
ACAN2517FD Arduino library

For the MCP2517FD, MCP2518FD and
MCP251863 CANFD Controllers

in CANFD mode

Version 2.1.13
Pierre Molinaro

January 21, 2025

Contents

1 Versions 5

2 Features 6

3 MCP2517FD or MCP2518FD? 7
3.1 Reset . 7
3.2 Clock . 8
3.3 Restricted Operation Mode . 8

4 Data flow 9
4.1 Data flow in default configuration . 9
4.2 Data flow, custom configuration . 10

5 A simple example: LoopBackDemo 10

6 The CANFDMessage class 14

1

CONTENTS

6.1 Properties . 14
6.2 The default constructor . 15
6.3 Constructor from CANMessage . 15
6.4 The type property . 15
6.5 The len property . 16
6.6 The idx property . 16
6.7 The pad method . 16
6.8 The isValid method . 17

7 The CANMessage class 17

8 Connecting a MCP2517FD to your microcontroller 18
8.1 Pullup resistor on nCS pin . 18
8.2 Using alternate pins on Teensy 3.x . 19
8.3 Using alternate pins on an Adafruit Feather M0 . 20
8.4 Connecting to an ESP32 . 21

8.4.1 Connecting MCP2517_CS and MCP2517_INT . 21
8.4.2 Using SPI . 21
8.4.3 Using HSPI . 22

8.5 Connection with no interrupt pin . 23
8.6 Wiring schemes . 23

8.6.1 Arduino Uno - MCP2518FDClick . 23

9 Clock configuration 24

10 Transmit FIFO 25
10.1 The driverTransmitBufferSize method . 26
10.2 The driverTransmitBufferCount method . 26
10.3 The driverTransmitBufferPeakCount method . 27

11 Transmit Queue (TXQ) 27

12 Receive FIFO 28
12.1 The hardwareReceiveBufferOverflowCount method . 28
12.2 The resetHardwareReceiveBufferOverflowCount method 29

13 Payload size 29
13.1 The ACAN2517FDSettings::objectSizeForPayload static method 30

14 RAM usage 30

15 Sending frames: the tryToSend method 31
15.1 Calling tryToSend with an CANMessage argument . 32
15.2 Usage example . 32

16 Retrieving received messages using the receive method 33
16.1 Driver receive buffer size . 34

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 2

CONTENTS

16.2 The receiveBufferSize method . 35
16.3 The receiveBufferCount method . 35
16.4 The receiveBufferPeakCount method . 35

17 Acceptance filters 35
17.1 An example . 35
17.2 The appendPassAllFilter method . 37
17.3 The appendFormatFilter method . 37
17.4 The appendFrameFilter method . 37
17.5 The appendFilter method . 38

18 The dispatchReceivedMessage method 38

19 The ACAN2517FD::begin method reference 39
19.1 The prototypes . 39
19.2 Defining explicitly the interrupt service routine . 40
19.3 The error code . 40

19.3.1 kRequestedConfigurationModeTimeOut . 40
19.3.2 kReadBackErrorWith1MHzSPIClock . 40
19.3.3 kTooFarFromDesiredBitRate . 40
19.3.4 kInconsistentBitRateSettings . 41
19.3.5 kINTPinIsNotAnInterrupt . 41
19.3.6 kISRIsNull . 42
19.3.7 kFilterDefinitionError . 42
19.3.8 kMoreThan32Filters . 42
19.3.9 kControllerReceiveFIFOSizeIsZero . 42
19.3.10 kControllerReceiveFIFOSizeGreaterThan32 42
19.3.11 kControllerTransmitFIFOSizeIsZero . 42
19.3.12 kControllerTransmitFIFOSizeGreaterThan32 42
19.3.13 kControllerRamUsageGreaterThan2048 . 42
19.3.14 kControllerTXQPriorityGreaterThan31 . 43
19.3.15 kControllerTransmitFIFOPriorityGreaterThan31 43
19.3.16 kControllerTXQSizeGreaterThan32 . 43
19.3.17 kRequestedModeTimeOut . 43
19.3.18 kX10PLLNotReadyWithin1MS . 43
19.3.19 kReadBackErrorWithFullSpeedSPIClock . 43
19.3.20 kISRNotNullAndNoIntPin . 43
19.3.21 kInvalidTDCO . 44

20 ACAN2517FDSettings class reference 44
20.1 The ACAN2517FDSettings constructor: computation of the CAN bit settings 44
20.2 The CANBitSettingConsistency method . 50
20.3 The kArbitrationTQCountNotDivisibleByDataBitRateFactor error 51
20.4 The actualArbitrationBitRate method . 51
20.5 The exactArbitrationBitRate method . 52

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 3

CONTENTS

20.6 The exactDataBitRate method . 52
20.7 The ppmFromDesiredArbitrationBitRate method . 52
20.8 The ppmFromDesiredDataBitRate method . 52
20.9 The arbitrationSamplePointFromBitStart method . 52
20.10 The dataSamplePointFromBitStart method . 53
20.11 Properties of the ACAN2517FDSettings class . 53

20.11.1 The mTXCANIsOpenDrain property . 53
20.11.2 The mINTIsOpenDrain property . 53
20.11.3 The CLKO/SOF pin . 53
20.11.4 The mRequestedMode property . 55
20.11.5 The mISOCRCEnabled property . 55
20.11.6 The mTDCO property . 55

21 Handling GPIO0, GPIO1 and XSTBY 55
21.1 The gpioSetMode method . 56
21.2 The gpioWrite method . 56
21.3 The gpioRead method . 57
21.4 The configureGPIO0AsXSTBY method . 57

22 Other ACAN2517FD methods 57
22.1 The currentOperationMode method . 57
22.2 The setOperationMode method . 58
22.3 The recoverFromRestrictedOperationMode method . 58
22.4 The performSleepModeToConfigurationMode method . 59
22.5 The errorCounters method . 59
22.6 The diagInfos method . 59
22.7 The end method . 59

23 The sendfd‐odd and sendfd‐even sketches 60

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 4

1 Versions

Version Date Comment
2.1.13 January 21, 2025 ESP32 V3.1.1: xTaskCreate priority is set to 16 (thank to EarlVadim).
2.1.11 August 14, 2023 • Fixed maximum SPI clock frequency to 80 % of master clock frequency.

• ACAN2517FDSettings::RequestedMode and ACAN2517FD::OperationMode

types have been merged: now, use ACAN2517FDSettings::OperationMode.
• Consequently, the NormalFD, Sleep, InternalLoopBack, Listen‐

Only, Configuration, ExternalLoopBack, Normal20B and Res‐

trictedOperation enumeration constants are available for
ACAN2517FDSettings::OperationMode enumeration type.
• Added the ACAN2517FD::setOperationMode method (see section 22.2 page
58)
• Added the performSleepModeToConfigurationMode method, see section
22.4 page 59.
• Added handling of GPIO0, GPIO1 and XSTBY, see section 21 page 55.

2.1.10 December 22, 2022 Merged #31 and #32 pull requests from Flole998.
2.1.9 December 11, 2021 Added the end function (section 22.7 page 59), not tested with the ESP32.
2.1.8 October 1, 2021 Added data_s64, data_s32, data_s16 and data_s8 to CANMessage class union

members, see section 7 page 17 (thanks to tomtom0707).
2.1.7 September 15, 2021 • Added LoopBackDemoArduinoUnoNoInt.ino sketch.

• Changed receive message handling, see section 12 page 28.
• Added the resetHardwareReceiveBufferOverflowCount method, see sec-
tion 12.2 page 29.
• Fixed several typos.

2.1.6 April 21, 2021 Added x9 and x10 data bit rate factors (thanks to Pedro Dionisio Pereira Junior).
Added Arduino Uno – MCP2518FDClick wiring scheme (thanks to soso49).

2.1.5 January 27, 2021 Fixed retransmission attempts setting bug.
Added NoRetransmissionAttemptsDemoTeensy3x.ino sketch.

2.1.4 January 14, 2021 Improved method to read also the BDIAG0_REGISTER diagnostic register (thanks
to turmary), see section 22.6 page 59.
Fix: mHardwareTxFIFOFull = true will block the transmitter if call begin() multiple
times without constructor (thanks to turmary).

2.1.3 October 3, 2020 Add method to read the diagnostic registers (thanks to Flole998), see section
22.6 page 59.

2.1.2 May 31, 2020 Fix retransmission attempts settings (thanks to Flole998)
2.1.1 April 27, 2020 Added dataFloat to CANMessage and CANFDMessage (thanks to Koryphon)
2.1.0 December 31, 2019 For compatibility with ACAN_T4, the DataBitRateFactor enumeration is de-

clared outside of the ACAN2517FDSettings class.
Fix commented out line (thank to Flole998).

2.0.1 October 28, 2019 Fix incorrect usage of digitalPinToInterrupt (thank to Flole998).
2.0.0 September 15, 2019 Fixed several bugs.

Added ACAN2517FD::currentOperationMode method, see section 22.1 page
57.
Added ACAN2517FD::recoverFromRestrictedOperationMode method, see
section 22.3 page 58.
Added ACAN2517FD::errorCounters method, see section 22.5 page 59.

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 5

Added description of sendfd‐odd and sendfd‐even sketches, see section 23
page 60.
Added section MCP2517FD or MCP2518FD? page 7.

1.1.6 June 6, 2019 Running pinMode (mINT, INPUT_PULLUP) only if mInt pin is used (thanks to
Tyler Lewis).

1.1.5 June 2, 2019 Fixed a race condition on ESP32 (thanks to Nick Kirkby).
1.1.4 March 21, 2019 Fixed dual bit rate bug (thanks to danielhenz).

Fixed TxQ enable bug (thanks to danielhenz).
Added setting of Enable Edge Filtering during Bus Integration state bit, for reaching
the 8 Mbit/s bit data rate.
Updated LoopBackIntensiveTestTeensy3x sample code.

1.1.3 February 8, 2019 Compatibility for Arduino Uno.
Added demo sketch LoopBackDemoArduinoUno.
Renamed ACANBuffer to ACANFDBuffer.

1.1.2 February 3, 2019 Added setting mINTIsOpenDrain (section 20.11.2 page 53).
Remove useless mutex (ESP32).

1.1.1 January 31, 2019 First release running on ESP32 (section 8.4 page 21).
New option: no interrupt pin (section 8.5 page 23).

1.0.4 January 14, 2019 Fixed mask and acceptance filters for extended messages.
New LoopBackDemoTeensy3xStandardFilterTest.ino sample code for
checking base reception filters.
New LoopBackDemoTeensy3xExtendedFilterTest.ino sample code for
checking extended reception filters.

1.0.3 January 6, 2019 Corrected identifiers for extended messages.
1.0.2 November 2, 2018 added mISOCRCEnabled setting.
1.0.1 October 29, 2018 Conformity with Arduino library.
1.0.0 October 28, 2018 Initial release.

2 Features

The ACAN2517FD library is a MCP2517FD and MCP2518FD CANFD (Controller Area Network with Flexible Data)
Controller driver for any board running Arduino. It handles CANFD frames.

This library is compatible with:

• the ACAN 1.0.6 and above library (https://github.com/pierremolinaro/acan), CAN driver for Flex-
Can module embedded in Teensy 3.1 / 3.2, 3.5, 3.6 microcontrollers;

• the ACAN2515 1.0.1 and above library (https://github.com/pierremolinaro/acan2515), CAN driver
for MCP2515 CAN controller;

• the ACAN2517 library (https://github.com/pierremolinaro/acan2517), CAN driver for MCP2517FD
CAN controller, in CAN 2.0B mode.

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 6

https://github.com/pierremolinaro/acan
https://github.com/pierremolinaro/acan2515
https://github.com/pierremolinaro/acan2517

It has been designed to make it easy to start and to be easily configurable:

• default configuration sends and receives any frame – no default filter to provide;

• ISO CRC enabled by default;

• efficient built-in CAN bit settings computation from arbitration and data bit rates;

• user can fully define its own CAN bit setting values;

• all 32 reception filter registers are easily defined;

• reception filters accept call back functions;

• driver and controller transmit buffer sizes are customisable;

• driver and controller receive buffer size is customisable;

• overflow of the driver receive buffer is detectable;

• MCP2517FD internal RAM allocation is customizable and the driver checks no overflow occurs;

• loop back, self reception, listing only MCP2517FD controller modes are selectable.

3 MCP2517FD or MCP2518FD?

In short: I recommend using a MCP2518FD. My opinion is that the MCP2517FD has hardware bugs.

3.1 Reset

An originality of the MCP2517FD is that it has no reset pin. Resetting the MCP2517FD can only be done by
software, by sending a RESET command through the SPI. But sometimes, for reasons I don’t know, the reset
is not done correctly.We can see this because the value returned by the ACAN2517FD::begin function is not
zero (see section 19.3 page 40). Some possible errors are 0x1 (kRequestedConfigurationModeTimeOut, the
MCP2517FD cannot reach the configuration mode), 0x40000 (kReadBackErrorWithFullSpeedSPIClock, the
MCP2517FD RAM cannot be written and read back). Typically, this can happen when uploading and starting a
new version of the firmware into the microcontroller. So I recommend to always check the value returned
by the ACAN2517FD::begin function is zero. In such case, you should power off and the power on.

With a MCP2518FD, uploading and starting a new version of the firmware into the microcontroller always suc-
ceeds, but if the previous sketch has provided invalid clock setting, as enabling PLL with a 40MHz clock.

Note you should also add a pullup resistor on the nCS pin (section 8.1 page 18) with a MCP2517FD, I don’t think
this resistance is necessary with a MCP2518FD.

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 7

3.2 Clock

3.2 Clock

In short: I recommend using an external clock, as an integrated oscillator. Do not use a crystal oscillator.

Using a crystal oscillator may be tricky: just take a look to section 3.1.1 page 13 of the DS20005678Ddocument,
that gives few guidelines for selecting the correct crystal oscillator or ceramic resonator. This section gives
very precise references for crystal oscillator and associated capacitors. Note also an Optional Feedback Resistor
has been added in the C revision of this document, and the section 3.1.1 has been updated in the C and D

revisions.

4MHz crystal oscillator. I have tried a 4MHz crystal oscillator (HC49US‐FF3F18‐4.0000), with two 22pF capac-
itors, so the clock setting is ACAN2517FDSettings::OSC_4MHz10xPLL. I noticed that a MCP2517FD worked
well for a data bit rate up to 1Mbps; above 1Mbps, the MCP2517FD often enters in Restricted Operation Mode,
but maybe it’s due to internal bugs (see section 3.3 page 8). A MCP2518FD works prefectly with this oscillator.

40MHz crystal oscillator. I have also tried a 40MHz crystal oscillator (YIC‐HC49US), with the same two 22pF

capacitors, and the ACAN2517FD‐ Settings::OSC_40MHz setting. Surprisingly, the observed frequency on
the OSC2 pin was… 13.3MHz! Exactly one third of 40MHz. Probably the 22pF capacitors are not appropriate.
The OSC2 pin signal, observed at the oscilloscope, had a very small amplitude: 300mV.

Same behaviour as with the 4MHz crystal oscillator: buggy with a MCP2517FD above 1Mbs, sucess with a
MCP2518FD.

Morality: if you choose a crystal oscillator, always observe the frequency obtained with an oscilloscope.

4MHz integrated oscillator. I use a 4MHz integrated oscillator (LFSPXO024978BULK, the supply voltage of my
MCP2517FD is 3.3V), connected to OSC1. OSC2 is left unconnected.

The clock setting is ACAN2517FDSettings::OSC_4MHz10xPLL. I have observed with oscilloscope the OSC1 pin
signal, it has the correct frequency, and the amplitude I expected: 3.3V.

40MHz integrated oscillator. I use a 40MHz integrated oscillator (LFSPXO026068BULK. The clock setting is
ACAN2517FDSettings::OSC_40MHz. I have also observed with oscilloscope the OSC1 pin signal, it has the
correct frequency, and the amplitude I expected: 3.3V.

3.3 Restricted Operation Mode

For testing transmission and reception, I use the sendfd‐odd and sendfd‐even sketches, that are provided
as sample code in the library (see section 23 page 60). They are designed for a Teensy 3.5, but can easily be
adapted for other platforms.

