settings class are declared public and are initialized (table
11).

Property Type Initial value Comment
mDesiredArbitrationBitRate uint32_t Constructor argument

mDataBitRateFactor DataBitRateFactor Constructor argument

mBitRatePrescaler uint8_t 32 See section 17.1 page 21
mArbitrationPhaseSegment1l uintle_t 256 See section 17.1 page 21
mArbitrationPhaseSegment2 uint8_t 128 See section 17.1 page 21
mArbitrationSIW uint8_t 128 See section 17.1 page 21
mDataPhaseSegmentl uint8_t 32 See section 17.1 page 21
mDataPhaseSegment2 uints_t 16 See section 17.1 page 21
mDataSIW uint8_t 16 See section 17.1 page 21
mTripleSampling bool true See section 17.1 page 21
mBitSettingOk bool true See section 17.1 page 21
mModuleMode ModuleMode NORMAL_FD See section 17.10.1 page 29
mDriverReceiveFIFO@Size uintile6_t 10 See section 14.1 page 19
mHardwareRxFIFO0Size uints_t 64 See section 12 page 15
mHardwareRxFIFO@OPayload Payload PAYLOAD_64_BYTES See section 12 page 15
mEnableRetransmission bool true See section 17.10.2 page 29
mDiscardReceivedStandardRemoteFrames bool false See section 15 page 20
mDiscardReceivedExtendedRemoteFrames bool false See section 15 page 20
mTransceiverDelayCompensation uint8_t 5 See section 17.10.3 page 30
mDriverTransmitFIFOSize uint8_t 20 See section 8 page 13
mHardwareTransmitTxFIFOSize uint8_t 24 See section 8 page 13
mHardwareDedicacedTxBufferCount uint8_t 8 See section 9 page 14
mHardwareTransmitBufferPayload Payload PAYLOAD_64_BYTES See section 11 page 14

Table 11 — Properties of the ACANFD_FeatherM4CAN_Settings class

17.10.1 The mModuleMode property

This property defines the mode requested at this end of the configuration process: NORMAL_FD (default value),
INTERNAL_LOOP_BACK, EXTERNAL_LOOP_BACK

17.10.2 The mEnableRetransmission property

By default, a trame is automatically retransmitted is an error occurs during its transmission, or if its transmis-
sion is preempted by a higher priority frame. You can turn off this feature by setting the mEnableRetransmission
to false.

ACANFD_FeatherM4CAN Arduino library 29

17.10.3 The mTransceiverDelayCompensation property

Setting the Transmitter Delay Compensation is required when data bit rate switch is enabled and data phase bit
time that is shorter than the transceiver loop delay. The mTransceiverDelayCompensation property is by
default set to 8 by the ACANFD_FeatherM4CAN_Settings constructor.

For more details, see DS60001507G, sections 39.6.2.4, pages 1095 and 1096.

18 Other ACANFD_FeatherM4CAN methods

18.1 The errorCounters method
‘uint32_t ACANFD_FeatherM4CAN: :errorCounters (void) ;

This method returns the transmit / receive error count register value, as described in DS20005688B, REGISTER
3-19 page 41. The CAITREC value is zero when there is no error.

ACANFD_FeatherM4CAN Arduino library 30

	Versions
	Features
	CAN Interfaces
	CAN0
	CAN1

	Data flow
	A simple example: LoopBackDemoCANFD_CAN1
	The CANMessage class
	The CANFDMessage class
	Properties
	The default constructor
	Constructor from CANMessage
	The type property
	The len property
	The idx property
	The pad method
	The isValid method

	Transmit FIFO
	The driverTransmitFIFOSize method
	The driverTransmitFIFOCount method
	The driverTransmitFIFOPeakCount method

	Transmit buffers (TxBufferi)
	Receive FIFOs
	Payload size
	The ACANFD_FeatherM4CAN_Settings::wordCountForPayload static method

	Message RAM
	Sending frames: the tryToSendReturnStatusFD method
	Testing a send buffer: the sendBufferNotFullForIndex method
	Usage example

	Retrieving received messages using the receiveFD0 method
	Driver receive FIFO 0 size
	The driverReceiveFIFO0Size method
	The driverReceiveFIFO0Count method
	The driverReceiveFIFO0PeakCount method
	The resetDriverReceiveFIFO0PeakCount method

	Acceptance filters
	The ACANFD_FeatherM4CAN::begin method reference
	The prototype
	The error code
	The kTxBufferCountGreaterThan32 error code

	ACANFD_FeatherM4CAN_Settings class reference
	The ACANFD_FeatherM4CAN_Settings constructor: computation of the CAN bit settings
	The CANBitSettingConsistency method
	The actualArbitrationBitRate method
	The exactArbitrationBitRate method
	The exactDataBitRate method
	The ppmFromDesiredArbitrationBitRate method
	The ppmFromDesiredDataBitRate method
	The arbitrationSamplePointFromBitStart method
	The dataSamplePointFromBitStart method
	Properties of the ACANFD_FeatherM4CAN_Settings class
	The mModuleMode property
	The mEnableRetransmission property
	The mTransceiverDelayCompensation property

	Other ACANFD_FeatherM4CAN methods
	The errorCounters method