For data bit rates higher than1Mbpswith aMCP2517FD, I have noticed the error counters may have not zero val-
ues (error counters can be read by the errorCountersmethod, see section 22.5 page 59), and the MCP2517FD
enters sometimes in Restricted Operation Mode. The modes operation is described in DS20005678D, figure
2.1 page 9. Restricted Operation Mode is reached from Normal Modes on System Error, as the driver lets the
SERR2LOM bit equal to 0.

System Error is described in section 10.5.6, page 63. The MCP2517FD Data Sheet Errata (DS80000792B) gives
an explanation: The SPI Interface can block the CANFD Controller module from accessing RAM in between SPI bytes

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 8

and between the last byte and the rising edge of the nCS line during an SPI READ or SPI READ CRC instruction while
accessing RAM. If the CANFD Controller module is blocked for more than TSPIMAXDLY, a TX MAB underflow or an RX
MAB overflow can occur. Within the CANFD Control Field, TSPIMAXDLY is 3 NBT + 5 DBT, that is for an 1Mbps

arbitration bit rate and a data bit factor x8 (8Mbps) : 3 · 1µs + 5 · 125ns = 3.625µs. The challenge is to
write a driver that checks these constraints. This is not easy, as transfers are made through transfer and
transfer16 SPI Arduino routines, and their implementation may vary from one platform to another. In the
ACAN2517FD code, I have masked interruptions during transfers to minimize the delay between bytes, and to
ensure that the nCS signal becomes inactive (high) as quickly as possible at the end of the transfer.

You can check currentMCP2517FDoperation mode by calling theACAN2517FD::currentOperationMode func-
tion (section 22.1 page 57. It returns 7 for the Restricted Operation Mode. You can recover from Restricted Op-
eration Mode by calling the ACAN2517FD::recoverFromRestrictedOperationMode function (section 22.3
page 58); however, some send or receive data has been lost.

I have never observed that a MCP2518FD enters the Restricted Operation Mode.

4 Data flow

Two figures illustrate message flow for sending and receiving CANFD messages: figure 1 is the default con-
figuration, figure 2 is the customized configuration.

4.1 Data flow in default configuration

The figure 1 illustrates message flow in the default configuration.

Sending messages. The ACAN2517FD driver defines a driver transmit FIFO (default size: 16 messages), and
configures the MCP2517FD with a controller transmit FIFO with a size of 4 messages. MCP2517FD RAM has a
capacicity of 2048 bytes, that limits the sizes of the controller transmit FIFO and controller receive FIFO. See
section 14 page 30.

A message is defined by an instance of CANFDMessage class. For sending a message, user code calls the
tryToSend method – see section 15 page 31, and the idx property of the sent message should be equal to 0

(default value).

Receiving messages. The MCP2517FD CAN Protocol Engine transmits all correct frames to the reception filters.
By default, they are configured as pass-all, see section 17 page 35 for configuring them. Messages that pass
the filters are stored in the Controller Reception FIFO; its size is 24 message by default. The interrupt service
routine transfers the messages from this FIFO to the Driver Receive FIFO. The size of the Driver Receive Buffer
is 32 by default – see section 16.1 page 34 for changing the default value. Three user methods are available:

• the available method returns false if the Driver Receive Buffer is empty, and true otherwise;

• the receive method retrieves messages from the Driver Receive Buffer – see section 16 page 33;

• the dispatchReceivedMessage method if you have defined the reception filters that name a call-back
function – see section 18 page 38.

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 9

4.2 Data flow, custom configuration

User code

ACAN2517FD driver

available
receive

dispatchReceivedMessagetryToSend

MCP2517FD

lost

idx

0
̸= 0

Driver
Transmit FIFO

16

Driver
Reception FIFO

32

CAN Protocol Engine

TXCAN RXCAN

Controller
Transmit FIFO

1

Reception Filters
[Pass all]

Controller
Receive FIFO

27

Figure 1 – Message flow in ACAN2517FD driver and MCP2517FD CAN Controller, default configuration

4.2 Data flow, custom configuration

The figure 2 illustrates message flow in a custom configuration.

Note. The transmit Event FIFO and the transmitEvent function are not currently implemented.

You can allocate the Controller transmit Queue: send order is defined by frame priority (see section 11 page 27).
You can also define up to 32 receive filters (see section 17 page 35). Sizes of MCP2517FD internal buffer are
easily customizable.

5 A simple example: LoopBackDemo

The following code is a sample code for introducing the ACAN2517FD library, extracted from the LoopBackDemo
sample code included in the library distribution. It runs natively on any Arduino compatible board, and is easily
adaptable to any microcontroller supporting SPI. It demonstrates how to configure the driver, to send a CAN
message, and to receive a CAN message.

Note: this code runs without any CAN transceiver (the TXCAN and RXCAN pins of the MCP2517FD are left open),
the MCP2517FD is configured in the loop back mode.

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 10

User code

ACAN2517FD driver

available
receive

dispatchReceivedMessagetryToSend transmitEvent

MCP2517FD

idx

0 255 Other

LostDriver
Transmit FIFO

Driver
Transmit Event

FIFO

Driver
Reception FIFO

CAN Protocol Engine

TXCAN RXCAN

Controller Transmit
FIFO

Controller Transmit
Queue

Controller Transmit
Event FIFO

Reception Filters

Controller Receive
FIFO

Figure 2 – Message flow in ACAN2517FD driver and MCP2517FD CAN Controller, custom configuration

#include <ACAN2517FD.h>

This line includes the ACAN2517FD library.

static const byte MCP2517_CS = 20 ; // CS input of MCP2517FD

static const byte MCP2517_INT = 37 ; // INT output of MCP2517FD

Define the pins connected to CS and INT pins (adapt to your design).

ACAN2517FD can (MCP2517_CS, SPI, MCP2517_INT) ;

Instanciation of the ACAN2517FD library, declaration and initialization of the can object that implements the
driver. The constructor names: the number of the pin connected to the CS pin, the SPI object (you can use
SPI1, SPI2, …), the number of the pin connected to the INT pin.

void setup () {

//‐‐‐ Switch on builtin led

pinMode (LED_BUILTIN, OUTPUT) ;

digitalWrite (LED_BUILTIN, HIGH) ;

//‐‐‐ Start serial

Serial.begin (38400) ;

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 11

//‐‐‐ Wait for serial (blink led at 10 Hz during waiting)

while (!Serial) {

delay (50) ;

digitalWrite (LED_BUILTIN, !digitalRead (LED_BUILTIN)) ;

}

Builtin led is used for signaling. It blinks led at 10 Hz during until serial monitor is ready.

SPI.begin () ;

You should call SPI.begin. Many platforms define alternate pins for SPI. On Teensy 3.x (section 8.2 page 19),
selecting alternate pins should be done before calling SPI.begin, on Adafruit Feather M0 (section 8.3 page
20), this should be done after. Calling SPI.begin explicitly allows you to fully handle alternate pins.

ACAN2517FDSettings settings (ACAN2517FDSettings::OSC_4MHz10xPLL,

125UL * 1000UL, DataBitRateFactor::DATA_BITRATE_x4) ;

Configuration is a four-step operation. This line is the first step. It instanciates the settings object of the
ACAN2517FDSettings class. The constructor has three parameters: the MCP2517FD oscillator specification,
the desired CAN arbitration bit rate (here, 125 kb/s), and the data bit rate, given by a multiplicative factor
of the arbitration bit rate; here, the data bit rate is 125 kb/s * 4 = 500 kbit/s. It returns a settings object
fully initialized with CAN bit settings for the desired arbitration and data bit rates, and default values for other
configuration properties.

Note. For releases before 2.1.0, the data bit rate enumerated type was declared within theACAN2517FDSettings
class, so the declaration was ACAN2517FDSettings::DATA_BITRATE_x4. In release 2.1.0 and above, the
DataBitRateFactor enumerated type is declared outside any class, enabling its compatibility with other
CANFD librairies, as ACAN_T4.

settings.mRequestedMode = ACAN2517FDSettings::InternalLoopBack ;

This is the second step. You can override the values of the properties of settings object. Here, the mReques‐
tedMode property is set to InternalLoopBack – its value is NormalFD by default. Setting this property en-
ables loop back, that is you can run this demo sketch even it you have no connection to a physical CAN network.
The section 20.11 page 53 lists all properties you can override.

const uint32_t errorCode = can.begin (settings, [] { can.isr () ; }) ;

This is the third step, configuration of the can driver with settings values. The driver is configured for being
able to send any (base / extended, data / remote, CAN / CANFD) frame, and to receive all (base / extended,
data / remote, CAN / CANFD) frames. If you want to define reception filters, see section 17 page 35. The
second argument is the interrupt service routine, and is defined by a C++ lambda expression1. See section 19.2
page 40 for using a function instead.

if (errorCode != 0) {

Serial.print ("Configuration␣error␣0x") ;

Serial.println (errorCode, HEX) ;

}

}

1https://en.cppreference.com/w/cpp/language/lambda

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 12

https://en.cppreference.com/w/cpp/language/lambda

Last step: the configuration of the can driver returns an error code, stored in the errorCode constant. It has
the value 0 if all is ok – see section 19.3 page 40.

static uint32_t gBlinkLedDate = 0 ;

static uint32_t gReceivedFrameCount = 0 ;

static uint32_t gSentFrameCount = 0 ;

The gSendDate global variable is used for sending a CAN message every 2 s. The gSentCount global variable
counts the number of sent messages. The gReceivedCount global variable counts the number of received
messages.

void loop() {

CANFDMessage frame ;

The message object is fully initialized by the default constructor, it represents a base data frame, with an
identifier equal to 0, and without any data – see section 6 page 14.

if (gBlinkLedDate < millis ()) {

gBlinkLedDate += 2000 ;

digitalWrite (LED_BUILTIN, !digitalRead (LED_BUILTIN)) ;

const bool ok = can.tryToSend (frame) ;

if (ok) {

gSentFrameCount += 1 ;

Serial.print ("Sent:␣") ;

Serial.println (gSentFrameCount) ;

}else{

Serial.println ("Send␣failure") ;

}

}

We try to send the data message. Actually, we try to transfer it into the Driver transmit buffer. The transfer
succeeds if the buffer is not full. The tryToSendmethod returns false if the buffer is full, and true otherwise.
Note the returned value only tells if the transfer into the Driver transmit buffer is successful or not: we have
no way to know if the frame is actually sent on the the CAN network. Then, we act the successfull transfer
by setting gSendDate to the next send date and incrementing the gSentCount variable. Note if the transfer
did fail, the send date is not changed, so the tryToSend method will be called on the execution of the loop

function.

if (can.available ()) {

can.receive (frame) ;

gReceivedFrameCount ++ ;

Serial.print ("Received:␣") ;

Serial.println (gReceivedFrameCount) ;

}

}

As the MCP2517FD controller is configured in loop back mode, all sent messages are received. The receive

method returns false if no message is available from the driver reception buffer. It returns true if a message
has been successfully removed from the driver reception buffer. This message is assigned to the message

object. If a message has been received, the gReceivedCount is incremented ans displayed.

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 13

6 The CANFDMessage class

Note. The CANFDMessage class did change in release 2.0.0: the rtr property has been removed, the type

property has been added.

Note. The CANFDMessage class is declared in the CANFDMessage.h header file. The class declaration is pro-
tected by an include guard that causes the macro GENERIC_CANFD_MESSAGE_DEFINED to be defined. This
allows an other library to freely include this file without any declaration conflict.

A CANFD message is an object that contains all CANFD frame user informations.

Example: The message object describes an extended frame, with identifier equal to 0x123, that contains 12
bytes of data:

CANFDMessage message ; // message is fully initialized with default values

message.id = 0x123 ; // Set the message identifier (it is 0 by default)

message.ext = true ; // message is an extended one (it is a base one by default)

message.len = 12 ; // message contains 12 bytes (0 by default)

message.data [0] = 0x12 ; // First data byte is 0x12

...

message.data [11] = 0xCD ; // 11th data byte is 0xCD

6.1 Properties

class CANFDMessage {

...

public : uint32_t id; // Frame identifier

public : bool ext ; // false ‐> base frame, true ‐> extended frame

public : Type type ;

public : uint8_t idx ; // Used by the driver

public : uint8_t len ; // Length of data (0 ... 64)

public : union {

uint64_t data64 [8] ; // Caution: subject to endianness

uint32_t data32 [16] ; // Caution: subject to endianness

uint16_t data16 [32] ; // Caution: subject to endianness

float dataFloat [16] ; // Caution: subject to endianness

uint8_t data [64] ;

} ;

...

} ;

Note the message datas are defined by an union. So message datas can be seen as 64 bytes, 32 x 16-bit
unsigned integers, 16 x 32-bit, 8 x 64-bit or 16 x 32-bit floats. Be aware that multi-byte integers are subject
to endianness (Cortex M4 processors of Teensy 3.x are little-endian).

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 14

6.2 The default constructor

6.2 The default constructor

All properties are initialized by default, and represent a base data frame, with an identifier equal to 0, and
without any data (table 2).

Property Initial value Comment
id 0
ext false Base frame
type CANFD_WITH_BIT_RATE_SWITCH CANFD frame, with bit rate switch
idx 0
len 0 No data
data – unitialized

Table 2 – CANFDMessage default constructor initialization

6.3 Constructor from CANMessage

class CANFDMessage {

...

CANFDMessage (const CANMessage & inCANMessage) ;

...

} ;

All properties are initialized from the inCANMessage (table 3). Note that only data64[0] is initialized from
inCANMessage.data64.

Property Initial value
id inCANMessage.id

ext inCANMessage.ext

type inCANMessage.rtr ? CAN_REMOTE : CAN_DATA

idx inCANMessage.idx

len inCANMessage.len

data64[0] inCANMessage.data64

Table 3 – CANFDMessage constructor CANMessage

6.4 The type property

The type property has been added in release 2.0.0. Its value is an instance of an enumerated type:

class CANFDMessage {

...

public: typedef enum : uint8_t {

CAN_REMOTE,

CAN_DATA,

CANFD_NO_BIT_RATE_SWITCH,

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 15

6.5 The len property

CANFD_WITH_BIT_RATE_SWITCH

} Type ;

...

} ;

The type property specifies the frame format, as indicated in the table 4.

type property Meaning Constraint on len

CAN_REMOTE CAN 2.0B remote frame 0 ... 8
CAN_DATA CAN 2.0B data frame 0 ... 8
CANFD_NO_BIT_RATE_SWITCH CANFD frame, no bit rate switch 0 ... 8, 12, 16, 20, 24, 32, 48, 64
CANFD_WITH_BIT_RATE_SWITCH CANFD frame, bit rate switch 0 ... 8, 12, 16, 20, 24, 32, 48, 64

Table 4 – CANFDMessage type property

6.5 The len property

Note that len property contains the actual length, not its encoding in CANFD frames. So valid values are:
0, 1, ..., 8, 12, 16, 20, 24, 32, 48, 64. Having other values is an error that prevents frame to be sent by the
ACAN2517FD::tryToSend method. You can use the pad method (see section 6.7 page 16) for padding with
0x00 bytes to the next valid length.

6.6 The idx property

The idx property is not used in CANFD frames, but:

• for a received message, it contains the acceptance filter index (see section 18 page 38);

• on sending messages, it is used for selecting the transmit buffer (see section 15 page 31).

6.7 The pad method

void CANFDMessage::pad (void) ;

The CANFDMessage::padmethod appends zero bytes to datas for reaching the next valid length. Valid lengths
are: 0, 1, ..., 8, 12, 16, 20, 24, 32, 48, 64. If the length is already valid, no padding is performed. For example:

CANFDMessage frame ;

frame.length = 21 ; // Not a valid value for sending

frame.pad () ;

// frame.length is 24, frame.data [21], frame.data [22], frame.data [23] are 0

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 16

6.8 The isValid method

6.8 The isValid method

bool CANFDMessage::isValid (void) const ;

Not all settings of CANFDMessage instances represent a valid frame. For example, there is no CANFD remote
frame, so a remote frame should have its length lower than or equal to 8. There is no constraint on extended
/ base identifier (ext property).

The isValid returns true if the contraints on the len property are checked, as indicated the table 4 page 16,
and false otherwise.

7 The CANMessage class

Note. TheCANMessage class is declared in theCANMessage.hheader file. The class declaration is protected by
an include guard that causes the macro GENERIC_CAN_MESSAGE_DEFINED to be defined. The ACAN2 (version
1.0.3 and above) driver, the ACAN25153 driver and the ACAN25174 driver contain an identical CANMessage.h
file header, enabling using ACAN driver, ACAN2515 driver, ACAN2517 driver and ACAN2517FD driver in a same
sketch.

A CAN message is an object that contains all CAN 2.0B frame user informations. All properties are initial-
ized by default, and represent a base data frame, with an identifier equal to 0, and without any data. In the
ACAN2517FD library, the CANMessage class is only used by a CANFDMessage constructor (section 6.3 page 15).

class CANMessage {

public : uint32_t id = 0 ; // Frame identifier

public : bool ext = false ; // false ‐> standard frame, true ‐> extended frame

public : bool rtr = false ; // false ‐> data frame, true ‐> remote frame

public : uint8_t idx = 0 ; // This field is used by the driver

public : uint8_t len = 0 ; // Length of data (0 ... 8)

public : union {

uint64_t data64 ; // Caution: subject to endianness

int64_t data_s64 ; // Caution: subject to endianness

uint32_t data32 [2] ; // Caution: subject to endianness

int32_t data_s32 [2] ; // Caution: subject to endianness

float dataFloat [2] ; // Caution: subject to endianness

uint16_t data16 [4] ; // Caution: subject to endianness

int16_t data_s16 [4] ; // Caution: subject to endianness

int8_t data_s8 [8] ;

uint8_t data [8] = {0, 0, 0, 0, 0, 0, 0, 0} ;

} ;

} ;

2The ACAN driver is a CAN driver for FlexCAN modules integrated in the Teensy 3.x microcontrollers, https://github.com/
pierremolinaro/acan.

3The ACAN2515 driver is a CAN driver for the MCP2515 CAN controller, https://github.com/pierremolinaro/acan2515.
4The ACAN2517 driver is a CAN driver for the MCP2517FD CAN controller in CAN 2.0B mode, https://github.com/pierremolinaro/

acan2517.

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 17

https://github.com/pierremolinaro/acan
https://github.com/pierremolinaro/acan
https://github.com/pierremolinaro/acan2515
https://github.com/pierremolinaro/acan2517
https://github.com/pierremolinaro/acan2517

Note the message datas are defined by an union. So message datas can be seen as height bytes, four 16-bit
unsigned integers, two 32-bit, one 64-bit or two 32-bit floats. Be aware that multi-byte integers and floats
are subject to endianness (Cortex M4 processors of Teensy 3.x are little-endian).

The idx property is not used in CAN frames, but:

• for a received message, it contains the acceptance filter index (see section 18 page 38);

• on sending messages, it is used for selecting the transmit buffer (see section 15 page 31).

8 Connecting a MCP2517FD to your microcontroller

Connecting a MCP2517FD requires 5 pins (figure 3):

• hardware SPI requires you use dedicaced pins of your microcontroller. You can use alternate pins (see
below), and if your microcontroller supports several hardware SPIs, you can select any of them;

• connecting the CS signal requires one digital pin, that the driver configures as an OUTPUT ;

• connecting theINT signal requires one other digital pin, that the driver configures as an external interrupt
input; so this pin should have interrupt capability (checked by the begin method of the driver object);

• the INT0 and INT1 signals are not used by driver and are left not connected.

Microcontroller MCP2517FD

nc INT0

Vcc 10kΩ

nc INT1

INTMCP2517_INT

nCSCS

SCKSCK

SDIMOSI

SD0MISO

Figure 3 – MCP2517FD connection to a microcontroller

8.1 Pullup resistor on nCS pin

Note the 10 kΩ resistor between nCS and Vcc. I have experienced that this resistor is useful in the following
case: a sketch using the MCP2517FD is running, and I upload a new sketch. During this process, the microcon-
troller is reset, leaving its CS pin floating. Without the 10 kΩ resistor, the nCS level is unpredictable, and if it
becomes low, initiates transactions. I think this can crash the MCP2517FD firmware, and the following reset
command sent by the driver not handled. With the resistor, the nCS level remains high until the driver sets the
nCS as output.

However, I noticed that the MCP2518FD reset properly even without any pullup resistor.

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 18

8.2 Using alternate pins on Teensy 3.x

8.2 Using alternate pins on Teensy 3.x

Demo sketch: LoopBackDemoTeensy3x.

On Teensy 3.x, ”the main SPI pins are enabled by default. SPI pins can be moved to their alternate position with
SPI.setMOSI(pin), SPI.setMISO(pin), and SPI.setSCK(pin). You can move all of them, or just the ones that
conflict, as you prefer.”5

For example, the LoopBackDemoTeensy3x sketch uses SPI1 on a Teensy 3.5 with these alternate pins6:

Teensy 3.5 MCP2517FD

INTMCP2517_INT

nCSMCP2517_CS
Vcc 10kΩ

SCKSCK1
32

SDIMOSI1
0

SDOMISO1
1

Figure 4 – Using SPI alternate pins on a Teensy 3.5

You call the SPI1.setMOSI, SPI1.setMISO, and SPI1.setSCK functions before calling the begin function of
your ACAN2517FD instance:

ACAN2517FD can (MCP2517_CS, SPI1, MCP2517_INT) ;

...

static const byte MCP2517_SCK = 32 ; // SCK input of MCP2517

static const byte MCP2517_SDI = 0 ; // SDI input of MCP2517

static const byte MCP2517_SDO = 1 ; // SDO output of MCP2517

...

void setup () {

...

SPI1.setMOSI (MCP2517_SDI) ;

SPI1.setMISO (MCP2517_SDO) ;

SPI1.setSCK (MCP2517_SCK) ;

SPI1.begin () ;

...

const uint32_t errorCode = can.begin (settings, [] { can.isr () ; }) ;

...

Note you can use the SPI1.pinIsMOSI, SPI1.pinIsMISO, and SPI1.pinIsSCK functions to check if the al-
ternate pins you select are valid:

void setup () {

...

Serial.print ("Using␣pin␣#") ;

Serial.print (MCP2517_SDI) ;

Serial.print ("␣for␣MOSI:␣") ;

Serial.println (SPI1.pinIsMOSI (MCP2517_SDI) ? "yes" : "NO!!!") ;

Serial.print ("Using␣pin␣#") ;

5See https://www.pjrc.com/teensy/td_libs_SPI.html
6See https://www.pjrc.com/teensy/pinout.html

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 19

https://www.pjrc.com/teensy/td_libs_SPI.html
https://www.pjrc.com/teensy/pinout.html

8.3 Using alternate pins on an Adafruit Feather M0

Serial.print (MCP2517_SDO) ;

Serial.print ("␣for␣MISO:␣") ;

Serial.println (SPI1.pinIsMISO (MCP2517_SDO) ? "yes" : "NO!!!") ;

Serial.print ("Using␣pin␣#") ;

Serial.print (MCP2517_SCK) ;

Serial.print ("␣for␣SCK:␣") ;

Serial.println (SPI1.pinIsSCK (MCP2517_SCK) ? "yes" : "NO!!!") ;

SPI1.setMOSI (MCP2517_SDI) ;

SPI1.setMISO (MCP2517_SDO) ;

SPI1.setSCK (MCP2517_SCK) ;

SPI1.begin () ;

...

const uint32_t errorCode = can.begin (settings, [] { can.isr () ; }) ;

...

8.3 Using alternate pins on an Adafruit Feather M0

Demo sketch: LoopBackDemoAdafruitFeatherM0.

Link: https://learn.adafruit.com/using‐atsamd21‐sercom‐to‐add‐more‐spi‐i2c‐serial‐ports/
overview

This document explains in details how configure and set alternate SPI pins on Adafruit Feather M0.

For example, the LoopBackDemoAdafruitFeatherM0 sketch uses SERCOM1 on an Adafruit Feather M0 as il-
lustrated in figure 5.

Adafruit Feather M0 MCP2517FD

INTMCP2517_INT
5

nCSMCP2517_CS
6 Vcc 10kΩ

SCKSCK
12

SDIMOSI
11

SDOMISO
10

Figure 5 – Using SPI alternate pins on an Adafruit Feather M0

The configuration code is the following. Note you should call the pinPeripheral function after calling the
mySPI.begin function.

#include <wiring_private.h>

...

static const byte MCP2517_SCK = 12 ; // SCK pin, SCK input of MCP2517FD

static const byte MCP2517_SDI = 11 ; // MOSI pin, SDI input of MCP2517FD

static const byte MCP2517_SDO = 10 ; // MISO pin, SDO output of MCP2517FD

SPIClass mySPI (&sercom1,

MCP2517_SDO, MCP2517_SDI, MCP2517_SCK,

SPI_PAD_0_SCK_3, SERCOM_RX_PAD_2);

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 20

https://learn.adafruit.com/using-atsamd21-sercom-to-add-more-spi-i2c-serial-ports/overview
https://learn.adafruit.com/using-atsamd21-sercom-to-add-more-spi-i2c-serial-ports/overview

8.4 Connecting to an ESP32

static const byte MCP2517_CS = 6 ; // CS input of MCP2517FD

static const byte MCP2517_INT = 5 ; // INT output of MCP2517FD

...

ACAN2517FD can (MCP2517_CS, mySPI, MCP2517_INT) ;

...

void setup () {

...

mySPI.begin () ;

pinPeripheral (MCP2517_SDI, PIO_SERCOM);

pinPeripheral (MCP2517_SCK, PIO_SERCOM);

pinPeripheral (MCP2517_SDO, PIO_SERCOM);

...

const uint32_t errorCode = can.begin (settings, [] { can.isr () ; }) ;

...

8.4 Connecting to an ESP32

Demo sketches: LoopBackDemoESP32 and LoopBackESP32‐intensive. See also the ESP32 demo sketch
SPI_Multiple_Busses.

Link: https://randomnerdtutorials.com/esp32‐pinout‐reference‐gpios/

Two ESP32 SPI busses are available in Arduino, HSPI and VSPI. By default, Arduino SPI is VSPI. The ESP32
default pins are given in table 5.

Port SCK MOSI MISO
VSPI IO18 IO23 IO19

HSPI IO14 IO13 IO12

Table 5 – ESP32 SPI default pins

8.4.1 Connecting MCP2517_CS and MCP2517_INT

For MCP2517_CS, you can use any port that can be configured as digital output. ACAN2517FD does not support
hardware chip select. For MCP2517_INT, you can use any port that can be configured as digital input, as ESP32
provides interrupt capability on any input pin.

Note. IO34 to IO39 are input only pins, without internal pullup or pulldown. So you cannot use theses pins
for MCP2517_CS. If you use one of theses pins for MCP2517_INT, you should add an external pullup resistor if
you configure the INT pin as Open Drain (section 20.11.2 page 53).

8.4.2 Using SPI

Default SPI (i.e. VSPI) pins are: SCK=18, MISO=19, MOSI=23 (figure 6).

You can change the default pins with additional arguments (up to three) for SPI.begin :

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 21

https://randomnerdtutorials.com/esp32-pinout-reference-gpios/

8.4 Connecting to an ESP32

ESP32 MCP2517FD

INTMCP2517_INT
Vcc10kΩ

nCSMCP2517_CS
Vcc 10kΩ

SCKSCK
18

SDIMOSI
23

SDOMISO
19

Figure 6 – Using VSPI default pins on an ESP32

SPI.begin (SCK_PIN) ; // Uses MISO and MOSI default pins

or

SPI.begin (SCK_PIN, MISO_PIN) ; // Uses MOSI default pin

or

SPI.begin (SCK_PIN, MISO_PIN, MOSI_PIN) ;

Note that SPI.begin accepts a fourth argument, for CS pin. Do not use this feature with ACAN2517FD.

8.4.3 Using HSPI

The ESP32 demo sketchSPI_Multiple_Busses shows how to use bothHSPIandVSPI. However forACAN2517FD,
we proceed in a slightly different way:

#include <SPI.h>

....

SPIClass hspi (HSPI) ;

ACAN2517FD can (MCP2517_CS, hspi, MCP2517_INT) ;

....

void setup () {

....

hspi.begin () ; // You can also add parameters for not using default pins

....

}

You declare the hspi object before declaring the can object. You can change the hspi name, the important
point is the HSPI argument that specifies the HSPI bus. Then, instead of using the SPI name, you use the hspi
name in:

• can object declaration;

• in begin SPI instruction.

See the LoopBackESP32‐intensive sketch for an example with VSPI.

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 22

8.5 Connection with no interrupt pin

8.5 Connection with no interrupt pin

See the LoopBackDemoTeensy3xNoInt and LoopBackDemoESP32NoInt sketches.

Note that not using an interruption is only valid if the message throughput is not too high. Received mes-
sages are recovered by polling, so the risk of MCP2517FD internal buffers overflowing is greater.

MCP2517FD

INTnc

nCSMCP2517_CS
Vcc 10kΩ

SCKSCK

SDIMOSI

SDOMISO

Figure 7 – Connection with no interrupt pin

For not using the interrupt signal, you should adapt your sketch as following:

1. the last argument of can constructor should be 255, meaning no interrupt pin;

2. the second argument of can.begin should be NULL (no interrupt service routine);

3. in the loop function, you should call can.poll as often as possible.

ACAN2517FD can (MCP2517_CS, SPI, 255) ; // Last argument is 255 ‐> no interrupt pin

void setup () {

...

const uint32_t errorCode = can.begin (settings, NULL) ; // ISR is null

...

}

void loop () {

can.poll () ;

...

}

8.6 Wiring schemes

Here I list wiring schemes sent by users. If you want to see your wiring scheme here, send it to me. I will
publish it in the next release of the library.

8.6.1 Arduino Uno - MCP2518FDClick

Thanks to soso49 for this wiring scheme (figure 8).

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 23

Figure 8 – Connecting an Arduino Uno with a MCP2518FDClick board

9 Clock configuration

The MCP251xFD Oscillator Block Diagram is given in figure 9. Microchip recommends using a 4, 40 or 20 MHz
CLKIN, Crystal or Ceramic Resonator. A PLL can be enabled to multiply a 4 MHz clock by 10 by setting the PLLEN
bit. Setting the SCLKDIV bit divides the SYSCLK by 2.7 My opinion is that it is better to use an external clock (see
section 3.2 page 8).

¤ 2017-2018 Microchip Technology Inc. DS20005678B-page 13

CAN FD Controller Module

3.0 CONFIGURATION
The MCP25xxFD should be reset and must be in Configuration mode before starting
configuration. The oscillator, FIFOs and bit time can only be configured in Configuration mode.
This prevents the device from accidentally disturbing the CAN bus.

3.1 Oscillator Configuration
Figure 3-1 shows the block diagram of the oscillator. The oscillator generates the SYSCLK that
is used by the CAN FD Controller Module. CAN FD requires that the sample point in every node
is setup identically. Therefore, a 40 MHz or 20 MHz SYSCLK is recommended. The oscillator
uses a crystal or ceramic resonator, or an external clock as the clock reference.

The OSC register is used to configure the oscillator. A PLL can be enabled to multiply a 4 MHz
clock by 10 by setting the PLLEN bit. Setting the SCLKDIV bit divides the SYSCLK by 2. The
clock is available on the CLKO pin and can be divided using the CLKODIV bits.

The oscillator will be disabled after requesting Sleep mode. OSCDIS can only be cleared by the
application. It will be set automatically after the module enters Sleep mode. Reading
OSCDIS = ‘1’ indicates that the module has entered Sleep mode.

3.1.1 CRYSTAL/RESONATOR SELECTION
Selecting the correct crystal oscillator or ceramic resonator components depends on multiple
factors that are application dependent. Please review section 6.7 of the “PIC32 Family Reference
Manual (DS611112)” and refer to the application notes listed in Section 13.0 “Related
Documents”.

The following crystals, together with 18 pF load capacitors, were successfully used in one of our
evaluation boards: ABM8G-40.000MHZ-18-D2Y-T and ABM8G-20.000MHZ-18-D2Y-T.

Figure 3-1: MCP251xFD Oscillator Block Diagram

3.2 Input/Output Pin Configuration
The IOCON register configures the I/O of the MCP25xxFD. The INT0/GPIO0/XSTBY and INT1/
GPIO1 pins can be configured as interrupt pins or as GPIO pins using the PM0 and PM1 bits. In
case the pins are configured as GPIO pins the direction of the pin is selected using the TRIS0
and TRIS1 bits.

INT, INT0 and INT1 (when configured as interrupts) can be configured as push/pull or open drain
outputs using the INTOD bit. The TXCAN pin can also be configured as open drain by setting the
TXCANOD bit.

Setting the XSTBYEN bit configures the INT0/GPIO0/XSTBY pin to automatically control the
stand-by pin of an external CAN transceiver. The pin is driven high when the MCP25xxFD enters
Sleep mode, and driven low when it exits Sleep mode. Stand-by pin control is not available in
LPM. IOCON is reset in LPM and GPIO0 will be configured as an input.

OSC1

OSC2

4, 40 or 20 MHz
CLKIN,

Crystal or
Ceramic Res.

40/20 MHz

PLLEN

OSCDIS

Divide
By 1, 2

SCLKDIV

SYSCLK

Divide
By 1, 2, 4, 10

CLKO

CLKODIV

PLL
x10

Figure 9 – MCP251xFD Oscillator Block Diagram (DS20005678B, figure 3.1 page 13)

The ACAN2517FDSettings class defines an enumerated type for specifying your settings:

class ACAN2517FDSettings {

public: typedef enum {

OSC_4MHz,

OSC_4MHz_DIVIDED_BY_2,

7DS20005678B, page 13.

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 24

OSC_4MHz10xPLL,

OSC_4MHz10xPLL_DIVIDED_BY_2,

OSC_20MHz,

OSC_20MHz_DIVIDED_BY_2,

OSC_40MHz,

OSC_40MHz_DIVIDED_BY_2

} Oscillator ;

...

} ;

The first argument of the ACAN2517FDSettings constructor specifies the oscillator. For example, with a 4
MHz clock, the ACAN2517FDSettings::OSC_4MHz10xPLL setting leads to a 40 MHz SYSCLK.

The eight clock settings are given in the table 6. Note Microchip recommends a 40 MHz or 20 MHz SYSCLK. The
ACAN2517FDSettings class has two accessors that return current settings: oscillator() and sysClock().

Oscillator Frequency Oscillator parameter SYSCLK
4 MHz OSC_4MHz 4 MHz
4 MHz OSC_4MHz_DIVIDE_BY_2 2 MHz
4 MHz OSC_4MHz10xPLL 40 MHz
4 MHz OSC_4MHz10xPLL_DIVIDE_BY_2 20 MHz
20 MHz OSC_20MHz 20 MHz
20 MHz OSC_20MHz_DIVIDE_BY_2 10 MHz
40 MHz OSC_40MHz 40 MHz
40 MHz OSC_40MHz_DIVIDE_BY_2 20 MHz

Table 6 – The ACAN2517FD oscillator selection

The begin function of ACAN2517FD library first configures the selected SPI with a frequency of 1 Mbit/s, for
resetting the MCP2517FD and programming the PLLEN and SCLKDIV bits. Then SPI clock is set to a frequency
equal to SYSCLK / 2, the maximum allowed frequency. More precisely, the SPI library of your microcontroller
may adopt a lower frequency; for example, the maximum frequency of the Arduino Uno SPI is 8 Mbit/s.

Note that an incorrect setting may crash the MCP2517FD firmware (for example, enabling the PLL with a 20
MHz or 40 MHz oscillator). In such case, no SPI communication can then be established, and in particular, the
MCP2517FD cannot be reset by software. As the MCP2517FD has no RESET pin, the only way is to power off and
power on the MCP2517FD.

10 Transmit FIFO

The transmit FIFO (see figure 1 page 10) is composed by:

• the driver transmit FIFO, whose size is positive or zero (default 16); you can change the default size by
setting the mDriverTransmitFIFOSize property of your settings object;

• the controller transmit FIFO, whose size is between 1 and 32 (default 1); you can change the default size
by setting the mControllerTransmitFIFOSize property of your settings object.

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 25

10.1 The driverTransmitBufferSize method

Having a driver transmit FIFO of zero size is valid; in this case, the FIFO must be considered both empty and
full.

For sending a message throught the Transmit FIFO, call the tryToSend method with a message whose idx

property is zero:

• if the controller transmit FIFO is not full, the message is appended to it, and tryToSend returns true;

• otherwise, if the driver transmit FIFO is not full, the message is appended to it, and tryToSend returns
true; the interrupt service routine will transfer messages from driver transmit FIFO to the controller trans-
mit FIFO when it becomes not full;

• otherwise, both FIFOs are full, the message is not stored and tryToSend returns false.

The transmit FIFO ensures sequentiality of emissions.

There are three other parameters you can override:

• settings.mControllerTransmitFIFORetransmissionAttempts is the number of retransmission at-
tempts; by default, it is set to UnlimitedNumber; other values are Disabled and ThreeAttempts;

• settings.mControllerTransmitFIFOPriority is the priority of the transmit FIFO: between 0 (lowest
priority) and 31 (highest priority); default value is 0;

• settings.mControllerTransmitFIFOPayload is the controller transmit FIFO object payload size; de-
fault value is PAYLOAD_64, enabled sending any CANFD frame; see section 13 page 29.

The controller transmit FIFO is located in theMCP2517FDRAM. It requires 16 bytes for each message (see section
14 page 30).

10.1 The driverTransmitBufferSize method

The driverTransmitBufferSize method returns the allocated size of this driver transmit buffer, that is the
value of settings.mDriverTransmitBufferSize when the begin method is called.

const uint32_t s = can.driverTransmitBufferSize () ;

10.2 The driverTransmitBufferCount method

The driverTransmitBufferCount method returns the current number of messages in the driver transmit
buffer.

const uint32_t n = can.driverTransmitBufferCount () ;

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 26

10.3 The driverTransmitBufferPeakCount method

10.3 The driverTransmitBufferPeakCount method

The driverTransmitBufferPeakCountmethod returns the peak value of message count in the driver trans-
mit buffer

const uint32_t max = can.driverTransmitBufferPeakCount () ;

If the transmit buffer is full when tryToSend is called, the return value of this call is false. In such case, the
following calls of driverTransmitBufferPeakCount() will return driverTransmitBufferSize ()+1.

So, when driverTransmitBufferPeakCount() returns a value lower or equal to transmitBufferSize (),
it means that calls to tryToSend have always returned true, and no overflow occurs on driver transmit buffer.

11 Transmit Queue (TXQ)

The Transmit Queue is handled by the MCP2517FD, its contents is located in its RAM. It is not a FIFO. Messages
inside the TXQ will be transmitted based on their ID. The message with the highest priority ID, lowest ID value will be
transmitted first 8.

By default, the transmit queue is disabled (its default size is 0); you can change the default size by setting the
mControllerTXQSize property of your settings object. The maximum valid size is 32.

For sending a message throught the transmit queue, call the tryToSend method with a message whose idx

property is 255:

• if the transmit queue size is not zero and if it is not full, the message is appended to it, and tryToSend

returns true;

• otherwise, the message is not stored and tryToSend returns false.

There are three other parameters you can override:

• inSettings.mControllerTXQBufferRetransmissionAttempts is the number of retransmission at-
tempts; by default, it is set to UnlimitedNumber; other values are Disabled and ThreeAttempts;

• inSettings.mControllerTXQBufferPriority is the priority of the TXQ buffer: between 0 (lowest
priority) and 31 (highest priority); default value is 31;

• inSettings.mControllerTXQBufferPayload is the controller TXQ buffer object payload size; default
value is PAYLOAD_64, enabled sending any CANFD frame; see section 13 page 29.

The transmit queue is located in the MCP2517FD RAM. It requires 16 bytes for each message (see section 14
page 30).

8DS20005678B, section 4.5, page 28.

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 27

12 Receive FIFO

The receive FIFO (see figure 1 page 10) is composed by:

• the controller receive FIFO (in the MCP2517FD RAM), whose size is between 1 and 32 (default 27); you
can change the default size by setting the mControllerReceiveFIFOSize property of your settings
object;

• the driver receive FIFO (in library software), whose size is positive (default 32); you can change the default
size by setting the mDriverReceiveFIFOSize property of your settings object.

The receive FIFO mechanism ensures sequentiality of reception. TheACAN2517FD::available, ACAN2517FD::receive
and ACAN2517FD::dispatchReceivedMessage methods work only with the driver receive FIFO.

You can override the mControllerReceiveFIFOPayload value, which represents the controller receive FIFO
object payload size; default value is PAYLOAD_64, enabled receiving any CANFD frame. See section 13 page
29.

When a valid incoming CANFD message is received, the MCP2517FD submits it to the reception filters. If it is
accepted by a receive filter, it is transferred to the controller receive FIFO. Then, the behaviour depends from
the library release.

Releases <= 2.1.6. When an incoming message has been accepted by a receive filter:

• the message is removed from the controller receive FIFO;

• if the driver receive FIFO is not full, it is stored in the driver receive FIFO.

Then, if the driver receive FIFO is not full, the message is transferred by the interrupt service routine from controller
receive FIFO to the driver receive FIFO. If the driver receive FIFO is full, the message is lost. So the driver receive
FIFO and the controller receive FIFO never overflow.

Releases >= 2.1.7. When an incoming message has been accepted by a receive filter:

• if the driver receive FIFO is not full, it is removed from the controller receive FIFO and stored in the driver
receive FIFO;

• otherwise, the message remains in the controller receive FIFO.

So the driver receive FIFO never overflows, but controller receive FIFO may (you can get the overflow count by
call the hardwareReceiveBufferOverflowCount method, see section 12.1 page 28).

As soon as the driver receive FIFO becomes not full, messages from controller receive FIFO are transferred to
the driver receive FIFO by the interrupt service routine until the driver receive FIFO becomes full again or the driver
receive FIFO becomes empty.

12.1 The hardwareReceiveBufferOverflowCount method

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 28

12.2 The resetHardwareReceiveBufferOverflowCount method

uint8_t ACAN2517FD::hardwareReceiveBufferOverflowCount (void) const ;

The driver maintains an uint8_t counter of controller receive FIFO overflows, saturating at 255. The method
returns the current value of the counter.

12.2 The resetHardwareReceiveBufferOverflowCount method

void ACAN2517FD::resetHardwareReceiveBufferOverflowCount (void) ;

The driver maintains an uint8_t counter of controller receive FIFO overflows. The method resets the current
value of the counter.

13 Payload size

Controller transmit FIFO, controller TXQ buffer and controller receive FIFO objects are stored in the internal
MCP2517FD RAM. The size of each object depends on the setting applied to the corresponding FIFO or buffer.

By default, all FIFOs and buffer accept objects up to 64 data bytes. The size of each object is 72 bytes. As the
internal MCP2517FD RAM has a capacity of 2048 bytes, only 28 objects are available, and they are allocated as
follows:

• controller transmit FIFO (mControllerTransmitFIFOSize property): 4 objects;

• controller TXQ buffer (mControllerTXQSize property): no object;

• controller receive FIFO (mControllerReceiveFIFOSize property): 24 objects.

The details of RAM usage computation are presented in section 14 page 30.

Note the ACAN2517 library9 handles an MCP2517FD in CAN 2.0B mode. As CAN 2.0B frames contains at most
8 bytes, the size of each object is 16 bytes, allowing using up to 128 objects.

With the mControllerTransmitFIFOPayload, the mControllerTXQBufferPayload and the mController‐
ReceiveFIFOPayload properties, you can adjust the object size following your application requirements. The
table 7 shows the possible values of these properties and the corresponding payload and object size.

By example, suppose your application always send data frames with no more than 24 bytes. You can set the
mControllerTransmitFIFOPayload and mControllerReceiveFIFOPayload properties to ACAN2517FD‐

Settings::PAYLOAD_24, leading to an object size equal to 32 bytes. If your application also receives data
frames with no more than 24 bytes, you can also set the mControllerReceiveFIFOPayload property to
ACAN2517FDSettings::PAYLOAD_24. All your objects require 32 bytes, allowing 64 objects in the MCP2517FD
RAM. The benefit is you can now increase controller buffer sizes, for example:

• controller transmit FIFO (mControllerTransmitFIFOSize property): 16 objects;

• controller TXQ buffer (mControllerTXQSize property): 16 objects;
9https://github.com/pierremolinaro/acan2517

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 29

https://github.com/pierremolinaro/acan2517

13.1 The ACAN2517FDSettings::objectSizeForPayload static method

• controller receive FIFO (mControllerReceiveFIFOSize property): 32 objects.

Object Size specification Payload Object Size
ACAN2517FDSettings::PAYLOAD_8 Up to 8 bytes 16 bytes
ACAN2517FDSettings::PAYLOAD_12 Up to 12 bytes 20 bytes
ACAN2517FDSettings::PAYLOAD_16 Up to 16 bytes 24 bytes
ACAN2517FDSettings::PAYLOAD_20 Up to 20 bytes 28 bytes
ACAN2517FDSettings::PAYLOAD_24 Up to 24 bytes 32 bytes
ACAN2517FDSettings::PAYLOAD_32 Up to 32 bytes 40 bytes
ACAN2517FDSettings::PAYLOAD_48 Up to 48 bytes 56 bytes
ACAN2517FDSettings::PAYLOAD_64 Up to 64 bytes 72 bytes

Table 7 – ACAN2517FD object size from payload size specification

13.1 The ACAN2517FDSettings::objectSizeForPayload static method

uint32_t ACAN2517FDSettings::objectSizeForPayload (const PayloadSize inPayload) ;

This static method returns the object size for a given payload specification, following table 7.

14 RAM usage

The MCP2517FD contains a 2048 bytes RAM that is used to store message objects10. There are three different
kinds of message objects:

• Transmit Message Objects used by the TXQ buffer;

• Transmit Message Objects used by the transmit FIFO;

• Receive Message Objects used by the receive FIFO.

There are six parameters that affect the required memory amount:

• the mControllerTransmitFIFOSize property sets the controller transmit FIFO object count;

• the mControllerTransmitFIFOPayload property defines the controller transmit FIFO object size;

• the mControllerTXQSize property sets the controller TXQ buffer object count;

• the mControllerTXQBufferPayload property defines the controller TXQ buffer object size;

• the mControllerReceiveFIFOSize property sets the controller receive FIFO object count;

• the mControllerReceiveFIFOPayload property defines the controller receive FIFO object size.

The ACAN2517FDSettings::ramUsage method computes the required memory amount as follows:
10DS20005688B, section 3.3, page 63.

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 30

uint32_t ACAN2517FDSettings::ramUsage (void) const {

uint32_t r = 0 ;

//‐‐‐ TXQ

r += objectSizeForPayload(mControllerTXQBufferPayload) * mControllerTXQSize;

//‐‐‐ Receive FIFO (FIFO #1)

r += objectSizeForPayload(mControllerReceiveFIFOPayload) * mControllerReceiveFIFOSize;

//‐‐‐ Send FIFO (FIFO #2)

r += objectSizeForPayload(mControllerTransmitFIFOPayload) * mControllerTransmitFIFOSize;

//‐‐‐

return r ;

}

The ACAN2517FD:begin method checks the required memory amount is lower or equal than 2048 bytes.
Otherwise, it raises the error code kControllerRamUsageGreaterThan2048.

You can also use the MCP2517FD RAM Usage Calculations Excel sheet from Microchip11.

15 Sending frames: the tryToSend method

The ACAN2517FD::tryToSend method sends CAN 2.0B and CANFD frames:

bool ACAN2517FD::tryToSend (const CANFDMessage & inMessage) ;

You call the tryToSend method for sending a message in the CAN network. Note this function returns before
the message is actually sent; this function only appends the message to a transmit buffer.

The idx property of the message specifies the transmit buffer:

• 0 for the transmit FIFO (section 10 page 25) ;

• 255 for the transmit Queue (section 11 page 27).

The type property of inMessage specifies how the frame is sent:

• CAN_REMOTE, the frame is sent in the CAN 2.0B remote frame format;

• CAN_DATA, the frame is sent in the CAN 2.0B data frame format;

• CANFD_NO_BIT_RATE_SWITCH, the frame is sent in CANFD format at arbitration bit rate, regardless of
the ACAN2517FDSettings::DATA_BITRATE_xn setting;

• CANFD_WITH_BIT_RATE_SWITCH, with theACAN2517FDSettings::DATA_BITRATE_x1 setting, the frame
is sent in CANFD format at arbitration bit rate, and otherwise in CANFD format with bit rate switch.

...

CANFDMessage message ;

// Setup message

const bool ok = can.tryToSend (message) ;

...

11http://ww1.microchip.com/downloads/en/DeviceDoc/MCP2517FD%20RAM%20Usage%20Calculations%20‐%20UG.xlsx

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 31

http://ww1.microchip.com/downloads/en/DeviceDoc/MCP2517FD%20RAM%20Usage%20Calculations%20-%20UG.xlsx

15.1 Calling tryToSend with an CANMessage argument

The tryToSend method returns:

• false if the message responds false to the isValid method (see section 6.8 page 17), or if its len

property has a value greater than the corresponding buffer payload; an invalid message is never sub-
mitted to a transmit buffer;

• otherwise, if the message responds true to the isValid method:

– true if the message has been successfully transmitted to the transmit buffer; note that does not
mean that the CAN frame has been actually sent;

– false if the message has not been successfully transmitted to the transmit buffer, it was full.

So it is wise to systematically test the returned value.

15.1 Calling tryToSend with an CANMessage argument

The CANFDMessage class provides a constructor from a CANMessage object, so it is valid to call the tryToSend
method with an CANMessage argument.

...

CANMessage message ;

// Setup message

const bool ok = can.tryToSend (message) ;

...

So, if the message.rtr is:

• true, the frame is sent in the CAN 2.0B remote frame format;

• false, the frame is sent in the CAN 2.0B data frame format.

15.2 Usage example

A way is to use a global variable to note if the message has been successfully transmitted to driver transmit
buffer. For example, for sending a message every 2 seconds:

static uint32_t gSendDate = 0 ;

void loop () {

if (gSendDate < millis ()) {

CANFDMessage message ;

// Initialize message properties

const bool ok = can.tryToSend (message) ;

if (ok) {

gSendDate += 2000 ;

}

}

}

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 32

An other hint to use a global boolean variable as a flag that remains true while the message has not been
sent.

static bool gSendMessage = false ;

void loop () {

...

if (frame_should_be_sent) {

gSendMessage = true ;

}

...

if (gSendMessage) {

CANMessage message ;

// Initialize message properties

const bool ok = can.tryToSend (message) ;

if (ok) {

gSendMessage = false ;

}

}

...

}

16 Retrieving received messages using the receive method

There are two ways for retrieving received messages :

• using the receive method, as explained in this section;

• using the dispatchReceivedMessage method (see section 18 page 38).

This is a basic example:

void loop () {

CANFDMessage message ;

if (can.receive (message)) {

// Handle received message

}

...

}

The receive method:

• returns false if the driver receive buffer is empty, message argument is not modified;

• returns true if a message has been has been removed from the driver receive buffer, and the message

argument is assigned.

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 33

16.1 Driver receive buffer size

The type property contains the received frame format:

• CAN_REMOTE, the received frame is a CAN 2.0B remote frame;

• CAN_DATA, the received frame is a CAN 2.0B data frame;

• CANFD_NO_BIT_RATE_SWITCH, the frame received frame is a CANFD frame, received at at arbitration bit
rate;

• CANFD_WITH_BIT_RATE_SWITCH, the frame received frame is a CANFD frame, received with bit rate
switch.

You need to manually dispatch the received messages. If you did not provide any receive filter, you should
check the type property (remote or data frame?), the ext bit (base or extended frame), and the id (identifier
value). The following snippet dispatches three messages:

void loop () {

CANFDMessage message ;

if (can.receive (message)) {

if (!message.rtr && message.ext && (message.id == 0x123456)) {

handle_myMessage_0 (message) ; // Extended data frame, id is 0x123456

}else if (!message.rtr && !message.ext && (message.id == 0x234)) {

handle_myMessage_1 (message) ; // Base data frame, id is 0x234

}else if (message.rtr && !message.ext && (message.id == 0x542)) {

handle_myMessage_2 (message) ; // Base remote frame, id is 0x542

}

}

...

}

The handle_myMessage_0 function has the following header:

void handle_myMessage_0 (const CANFDMessage & inMessage) {

...

}

So are the header of the handle_myMessage_1 and the handle_myMessage_2 functions.

16.1 Driver receive buffer size

By default, the driver receive buffer size is 24. You can change it by setting the mReceiveBufferSize property
of settings variable before calling the begin method:

ACAN2517FDSettings settings (ACAN2517FDSettings::OSC_4MHz10xPLL,

125 * 1000, DataBitRateFactor::DATA_BITRATE_x4) ;

settings.mReceiveBufferSize = 100 ;

const uint32_t errorCode = can.begin (settings, [] { can.isr () ; }) ;

...

As the size of CANFDMessage class is 72 bytes, the actual size of the driver receive buffer is the value of
settings.mReceiveBufferSize * 72.

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 34

16.2 The receiveBufferSize method

16.2 The receiveBufferSize method

ThereceiveBufferSizemethod returns the size of the driver receive buffer, that is the value of themReceiveBufferSize
property of settings variable when the the begin method is called.

const uint32_t s = can.receiveBufferSize () ;

16.3 The receiveBufferCount method

The receiveBufferCount method returns the current number of messages in the driver receive buffer.

const uint32_t n = can.receiveBufferCount () ;

16.4 The receiveBufferPeakCount method

The receiveBufferPeakCountmethod returns the peak value of message count in the driver receive buffer.

const uint32_t max = can.receiveBufferPeakCount () ;

Note the driver receive buffer can overflow, if messages are not retrieved (by calling the receive or the
dispatchReceivedMessagemethods). If an overflow occurs, further calls of can.receiveBufferPeakCount
() return can.receiveBufferSize ()+1.

17 Acceptance filters

Note. The acceptance filters implemented in the ACAN2517 library, that handles a MCP2517FD CAN Controller
in the CAN 2.0B mode12, are almost identical, they differ only from the prototype of the callback routine.

If you invoke the ACAN2517FD.begin method with two arguments, it configures the MCP2517FD for receiving
all messages.

const uint32_t errorCode = can.begin (settings, [] { can.isr () ; }) ;

If you want to define receive filters, you have to set up an MCP2517FDFilters instance object, and pass it as
third argument of the ACAN2517FD.begin method:

MCP2517FDFilters filters ;

... // Append filters

const uint32_t errorCode = can.begin (settings, [] { can.isr () ; }, filters) ;

...

17.1 An example

Sample sketch: the LoopBackDemoTeensy3xWithFilters sketch is an example of filter definition.
12https://github.com/pierremolinaro/acan2517

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 35

https://github.com/pierremolinaro/acan2517

17.1 An example

MCP2517FDFilters filters ;

First, you instanciate an MCP2517FDFilters object. It represents an empty list of filters. So, if you do not
append any filter, can.begin (settings, [] { can.isr () ; }, filters) configures the controller in
such a way that no messages can be received.

// Filter #0: receive base frame with identifier 0x123

filters.appendFrameFilter (kStandard, 0x123, receiveFromFilter0) ;

// Filter #1: receive extended frame with identifier 0x12345678

filters.appendFrameFilter (kExtended, 0x12345678, receiveFromFilter1) ;

You define the filters sequentially, with the four methods: appendPassAllFilter, appendFormatFilter,
appendFrameFilter, appendFilter. Theses methods have as last argument an optional callback routine,
that is called by the dispatchReceivedMessage method (see section 18 page 38).

The appendFrameFilter defines a filter that matches for an extended or base identifier of a given value.

You can define up to 32 filters. Filter definition registers are outside the MCP2517FD RAM, so defining filter
does not restrict the receive and transmit buffer sizes. Note that MCP2517FD filter does not allow to establish
a filter based on the data / remote information.

// Filter #2: receive base frame with identifier 0x3n4 (0 <= n <= 15)

filters.appendFilter (kStandard, 0x70F, 0x304, receiveFromFilter2) ;

The appendFilter defines a filter that matches for an identifier that matches the condition:

identifier & 0x70F == 0x304

The kStandard argument constraints to accept only base frames. So the accepted base identifiers are 0x304,
0x314, 0x324, ..., 0x3E4, 0x3F4.

//‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ Filters ok ?

if (filters.filterStatus () != MCP2517FDFilters::kFiltersOk) {

Serial.print ("Error␣filter␣") ;

Serial.print (filters.filterErrorIndex ()) ;

Serial.print (":␣") ;

Serial.println (filters.filterStatus ()) ;

}

Filter definitions can have error(s), you can check error kind with the filterStatus method. If it returns a
value different than MCP2517FDFilters::kFiltersOk, there is at least one error: only the last one is re-
ported, and the filterErrorIndex returns the corresponding filter index. Note this does not check the num-
ber of filters is lower or equal than 32.

const uint32_t errorCode = can.begin (settings, [] { can.isr () ; }, filters) ;

The begin method checks the filter definition:

• it raises the kMoreThan32Filters error if more than 32 filters are defined;

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 36

17.2 The appendPassAllFilter method

• it raises the kFilterDefinitionError error if one or more filter definitions are erroneous (that is if
filterStatus returns a value different than MCP2517FDFilters::kFiltersOk).

17.2 The appendPassAllFilter method

void MCP2517FDFilters::appendPassAllFilter (const ACANFDCallBackRoutine inCallBackRoutine) ;

This defines a filter that accepts all (base / extended, remote / data) frames.

If used, this filter must be the last one: as the MCP2517FD tests the filters sequentially, the following filters
will never match.

17.3 The appendFormatFilter method

void MCP2517FDFilters::appendFormatFilter (const tFrameFormat inFormat,

const ACANFDCallBackRoutine inCallBackRoutine) ;

This defines a filter that accepts:

• if inFormat is equal to kStandard, all base remote frames and all base data frames;

• if inFormat is equal to kExtended, all extended remote frames and all extended data frames.

17.4 The appendFrameFilter method

void MCP2517FDFilters::appendFrameFilter (const tFrameFormat inFormat,

const uint32_t inIdentifier,

const ACANFDCallBackRoutine inCallBackRoutine) ;

This defines a filter that accepts:

• if inFormat is equal to kStandard, all base remote frames and all base data frames with a given iden-
tifier;

• if inFormat is equal to kExtended, all extended remote frames and all extended data frames with a
given identifier.

If inFormat is equal to kStandard, the inIdentifier should be lower or equal to 0x7FF. Otherwise, set‐
tings.filterStatus () returns the kStandardIdentifierTooLarge error.

If inFormat is equal to kExtended, the inIdentifier should be lower or equal to 0x1FFFFFFF. Otherwise,
settings.filterStatus () returns the kExtendedIdentifierTooLarge error.

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 37

17.5 The appendFilter method

17.5 The appendFilter method

void MCP2517FDFilters::appendFilter (const tFrameFormat inFormat,

const uint32_t inMask,

const uint32_t inAcceptance,

const ACANFDCallBackRoutine inCallBackRoutine) ;

The inMask and inAcceptance arguments defines a filter that accepts frame whose identifier verifies:

identifier & inMask == inAcceptance

The inFormat filters base (if inFormat is equal to kStandard) frames, or extended ones (if inFormat is equal
to kExtended).

Note that inMask and inAcceptance arguments should verify:

inAcceptance & inMask == inAcceptance

Otherwise, settings.filterStatus () returns the kInconsistencyBetweenMaskAndAcceptance error.

If inFormat is equal to kStandard:

• the inAcceptance should be lower or equal to 0x7FF; Otherwise, settings.filterStatus () returns
the kStandardAcceptanceTooLarge error;

• the inMask should be lower or equal to 0x7FF; Otherwise, settings.filterStatus () returns the
kStandardMaskTooLarge error.

If inFormat is equal to kExtended:

• the inAcceptance should be lower or equal to 0x1FFFFFFF; Otherwise, settings.filterStatus ()

returns the kExtendedAcceptanceTooLarge error;

• the inMask should be lower or equal to 0x1FFFFFFF; Otherwise, settings.filterStatus () returns
the kExtendedMaskTooLarge error.

18 The dispatchReceivedMessage method

Sample sketch: theLoopBackDemoTeensy3xWithFilters shows how using thedispatchReceivedMessage
method.

Instead of calling the receive method, call the dispatchReceivedMessage method in your loop function. It
calls the call back function associated with the matching filter.

If you have not defined any filter, do not use this function, call the receive method.

void loop () {

can.dispatchReceivedMessage () ; // Do not use can.receive any more

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 38

...

}

The dispatchReceivedMessage method handles one message at a time. More precisely:

• if it returns false, the driver receive buffer was empty;

• if it returns true, the driver receive buffer was not empty, one message has been removed and dis-
patched.

So, the return value can used for emptying and dispatching all received messages:

void loop () {

while (can.dispatchReceivedMessage ()) {

}

...

}

If a filter definition does not name a call back function, the corresponding messages are lost.

The dispatchReceivedMessage method has an optional argument – NULL by default: a function name. This
function is called for every message that pass the receive filters, with an argument equal to the matching filter
index:

void filterMatchFunction (const uint32_t inFilterIndex) {

...

}

void loop () {

can.dispatchReceivedMessage (filterMatchFunction) ;

...

}

You can use this function for maintaining statistics about receiver filter matches.

19 The ACAN2517FD::begin method reference

19.1 The prototypes

uint32_t ACAN2517FD::begin (const ACAN2517FDSettings & inSettings,

void (* inInterruptServiceRoutine) (void)) ;

This prototype has two arguments, a ACAN2517FDSettings instance that defines the settings, and the inter-
rupt service routine, that can be specified by a lambda expression or a function (see section 19.2 page 40). It
configures the controller in such a way that all messages are received (pass-all filter).

uint32_t ACAN2517FD::begin (const ACAN2517FDSettings & inSettings,

void (* inInterruptServiceRoutine) (void),

const MCP2517FDFilters & inFilters) ;

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 39

19.2 Defining explicitly the interrupt service routine

The second prototype has a third argument, an instance of MCP2517FDFilters class that defines the receive
filters.

19.2 Defining explicitly the interrupt service routine

In this document, the interrupt service routine is defined by a lambda expression:

const uint32_t errorCode = can.begin (settings, [] { can.isr () ; }) ;

Instead of a lambda expression, you are free to define the interrupt service routine as a function:

void canISR () {

can.isr () ;

}

And you pass canISR as argument to the begin method:

const uint32_t errorCode = can.begin (settings, canISR) ;

19.3 The error code

TheACAN2517FD::beginmethod returns an error code. The value0denotes no error. Otherwise, you consider
every bit as an error flag, as described in table 8. An error code could report several errors. The ACAN2517FD

class defines static constants for naming errors.

19.3.1 kRequestedConfigurationModeTimeOut

The ACAN2517FD::begin method first configures SPI with a 1 Mbit/s clock, and then requests the configu-
ration mode. This error is raised when the LCP2517FD does not reach the configuration mode with 2ms. It
means that the MCP2517FD cannot be accessed via SPI.

19.3.2 kReadBackErrorWith1MHzSPIClock

Then, the ACAN2517FD::begin method checks accessibility by writing and reading back 32-bit values at the
first MCP2517FD RAM address (0x400). The values are 1 << n, with 0 ⩽ n ⩽ 31. This error is raised when the
read value is different from the written one. It means that the MCP2517FD cannot be accessed via SPI.

19.3.3 kTooFarFromDesiredBitRate

This error occurs when the mArbitrationBitRateClosedToDesiredRate property of the settings object is
false. This means that the ACAN2517FDSettings constructor cannot compute a CAN bit configuration close
enough to the desired bit rate. For example:

void setup () {

ACAN2517FDSettings settings (ACAN2517FDSettings::OSC_4MHz10xPLL,

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 40

19.3 The error code

Bit Code Static constant Name Link
0 0x1 kRequestedConfigurationModeTimeOut section 19.3.1 page 40
1 0x2 kReadBackErrorWith1MHzSPIClock section 19.3.2 page 40
2 0x4 kTooFarFromDesiredBitRate section 19.3.3 page 40
3 0x8 kInconsistentBitRateSettings section 19.3.4 page 41
4 0x10 kINTPinIsNotAnInterrupt section 19.3.5 page 41
5 0x20 kISRIsNull section 19.3.6 page 42
6 0x40 kFilterDefinitionError section 19.3.7 page 42
7 0x80 kMoreThan32Filters section 19.3.8 page 42
8 0x100 kControllerReceiveFIFOSizeIsZero section 19.3.9 page 42
9 0x200 kControllerReceiveFIFOSizeGreaterThan32 section 19.3.10 page 42
10 0x400 kControllerTransmitFIFOSizeIsZero section 19.3.11 page 42
11 0x800 kControllerTransmitFIFOSizeGreaterThan32 section 19.3.12 page 42
12 0x1000 kControllerRamUsageGreaterThan2048 section 19.3.13 page 42
13 0x2000 kControllerTXQPriorityGreaterThan31 section 19.3.14 page 43
14 0x4000 kControllerTransmitFIFOPriorityGreaterThan31 section 19.3.15 page 43
15 0x8000 kControllerTXQSizeGreaterThan32 section 19.3.16 page 43
16 0x1_0000 kRequestedModeTimeOut section 19.3.17 page 43
17 0x2_0000 kX10PLLNotReadyWithin1MS section 19.3.18 page 43
18 0x4_0000 kReadBackErrorWithFullSpeedSPIClock section 19.3.19 page 43
19 0x8_0000 kISRNotNullAndNoIntPin section 19.3.20 page 43
20 0x10_0000 kInvalidTDCO section 19.3.21 page 44

Table 8 – The ACAN2517FD::begin method error code bits

1, DataBitRateFactor::DATA_BITRATE_x1) ; // 1 bit/s !!!

// Here, settings.mArbitrationBitRateClosedToDesiredRate is false

const uint32_t errorCode = can.begin (settings, [] { can.isr () ; }) ;

// Here, errorCode contains ACAN2517FD::kCANBitConfigurationTooFarFromDesiredBitRate

}

19.3.4 kInconsistentBitRateSettings

The ACAN2517FDSettings constructor always returns consistent bit rate settings – even if the settings pro-
vide a bit rate too far away the desired bit rate. So this error occurs only when you have changed the CAN bit
properties (mBitRatePrescaler, mPropagationSegment, mArbitrationPhaseSegment1, mArbitration‐
PhaseSegment2, mArbitrationSJW), and one or more resulting values are inconsistent. See section 20.2
page 50.

19.3.5 kINTPinIsNotAnInterrupt

The pin you provide for handling the MCP2517FD interrupt has no interrupt capability.

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 41

19.3 The error code

19.3.6 kISRIsNull

The interrupt service routine argument is NULL, you should provide a valid function.

19.3.7 kFilterDefinitionError

settings.filterStatus() returns a value different than MCP2517FDFilters::kFiltersOk, meaning that
one or more filters are erroneous. See section 17.1 page 35.

19.3.8 kMoreThan32Filters

You have defined more than 32 filters. MCP2517FD cannot handle more than 32 filters.

19.3.9 kControllerReceiveFIFOSizeIsZero

You have assigned 0 to settings.mControllerReceiveFIFOSize. The controller receive FIFO size should be
greater than 0.

19.3.10 kControllerReceiveFIFOSizeGreaterThan32

You have assigned a value greater than 32 tosettings.mControllerReceiveFIFOSize. The controller receive
FIFO size should be lower or equal than 32.

19.3.11 kControllerTransmitFIFOSizeIsZero

You have assigned 0 to settings.mControllerTransmitFIFOSize. The controller transmit FIFO size should
be greater than 0.

19.3.12 kControllerTransmitFIFOSizeGreaterThan32

You have assigned a value greater than 32 to settings.mControllerTransmitFIFOSize. The controller
transmit FIFO size should be lower or equal than 32.

19.3.13 kControllerRamUsageGreaterThan2048

The configuration you have defined requires more than 2048 bytes of MCP2517FD internal RAM. See section
14 page 30.

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 42

19.3 The error code

19.3.14 kControllerTXQPriorityGreaterThan31

You have assigned a value greater than 31 to settings.mControllerTXQBufferPriority. The controller
transmit FIFO size should be lower or equal than 31.

19.3.15 kControllerTransmitFIFOPriorityGreaterThan31

You have assigned a value greater than 31 to settings.mControllerTransmitFIFOPriority. The controller
transmit FIFO size should be lower or equal than 31.

19.3.16 kControllerTXQSizeGreaterThan32

You have assigned a value greater than 32 to settings.mControllerTXQSize. The controller transmit FIFO
size should be lower than 32.

19.3.17 kRequestedModeTimeOut

During configuration by the ACAN2517FD::begin method, the MCP2517FD is in the configuration mode. At this
end of this process, the mode specified by the inSettings.mRequestedMode value is requested. The switch
to this mode is not immediate, a register is repetitively read for checking the switch is done. This error is raised
if the switch is not completed within a delay between 1 ms and 2 ms.

19.3.18 kX10PLLNotReadyWithin1MS

You have requested the OSC_4MHz10xPLL oscillator mode, enabling the 10x PLL. The ACAN2517FD::begin

method waits during 2ms the PLL to be locked. This error is raised when the PLL is not locked within 2 ms.

19.3.19 kReadBackErrorWithFullSpeedSPIClock

After the oscillator configuration has been established, the ACAN2517FD::begin method configures the SPI
at its full speed (SYSCLK/2, and checks accessibility by writing and reading back 32 32-bit values at the first
MCP2517FD RAM address (0x400). The 32 used values are 1 << n, with 0 ⩽ n ⩽ 31. This error is raised when
the read value is different from the written one.

19.3.20 kISRNotNullAndNoIntPin

This error occurs when you have no INT pin, and a not-null interrupt service routine:

ACAN2517 can (MCP2517_CS, SPI, 255) ; // Last argument is 255 ‐> no interrupt pin

void setup () {

...

const uint32_t errorCode = can.begin (settings, [] { can.isr () ; }) ; // ISR is not null

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 43

...

}

Interrupt service routine should be NULL if no INT pin is defined:

ACAN2517 can (MCP2517_CS, SPI, 255) ; // Last argument is 255 ‐> no interrupt pin

void setup () {

...

const uint32_t errorCode = can.begin (settings, NULL) ; // Ok, ISR is null

...

}

See the LoopBackDemoTeensy3xNoInt and LoopBackDemoESP32NoInt sketches.

19.3.21 kInvalidTDCO

TDCO should be a 7-bit signed integer (i.e. −64 ⩽ TDCO⩽ 63). ACAN2517FDSettings constructor ensures this
constraint, and provides a valid value in mTDCO property.

This error occurs when you have manually change the mTDCO property, for example:

ACAN2517FDSettings settings (... arguments ...) ;

settings.mTDCO = 100 ; // Invalid value

const uint32_t errorCode = can.begin (settings, [] { can.isr () ; }) ;

20 ACAN2517FDSettings class reference

Note. The ACAN2517FDSettings class is not Arduino specific. You can compile it on your desktop computer
with your favorite C++ compiler.

20.1 The ACAN2517FDSettings constructor: computation of the CAN bit settings

The constructor of the ACAN2517FDSettings has three mandatory arguments: the oscillator frequency, the
desired arbitration bit rate, and the data bit rate factor. It tries to compute the CAN bit settings for theses bit
rates. If it succeeds, the constructed object has its mArbitrationBitRateClosedToDesiredRate property
set to true, otherwise it is set to false. For example, for an 1 Mbit/s arbitration bit rate and an 8 Mbit/s data
bit rate:

void setup () {

// Arbitration bit rate: 1 Mbit/s, data bit rate: 8 Mbit/s

ACAN2517FDSettings settings (ACAN2517FDSettings::OSC_4MHz10xPLL,

1000 * 1000, DataBitRateFactor::DATA_BITRATE_x8) ;

// Here, settings.mArbitrationBitRateClosedToDesiredRate is true

...

}

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 44

20.1 The ACAN2517FDSettings constructor: computation of the CAN bit settings

Note the data bit rate is not defined by its frequency, but by its multiplicative factor from arbitration bit rate.
If you want a single bit rate, use ACAN2517FDSettings::DATA_BITRATE_x1 as data bit rate factor.

Of course, with a 40 MHz or 20 MHz SYSCLK, CAN bit computation always succeeds for classical arbitration
bit rates: 1 Mbit/s, 500 kbit/s, 250 kbit/s, 125 kbit/s. With a 40 MHz SYSCLK, there are 184 exact arbitration
/ data bit rate combinations (table 9 page 46), and 178 with a 20 MHz SYSCLK (table 10 page 47). Note a 8
MHz data bit rate cannot be performed with a 20 MHz SYSCLK. By ”exact”, we mean that arbitration bit rate
and data bit rate are both exactly integer values. There is no such combination for data bit rate factors 3x, 6x,
7x.

But this does not mean there is no possibility to get such data bit rates factors. For example, we can have a
data bit rate of 4 Mbit/s, and an arbitration bit rate of 4/7 Mbit/s = 571 428 kbit/s:

void setup () {

...

ACAN2517FDSettings settings (ACAN2517FDSettings::OSC_4MHz10xPLL,

571428, DataBitRateFactor::DATA_BITRATE_x7) ;

Serial.print ("mArbitrationBitRateClosedToDesiredRate:␣") ;

Serial.println (settings.mArbitrationBitRateClosedToDesiredRate) ; // 1 (‐‐> is true)

Serial.print ("Actual␣Arbitration␣Bit␣Rate:␣") ;

Serial.println (settings.actualArbitrationBitRate ()) ; // 571428 bit/s

Serial.print ("distance:␣") ;

Serial.println (settings.ppmFromDesiredArbitrationBitRate ()) ; // 1 ppm= 0,0001 %

Serial.print ("Actual␣Data␣Bit␣Rate:␣") ;

Serial.println (settings.actualDataBitRate ()) ; // 4 Mbit/s

...

}

Due to integer computations, and the distance from desired arbitration bit rate is 1 ppm. ”ppm” stands for
”part-per-million”, and 1 ppm = 10−6. In other words, 10, 000 ppm = 1%.

By default, a desired bit rate is accepted if the distance from the computed actual bit rate is lower or equal
to 1, 000 ppm = 0.1 %. You can change this default value by adding your own value as fourth argument of
ACAN2517FDSettings constructor. Foe example, with an arbitration bit rate equal to 727 kbit/s:

void setup () {

...

ACAN2517FDSettings settings (ACAN2517FDSettings::OSC_4MHz10xPLL,

727 * 1000, DataBitRateFactor::DATA_BITRATE_x1,

100) ; // 100 ppm

Serial.print ("mArbitrationBitRateClosedToDesiredRate:␣") ;

Serial.println (settings.mArbitrationBitRateClosedToDesiredRate) ; // 0 (‐‐> is false)

Serial.print ("actual␣arbitration␣bit␣rate:␣") ;

Serial.println (settings.actualArbitrationBitRate ()) ; // 727272 bit/s

Serial.print ("distance:␣") ;

Serial.println (settings.ppmFromDesiredArbitrationBitRate ()) ; // 375 ppm

...

}

The fourth argument does not change the CAN bit computation, it only changes the acceptance test for setting

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 45

20.1 The ACAN2517FDSettings constructor: computation of the CAN bit settings

Arbitration Bit Rate Valid Data Rate factors
500 bit/s 1x 8x
625 bit/s 1x 8x
640 bit/s 1x
800 bit/s 1x 5x 8x
1 kbit/s 1x 4x 5x 8x
1250 bit/s 1x 4x 5x 8x
1280 bit/s 1x 5x
1600 bit/s 1x 4x 5x 8x
2 kbit/s 1x 2x 4x 5x 8x
2500 bit/s 1x 2x 4x 5x 8x
2560 bit/s 1x 5x
3125 bit/s 1x 2x 4x 5x 8x
3200 bit/s 1x 2x 4x 5x
4 kbit/s 1x 2x 4x 5x 8x
5 kbit/s 1x 2x 4x 5x 8x
6250 bit/s 1x 2x 4x 5x 8x
6400 bit/s 1x 2x 5x
8 kbit/s 1x 2x 4x 5x 8x
10 kbit/s 1x 2x 4x 5x 8x
12500 bit/s 1x 2x 4x 5x 8x
12800 bit/s 1x 5x
15625 bit/s 1x 2x 4x 5x 8x
16 kbit/s 1x 2x 4x 5x
20 kbit/s 1x 2x 4x 5x 8x
25 kbit/s 1x 2x 4x 5x 8x
31250 bit/s 1x 2x 4x 5x 8x
32 kbit/s 1x 2x 5x
40 kbit/s 1x 2x 4x 5x 8x
50 kbit/s 1x 2x 4x 5x 8x
62500 bit/s 1x 2x 4x 5x 8x
64 kbit/s 1x 5x
78125 bit/s 1x 2x 4x 8x
80 kbit/s 1x 2x 4x 5x
100 kbit/s 1x 2x 4x 5x 8x
125 kbit/s 1x 2x 4x 5x 8x
156250 bit/s 1x 2x 4x 8x
160 kbit/s 1x 2x 5x
200 kbit/s 1x 2x 4x 5x 8x
250 kbit/s 1x 2x 4x 5x 8x
312500 bit/s 1x 2x 4x 8x
320 kbit/s 1x 5x
400 kbit/s 1x 2x 4x 5x
500 kbit/s 1x 2x 4x 5x 8x
625 kbit/s 1x 2x 4x 8x
800 kbit/s 1x 2x 5x
1000 kbit/s 1x 2x 4x 5x 8x

Table 9 – 40 MHz SYSCLK: the 184 exact bit rates

the mArbitrationBitRateClosedToDesiredRate property. For example, you can specify that you want the
computed actual bit to be exactly the desired bit rate:

void setup () {

...

ACAN2517FDSettings settings (ACAN2517FDSettings::OSC_4MHz10xPLL,

500 * 1000, DataBitRateFactor::DATA_BITRATE_x1,

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 46

20.1 The ACAN2517FDSettings constructor: computation of the CAN bit settings

Arbitration Bit Rate Valid Data Rate factors
250 bit/s 1x 8x
320 bit/s 1x
400 bit/s 1x 5x 8x
500 bit/s 1x 4x 5x 8x
625 bit/s 1x 4x 5x 8x
640 bit/s 1x 5x
800 bit/s 1x 4x 5x 8x
1 kbit/s 1x 2x 4x 5x 8x
1250 bit/s 1x 2x 4x 5x 8x
1280 bit/s 1x 5x
1600 bit/s 1x 2x 4x 5x
2 kbit/s 1x 2x 4x 5x 8x
2500 bit/s 1x 2x 4x 5x 8x
3125 bit/s 1x 2x 4x 5x 8x
3200 bit/s 1x 2x 5x
4 kbit/s 1x 2x 4x 5x 8x
5 kbit/s 1x 2x 4x 5x 8x
6250 bit/s 1x 2x 4x 5x 8x
6400 bit/s 1x 5x
8 kbit/s 1x 2x 4x 5x
10 kbit/s 1x 2x 4x 5x 8x
12500 bit/s 1x 2x 4x 5x 8x
15625 bit/s 1x 2x 4x 5x 8x
16 kbit/s 1x 2x 5x
20 kbit/s 1x 2x 4x 5x 8x
25 kbit/s 1x 2x 4x 5x 8x
31250 bit/s 1x 2x 4x 5x 8x
32 kbit/s 1x 5x
40 kbit/s 1x 2x 4x 5x
50 kbit/s 1x 2x 4x 5x 8x
62500 bit/s 1x 2x 4x 5x 8x
78125 bit/s 1x 2x 4x 8x
80 kbit/s 1x 2x 5x
100 kbit/s 1x 2x 4x 5x 8x
125 kbit/s 1x 2x 4x 5x 8x
156250 bit/s 1x 2x 4x 8x
160 kbit/s 1x 5x
200 kbit/s 1x 2x 4x 5x
250 kbit/s 1x 2x 4x 5x 8x
312500 bit/s 1x 2x 4x 8x
400 kbit/s 1x 2x 5x
500 kbit/s 1x 2x 4x 5x 8x
625 kbit/s 1x 2x 4x 8x
800 kbit/s 1x 5x
1000 kbit/s 1x 2x 4x 5x

Table 10 – 20 MHz SYSCLK: the 178 exact bit rates

0) ; // Max distance is 0 ppm

Serial.print ("mArbitrationBitRateClosedToDesiredRate:␣") ;

Serial.println (settings.mArbitrationBitRateClosedToDesiredRate) ; // 1 (‐‐> is true)

Serial.print ("actual␣arbitration␣bit␣rate:␣") ;

Serial.println (settings.actualArbitrationBitRate ()) ; // 500,000 bit/s

Serial.print ("distance:␣") ;

Serial.println (settings.ppmFromDesiredArbitrationBitRate ()) ; // 0 ppm

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 47

20.1 The ACAN2517FDSettings constructor: computation of the CAN bit settings

...

}

In any way, the bit rate computation always gives a consistent result, resulting an actual arbitration / data
bit rates closest from the desired bit rate. For example, we query a 423 kbit/s arbitration bit rate, and a 423
kbit/s * 3 = 1 269 kbit/s data bit rate:

void setup () {

...

ACAN2517FDSettings settings (ACAN2517FDSettings::OSC_4MHz10xPLL,

423 * 1000, DataBitRateFactor::DATA_BITRATE_x3) ;

Serial.print ("mArbitrationBitRateClosedToDesiredRate:␣") ;

Serial.println (settings.mArbitrationBitRateClosedToDesiredRate) ; // 0 (‐‐> is false)

Serial.print ("Actual␣Arbitration␣Bit␣Rate:␣") ;

Serial.println (settings.actualArbitrationBitRate ()) ; // 416 666 bit/s

Serial.print ("Actual␣Data␣Bit␣Rate:␣") ;

Serial.println (settings.actualDataBitRate ()) ; // 1 250 kbit/s

Serial.print ("distance:␣") ;

Serial.println (settings.ppmFromDesiredArbitrationBitRate ()) ; // 14972 ppm

...

}

The resulting bit rates settings are far from the desired values, the CAN bit decomposition is consistent. You
can get its details:

void setup () {

...

ACAN2517FDSettings settings (ACAN2517FDSettings::OSC_4MHz10xPLL,

423 * 1000, DataBitRateFactor::DATA_BITRATE_x6) ;

Serial.print ("mArbitrationBitRateClosedToDesiredRate:␣") ;

Serial.println (settings.mArbitrationBitRateClosedToDesiredRate) ; // 0 (‐‐> is false)

Serial.print ("Actual␣Arbitration␣Bit␣Rate:␣") ;

Serial.println (settings.actualArbitrationBitRate ()) ; // 416 666 bit/s

Serial.print ("Actual␣Data␣Bit␣Rate:␣") ;

Serial.println (settings.actualDataBitRate ()) ; // 1 250 kbit/s

Serial.print ("distance:␣") ;

Serial.println (settings.ppmFromDesiredArbitrationBitRate ()) ; // 14972 ppm

Serial.print ("Bit␣rate␣prescaler:␣") ;

Serial.println (settings.mBitRatePrescaler) ; // BRP = 2

Serial.print ("Arbitration␣Phase␣segment␣1:␣") ;

Serial.println (settings.mArbitrationPhaseSegment1) ; // PS1 = 38

Serial.print ("Arbitration␣Phase␣segment␣2:␣") ;

Serial.println (settings.mArbitrationPhaseSegment2) ; // PS2 = 9

Serial.print ("Arbitration␣Resynchronization␣Jump␣Width:␣") ;

Serial.println (settings.mArbitrationSJW) ; // SJW = 9

Serial.print ("Arbitration␣Sample␣Point:␣") ;

Serial.println (settings.arbitrationSamplePointFromBitStart ()) ; // 81, meaning 81%

Serial.print ("Data␣Phase␣segment␣1:␣") ;

Serial.println (settings.mDataPhaseSegment1) ; // PS1 = 12

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 48

20.1 The ACAN2517FDSettings constructor: computation of the CAN bit settings

Serial.print ("Data␣Phase␣segment␣2:␣") ;

Serial.println (settings.mDataPhaseSegment2) ; // PS2 = 3

Serial.print ("Data␣Resynchronization␣Jump␣Width:␣") ;

Serial.println (settings.mDataSJW) ; // SJW = 3

Serial.print ("Data␣Sample␣Point:␣") ;

Serial.println (settings.dataSamplePointFromBitStart ()) ; // 81, meaning 81%

Serial.print ("Consistency:␣") ;

Serial.println (settings.CANBitSettingConsistency ()) ; // 0, meaning Ok

...

}

The samplePointFromBitStartmethod returns sample point, expressed in per-cent of the bit duration from
the beginning of the bit.

Note the computation may calculate a bit decomposition too far from the desired bit rate, but it is always
consistent. You can check this by calling the CANBitSettingConsistency method.

You can change the property values for adapting to the particularities of your CAN network propagation time.
By example, you can increment the mArbitrationPhaseSegment1 property value, and decrement the mArbi‐
trationPhaseSegment2 property value in order to sample the CAN Rx pin later.

void setup () {

...

ACAN2517FDSettings settings (ACAN2517FDSettings::OSC_4MHz10xPLL,

500 * 1000, DataBitRateFactor::DATA_BITRATE_x1) ;

Serial.print ("mArbitrationBitRateClosedToDesiredRate:␣") ;

Serial.println (settings.mArbitrationBitRateClosedToDesiredRate) ; // 1 (‐‐> is true)

settings.mArbitrationPhaseSegment1 ‐= 8 ; // 63 ‐> 55: safe, 1 <= PS1 <= 256

settings.mArbitrationPhaseSegment2 += 8 ; // 16 ‐> 24: safe, 1 <= PS2 <= 128

settings.mArbitrationSJW += 8 ; // 16 ‐> 24: safe, 1 <= SJW <= PS2

Serial.print ("Sample␣Point:␣") ;

Serial.println (settings.samplePointFromBitStart ()) ; // 68, meaning 68%

Serial.print ("actual␣arbitration␣bit␣rate:␣") ;

Serial.println (settings.actualArbitrationBitRate ()) ; // 500000: ok, no change

Serial.print ("Consistency:␣") ;

Serial.println (settings.CANBitSettingConsistency ()) ; // 0, meaning Ok

...

}

Be aware to always respect CAN bit timing consistency! The MCP2517FD constraints are:

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 49

20.2 The CANBitSettingConsistency method

1 ⩽ mBitRatePrescaler ⩽ 256

2 ⩽ mArbitrationPhaseSegment1 ⩽ 256

1 ⩽ mArbitrationPhaseSegment2 ⩽ 128

1 ⩽ mArbitrationSJW ⩽ mArbitrationPhaseSegment2

2 ⩽ mDataPhaseSegment1 ⩽ 32

1 ⩽ mDataPhaseSegment2 ⩽ 16

1 ⩽ mDataSJW ⩽ mDataPhaseSegment2

Miucrochips recommends using the same bit rate prescaler for arbitration and data bit rates.

Resulting actual bit rates are given by:

Actual Arbitration Bit Rate =
SYSCLK

mBitRatePrescaler · (1 + mArbitrationPhaseSegment1+ mArbitrationPhaseSegment2)

Actual Data Bit Rate =
SYSCLK

mBitRatePrescaler · (1 + mDataPhaseSegment1+ mDataPhaseSegment2)

And the sampling point (in per-cent unit) are given by:

Arbitration Sampling Point = 100 · 1 + mArbitrationPhaseSegment1
1 + mArbitrationPhaseSegment1+ mArbitrationPhaseSegment2

Data Sampling Point = 100 · 1 + mDataPhaseSegment1
1 + mDataPhaseSegment1+ mDataPhaseSegment2

20.2 The CANBitSettingConsistency method

This method checks the CAN bit decomposition (given bymBitRatePrescaler, mArbitrationPhaseSegment1,
mArbitrationPhaseSegment2, mArbitrationSJW,mDataPhaseSegment1, mDataPhaseSegment2, mDataSJW
property values) is consistent.

void setup () {

...

ACAN2517FDSettings settings (ACAN2517FDSettings::OSC_4MHz10xPLL,

500 * 1000, DataBitRateFactor::DATA_BITRATE_x2) ;

Serial.print ("mArbitrationBitRateClosedToDesiredRate:␣") ;

Serial.println (settings.mArbitrationBitRateClosedToDesiredRate) ; // 1 (‐‐> is true)

settings.mDataPhaseSegment1 = 0 ; // Error, mDataPhaseSegment1 should be >= 1 (and <= 32)

Serial.print ("Consistency:␣0x") ;

Serial.println (settings.CANBitSettingConsistency (), HEX) ; // != 0, meaning error

...

}

The CANBitSettingConsistency method returns 0 if CAN bit decomposition is consistent. Otherwise, the

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 50

20.3 The kArbitrationTQCountNotDivisibleByDataBitRateFactor error

returned value is a bit field that can report several errors – see table 11.

The ACAN2517FDSettings class defines static constant properties that can be used as mask error. For exam-
ple:

public: static const uint32_t kBitRatePrescalerIsZero = 1 << 0 ;

Bit Error Name Error
0 kBitRatePrescalerIsZero mBitRatePrescaler == 0
1 kBitRatePrescalerIsGreaterThan256 mBitRatePrescaler > 256
2 kArbitrationPhaseSegment1IsLowerThan2 mArbitrationPhaseSegment1 < 2
3 kArbitrationPhaseSegment1IsGreaterThan256 mArbitrationPhaseSegment1 > 256
4 kArbitrationPhaseSegment2IsZero mArbitrationPhaseSegment2 == 0
5 kArbitrationPhaseSegment2IsGreaterThan128 mArbitrationPhaseSegment2 > 128
6 kArbitrationSJWIsZero mArbitrationSJW == 0
7 kArbitrationSJWIsGreaterThan128 mArbitrationSJW > 128
8 kArbitrationSJWIsGreaterThanPhaseSegment1 mArbitrationSJW > mArbitrationPhaseSegment1

9 kArbitrationSJWIsGreaterThanPhaseSegment2 mArbitrationSJW > mArbitrationPhaseSegment2

10 kArbitrationTQCountNotDivisibleByDataBitRateFactor See section 20.3 page 51
11 kDataPhaseSegment1IsLowerThan2 mDataPhaseSegment1 < 2
12 kDataPhaseSegment1IsGreaterThan32 mDataPhaseSegment1 > 32
13 kDataPhaseSegment2IsZero mDataPhaseSegment2 == 0
14 kDataPhaseSegment2IsGreaterThan16 mDataPhaseSegment2 > 16
15 kDataSJWIsZero mDataSJW == 0
16 kDataSJWIsGreaterThan16 mDataSJW > 16
17 kDataSJWIsGreaterThanPhaseSegment1 mDataSJW > mDataPhaseSegment1

18 kDataSJWIsGreaterThanPhaseSegment2 mDataSJW > mDataPhaseSegment2

Table 11 – The ACAN2517FDSettings::CANBitSettingConsistency method error codes

20.3 The kArbitrationTQCountNotDivisibleByDataBitRateFactor error

This error occurs when you have changed the properties relative to arbitration and / or data bit rates, and
the resulting values provide a data bit rate that is not an integer multiple of arbitration bit rate, that is the
ACAN2517FDSettings::dataBitRateIsAMultipleOfArbitrationBitRate method returns false.

20.4 The actualArbitrationBitRate method

The actualArbitrationBitRatemethod returns the actual bit computed from mBitRatePrescaler, mPro‐
pagationSegment, mArbitrationPhaseSegment1, mArbitrationPhaseSegment2, mArbitrationSJWprop-
erty values.

void setup () {

...

ACAN2517FDSettings settings (ACAN2517FDSettings::OSC_4MHz10xPLL,

440 * 1000, DataBitRateFactor::DATA_BITRATE_x1) ;

Serial.print ("mArbitrationBitRateClosedToDesiredRate:␣") ;

Serial.println (settings.mArbitrationBitRateClosedToDesiredRate) ; // 0 (‐‐> is false)

Serial.print ("actual␣arbitration␣bit␣rate:␣") ;

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 51

20.5 The exactArbitrationBitRate method

Serial.println (settings.actualArbitrationBitRate ()) ; // 444,444 bit/s

...

}

Note. If CAN bit settings are not consistent (see section 20.2 page 50), the returned value is irrelevant.

20.5 The exactArbitrationBitRate method

bool ACAN2517FDSettings::exactArbitrationBitRate (void) const ;

The exactArbitrationBitRate method returns true if the actual arbitration bit rate is equal to the desired
arbitration bit rate, and false otherwise.

Note. If CAN bit settings are not consistent (see section 20.2 page 50), the returned value is irrelevant.

20.6 The exactDataBitRate method

bool ACAN2517FDSettings::exactDataBitRate (void) const ;

The exactDataBitRate method returns true if the actual data bit rate is equal to the desired data bit rate,
and false otherwise.

Note. If CAN bit settings are not consistent (see section 20.2 page 50), the returned value is irrelevant.

20.7 The ppmFromDesiredArbitrationBitRate method

uint32_t ACAN2517FDSettings::ppmFromDesiredArbitrationBitRate (void) const ;

The ppmFromDesiredArbitrationBitRate method returns the distance from the actual arbitration bit rate
to the desired arbitration bit rate, expressed in part-per-million (ppm): 1ppm = 10−6. In other words, 10, 000ppm =

1%.

Note. If CAN bit settings are not consistent (see section 20.2 page 50), the returned value is irrelevant.

20.8 The ppmFromDesiredDataBitRate method

uint32_t ACAN2517FDSettings::ppmFromDesiredDataBitRate (void) const ;

The ppmFromDesiredDataBitRate method returns the distance from the actual data bit rate to the desired
data bit rate, expressed in part-per-million (ppm): 1 ppm = 10−6. In other words, 10, 000 ppm = 1%.

Note. If CAN bit settings are not consistent (see section 20.2 page 50), the returned value is irrelevant.

20.9 The arbitrationSamplePointFromBitStart method

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 52

20.10 The dataSamplePointFromBitStart method

uint32_t ACAN2517FDSettings::arbitrationSamplePointFromBitStart (void) const ;

The arbitrationSamplePointFromBitStart method returns the distance of sample point from the start
of the arbitration CAN bit, expressed in part-per-cent (ppc): 1 ppc = 1% = 10−2. It is a good practice to get
sample point from 65% to 80%. The bit rate calculator tries to set the sample point at 80%.

Note. If CAN bit settings are not consistent (see section 20.2 page 50), the returned value is irrelevant.

20.10 The dataSamplePointFromBitStart method

uint32_t ACAN2517FDSettings::dataSamplePointFromBitStart (void) const ;

The dataSamplePointFromBitStartmethod returns the distance of sample point from the start of the data
CAN bit, expressed in part-per-cent (ppc): 1 ppc = 1% = 10−2. It is a good practice to get sample point from
65% to 80%. The bit rate calculator tries to set the sample point at 80%.

Note. If CAN bit settings are not consistent (see section 20.2 page 50), the returned value is irrelevant.

20.11 Properties of the ACAN2517FDSettings class

All properties of the ACAN2517FDSettings class are declared public and are initialized (table 12).

20.11.1 The mTXCANIsOpenDrain property

This property defines the outpiut mode of the MCP2517FD TXCAN pin:

• if false (default value), the TXCAN pin is a push/pull output;

• if true, the TXCAN pin is an open drain output.

20.11.2 The mINTIsOpenDrain property

This property defines the outpiut mode of the MCP2517FD INT pin:

• if false (default value), the INT pin is a push/pull output;

• if true, the INT pin is an open drain output.

20.11.3 The CLKO/SOF pin

The CLKO/SOF pin of the MCP2517FD controller is an output pin has five functions13:

• output internally generated clock ;
13Internally generated clock is not SYSCLK, see figure 9 page 24.

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 53

20.11 Properties of the ACAN2517FDSettings class

Property Type Initial value Comment
mOscillator Oscillator Constructor argument
mSysClock uint32_t Constructor argument
mDesiredBitRate uint32_t Constructor argument
mBitRatePrescaler uint16_t 0 See section 20.1 page 44
mArbitrationPhaseSegment1 uint16_t 0 See section 20.1 page 44
mArbitrationPhaseSegment2 uint8_t 0 See section 20.1 page 44
mArbitrationSJW uint8_t 0 See section 20.1 page 44
mArbitrationBitRateClosedTo‐

DesiredRate

bool false See section 20.1 page 44

mDataPhaseSegment1 uint16_t 0 See section 20.1 page 44
mDataPhaseSegment2 uint8_t 0 See section 20.1 page 44
mDataSJW uint8_t 0 See section 20.1 page 44
mDataBitRateClosedToDesiredRate bool false See section 20.1 page 44
mTXCANIsOpenDrain bool false See section 20.11.1 page 53
mINTIsOpenDrain bool false See section 20.11.2 page 53
mCLKOPin CLKOpin CLKO_DIVIDED_BY_10 See section 20.11.3 page 53
mISOCRCEnabled bool true See section 20.11.5 page 55
mRequestedMode OperationMode NormalFD See section 20.11.4 page 55
mDriverTransmitFIFOSize uint16_t 16 See section 10 page 25
mControllerTransmitFIFOSize uint8_t 1 See section 10 page 25
mControllerTransmitFIFOPayload PayloadSize PAYLOAD_64 See section 10 page 25
mControllerTransmitFIFOPriority uint8_t 0 See section 10 page 25
mControllerTransmitFIFO‐

RetransmissionAttempts

RetransmissionAttempts UnlimitedNumber See section 10 page 25

mControllerTXQSize uint8_t 0 See section 11 page 27
mControllerTXQBufferPayload PayloadSize PAYLOAD_64 See section 11 page 27
mControllerTXQBufferPriority uint8_t 31 See section 11 page 27
mControllerTXQBuffer‐

RetransmissionAttempts

RetransmissionAttempts UnlimitedNumber See section 11 page 27

mDriverReceiveFIFOSize uint16_t 32 See section 12 page 28
mControllerReceiveFIFOPayload PayloadSize PAYLOAD_64 See section 12 page 28
mControllerReceiveFIFOSize uint8_t 27 See section 12 page 28
mTDCO int8_t 0 See section 20.11.6 page 55

Table 12 – Properties of the ACAN2517FDSettings class

• output internally generated clock divided by 2;

• output internally generated clock divided by 4;

• output internally generated clock divided by 10;

• output SOF (”Start Of Frame”).

By default, after power on, CLKO/SOF pin outputs internally generated clock divided by 10.

The ACAN2517FDSettings class defines an enumerated type for specifying these settings:

class ACAN2517FDSettings {

public: typedef enum {CLKO_DIVIDED_BY_1, CLKO_DIVIDED_BY_2,

CLKO_DIVIDED_BY_4, CLKO_DIVIDED_BY_10,

SOF} CLKOpin ;

...

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 54

} ;

ThemCLKOPinproperty lets you select theCLKO/SOFpin function; by default, this property value isCLKO_DIVI‐
DED_BY_10, that corresponds to MCP2517FD power on setting. For example:

ACAN2517FDSettings settings (ACAN2517FDSettings::OSC_4MHz10xPLL, CAN_BIT_RATE) ;

...

settings.mCLKOPin = ACAN2517FDSettings::SOF ;

...

const uint32_t errorCode = can.begin (settings, [] { can.isr () ; }) ;

20.11.4 The mRequestedMode property

This property defines the mode requested at this end of the configuration: NormalFD (default value), Internal‐
LoopBack, ExternalLoopBack, ListenOnly, Normal20B (added in release 2.1.11), Sleep (added in release
2.1.11).

20.11.5 The mISOCRCEnabled property

This property enables ISO CRC in CANFD Frames bit:

• true (default): include Stuff Bit Count in CRC Field and use Non-Zero CRC Initialization Vector according
to ISO 11898-1:2015:

• false: do NOT include Stuff Bit Count in CRC Field and use CRC Initialization Vector with all zeros.

This setting correspondonds to the ISOCRCEN bit of the CiCON register.

20.11.6 The mTDCO property

Transmitter Delay Compensation is required when data phase bit time that is shorter than the transceiver loop
delay. ThemTDCOproperty is by default set tomBitRatePrescaler *mDataPhaseSegment1by theACAN2517FD‐
Settings constructor.

For more details, see DS20005678D, sections 3.4.3 to 3.4.8, pages 18 to 20.

21 Handling GPIO0, GPIO1 and XSTBY

The #8 pin is never used as INT1 by the library. By default, it is an input pin. You can use it as a input or ouput
digital pin. The #9 pin is never used as INT0 by the library. By default, it is an input pin. You can use it as a
input or ouput digital pin, or as XSTBY output pin.

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 55

21.1 The gpioSetMode method

21.1 The gpioSetMode method

void ACAN2517FD::gpioSetMode (const uint8_t inPin, const uint8_t inMode) ;

This method sets the mode of GPIO0 or GPIO1.

Following the inPin value:

• 0: following the inMode value:

– INPUT: pin #9 is no more XSTBY output, configure pin #9 (GPIO0) as digital input;

– OUTPUT: pin #9 is no more XSTBY output, configure pin #9 (GPIO0) as digital output;

– other value: does nothing;

• 1: following the inMode value:

– INPUT: configure pin #8 (GPIO1) as digital input;

– OUTPUT: configure pin #8 (GPIO1) as digital output;

– other value: does nothing;

• other value: does nothing.

Example :

can.gpioSetMode (1, OUTPUT) ; // Configures GPIO1 as digital output

21.2 The gpioWrite method

void ACAN2517FD::gpioWrite (const uint8_t inPin, const uint8_t inLevel) ;

This method outputs a logic value on GPIO0 or GPIO1.

Following the inPin value:

• 0: following the inLevel value:

– 0 or LOW: output a low level on GPIO0;

– HIGH or any value > 0: output a high level on GPIO0;

• 1: following the inLevel value:

– 0 or LOW: output a low level on GPIO1;

– HIGH or any value > 0: output a high level on GPIO1;

• other value: does nothing.

Example :

can.gpioWrite (1, HIGH) ; // If GPIO1 is a digital output, outputs a high level

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 56

21.3 The gpioRead method

21.3 The gpioRead method

bool ACAN2517FD::gpioRead (const uint8_t inPin) ;

This method gets the logic value of GPIO0 or GPIO1.

Following the inPin value:

• 0: the function returns the level of GPIO0 pin;

• 1: the function returns the level of GPIO1 pin;

• other value: returns false.

Example :

const bool b = can.gpioRead (1) ; // Get GPIO1 logical level

21.4 The configureGPIO0AsXSTBY method

void ACAN2517FD::configureGPIO0AsXSTBY (void) ;

This method configures the #9 pin as XSTBY, overriding any previous pin mode.

22 Other ACAN2517FD methods

22.1 The currentOperationMode method

ACAN2517FDSettings::OperationMode ACAN2517FD::currentOperationMode (void) ;

This function returns theMCP2517FD current operation mode, as a value of theACAN2517FDSettings::Opera‐
tionMode enumerated type. This type is defined in the ACAN2517FDSettings.h header file.

class ACAN2517FDSettings {

...

public: typedef enum : uint8_t {

NormalFD = 0,

Sleep = 1,

InternalLoopBack = 2,

ListenOnly = 3,

Configuration = 4,

ExternalLoopBack = 5,

Normal20B = 6,

RestrictedOperation = 7

} OperationMode ;

...

} ;

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 57

22.2 The setOperationMode method

22.2 The setOperationMode method

void ACAN2517FD::setOperationMode

(const ACAN2517FDSettings::OperationMode inOperationMode);

This method submits the inOperationMode to the MCP2517FD. Note. The possible mode transitions are
described in DS20005678E, section 2.1, page8. See also figure 2.2, page 9 (figure 10).

 2017-2020 Microchip Technology Inc. DS20005678E-page 9

CAN FD Controller Module

Figure 2-1: Modes of Operation

Normal FD
Mode

Normal 2.0
Mode

External/Internal
Loopback

Mode

Listen Only
Mode

“Normal” Modes “Debug” Modes

Restricted
Operation

Mode

REQOP = Sleep
and OSC.LPMEN = 0

WAKIF
or Assert nCS

REQOP = Sleep
and OSC.LPMEN = 1

and Bus Idle

REQOP = Sleep
and OSC.LPMEN = 1

REQOP = Restricted
and Bus Idle

No

Yes

REQOP = ”Normal”

REQOP = Listen Only
and Bus Idle

REQOP = Config
(and Bus Idle)

REQOP = Restricted
and Bus Idle

Res bit = 1 Received
and PXEDIS = 0

Wait for
Bus Idle

Wait for
128 Idle Conditions

TXBO

System Error
REQOP = “Normal”

REQOP = Config
(and Bus Idle) REQOP = Listen Only

and Bus Idle

REQOP = Config
and Bus Idle

REQOP = Loopback Int/Ext
and Bus Idle
(Integrating)

WAKIF
or OSC.OSCDIS = 0

REQOP = Sleep
and OSC.LPMEN = 0

and Bus Idle

REQOP = Config
and Bus Idle

REQOP=”Normal”
And Bus Idle
(Integrating)

POR

Configuration
Mode

Sleep Mode
Clock Off

TXCAN Recessive

“Normal”
Modes

RX and TX

Loopback
Modes

Listen Only
Mode

RX Only
TX Pin High

TXREQ Ignored

Bus Off
Clear all TXREQ

(FRESET TX FIFOs/
TXQ)

Protocol
Exception Event

No TX

Restricted
Operation

Mode
RX

TX: Only ACK
TXREQ Ignored

c SERR2LOM==1?

LPM
Digital Logic Off

TXCAN Recessive

Figure 10 – The MCP2518FD operation mode graph (from DS20005678E, figure 2.2, page 9)

22.3 The recoverFromRestrictedOperationMode method

bool ACAN2517FD::recoverFromRestrictedOperationMode (void) ;

If the MCP2517FD is in Restricted Operation Mode, this method requests the operation mode defined by the
mRequestedMode property of the ACAN2517FDSettings class instance. This method has no effect is the cur-
rent mode is not the Restricted Operation Mode.

This method returns true if both conditions are met:

• the MCP2517FD is in Restricted Operation Mode;

• the operation mode has been successfully recovered.

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 58

22.4 The performSleepModeToConfigurationMode method

It returns false otherwise.

22.4 The performSleepModeToConfigurationMode method

bool ACAN2517FD::performSleepModeToConfigurationMode (void) ;

If the MCP2517FD is in Sleep Mode, this method requests the transition to the Configuration Mode, and returns
true. The request is performed by resetting the OSCDIS bit of the OSC register.

If the MCP2517FD is not in Sleep Mode, this method has no effect, and returns false.

22.5 The errorCounters method

uint32_t ACAN2517FD::errorCounters (void) ;

This method returns the transmit / receive error count register value, as described in DS20005688B, REGISTER
3‐19 page 41. The CiTREC value is zero when there is no error.

22.6 The diagInfos method

uint32_t ACAN2517FD::diagInfos (const int inIndex = 1) ;

Thanks to Flole998 and turmary. This method returns:

• if inIndex is equal to 0, the C1BDIAG0 register value, as described in DS20005688B, REGISTER 3‐20

page 42;

• if inIndex is not equal to 0, the C1BDIAG1 register value, as described in DS20005688B, REGISTER 3‐21

page 43.

22.7 The end method

bool ACAN2517FD::end (void) ;

This method has not been tested with the ESP32.

This method disables the library and the MCP2517FD chip. It performs:

1. detach interrupt pin (if any);

2. repeatedly requests the configuration mode, and waits for 2 ms until this mode is reached;

3. resets the MCP2517FD;

4. ESP32 only: delete associated task;

5. deallocate buffers.

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 59

Note the SPI is not disabled.

If the MCP2517FD reaches the configuration mode within 2 ms, the end method returns true.

If the MCP2517FD does not reach the configuration mode after 2 ms, the end method returns false.

The LoopBackTestEndFunctionTeensy3x sketch is an example of end method call. Every 1 000 sent mes-
sages, the end method is called, the CAN driver is released, a new one is allocated and configured with the
begin method.

23 The sendfd‐odd and sendfd‐even sketches

I use theses two sketches for testing transmission and reception of CANFD frames. They try to send the
frames as quickly as possible, repeatedly calling the tryToSend function.

They are designed for Teensy 3.5, with the MCP2517FD connected to SPI1. It is easy to adapt them to any other
platform, although it can be tricky for an Arduino Uno which has little RAM and small computation power.

Make a small CANFD network with two boards, one running the sendfd‐odd sketch, the other running the
sendfd‐even sketch. Both display results in the Arduino Serial Monitor, you need two desktop computers.

The sendfd‐odd sketch sends 50,000 CANFD base frames with an odd identifier, and waits for receiving
50,000 frames. Identifier is computed randomly, by ((micros () & 0x7FE) | 1).

The sendfd‐even sketch sends 50,000 CANFD base frames with an even identifier, and waits for receiving
50,000 frames. Identifier is computed randomly, by (micros () & 0x7FE).

In a CANFD network, as in a CAN network, two stations must not transmit frames with the same identifier:
the arbitration does not operate, and a collision occurs when the DLC field or data is transmitted. As an odd
identifier is always different from an even identifier, it is safe to run the two sketches in the same network.

You should adapt the same settings for the two sketches: same arbitration bit rate, same data bit rate factor.

Start the sendfd‐odd sketch first: after initialization, it displays Ready in the Arduino Serial Monitor, meaning
it is waiting for receiving frames.

Then, start the sendfd‐even sketch: it sends frames immediatly; when the sendfd‐odd sketch receives the
first frame, it begins to send frames. Both sides send 50,000 frames. When the sendfd‐odd sketch has sent
and received 50,000 frames, it displays the duration from the reception of the first frame.

Every second, each sketch displays on its Arduino Serial Monitor:

• the sent frame count;

• the received frame count;

• the MCP2517FD error counter (0) if no error;

• the MCP2517FD operation mode (0 in normal mode, 7 if it reaches the Restricted Operation Mode);

• the driver receive buffer peak count;

• the MCP2517FD receive buffer overflow count.

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 60

It is safe to observe that one side is stopping temporarily, while the other sends continously. For example,
consider the case where the sendfd‐odd sketch tries to send a frame with the 0x7FF identifier; any frame
with an even identifier has higher priority, so the sendfd‐even sketch sends all remaining frames before the
sendfd‐odd sketch resumes sending.

ACAN2517FD Arduino library, for MCP2517FD, MCP2518FD and MCP251863 in CANFD mode 61

	Versions
	Features
	MCP2517FD or MCP2518FD?
	Reset
	Clock
	Restricted Operation Mode

	Data flow
	Data flow in default configuration
	Data flow, custom configuration

	A simple example: LoopBackDemo
	The CANFDMessage class
	Properties
	The default constructor
	Constructor from CANMessage
	The type property
	The len property
	The idx property
	The pad method
	The isValid method

	The CANMessage class
	Connecting a MCP2517FD to your microcontroller
	Pullup resistor on nCS pin
	Using alternate pins on Teensy 3.x
	Using alternate pins on an Adafruit Feather M0
	Connecting to an ESP32
	Connecting MCP2517_CS and MCP2517_INT
	Using SPI
	Using HSPI

	Connection with no interrupt pin
	Wiring schemes
	Arduino Uno - MCP2518FDClick

	Clock configuration
	Transmit FIFO
	The driverTransmitBufferSize method
	The driverTransmitBufferCount method
	The driverTransmitBufferPeakCount method

	Transmit Queue (TXQ)
	Receive FIFO
	The hardwareReceiveBufferOverflowCount method
	The resetHardwareReceiveBufferOverflowCount method

	Payload size
	The ACAN2517FDSettings::objectSizeForPayload static method

	RAM usage
	Sending frames: the tryToSend method
	Calling tryToSend with an CANMessage argument
	Usage example

	Retrieving received messages using the receive method
	Driver receive buffer size
	The receiveBufferSize method
	The receiveBufferCount method
	The receiveBufferPeakCount method

	Acceptance filters
	An example
	The appendPassAllFilter method
	The appendFormatFilter method
	The appendFrameFilter method
	The appendFilter method

	The dispatchReceivedMessage method
	The ACAN2517FD::begin method reference
	The prototypes
	Defining explicitly the interrupt service routine
	The error code
	kRequestedConfigurationModeTimeOut
	kReadBackErrorWith1MHzSPIClock
	kTooFarFromDesiredBitRate
	kInconsistentBitRateSettings
	kINTPinIsNotAnInterrupt
	kISRIsNull
	kFilterDefinitionError
	kMoreThan32Filters
	kControllerReceiveFIFOSizeIsZero
	kControllerReceiveFIFOSizeGreaterThan32
	kControllerTransmitFIFOSizeIsZero
	kControllerTransmitFIFOSizeGreaterThan32
	kControllerRamUsageGreaterThan2048
	kControllerTXQPriorityGreaterThan31
	kControllerTransmitFIFOPriorityGreaterThan31
	kControllerTXQSizeGreaterThan32
	kRequestedModeTimeOut
	kX10PLLNotReadyWithin1MS
	kReadBackErrorWithFullSpeedSPIClock
	kISRNotNullAndNoIntPin
	kInvalidTDCO

	ACAN2517FDSettings class reference
	The ACAN2517FDSettings constructor: computation of the CAN bit settings
	The CANBitSettingConsistency method
	The kArbitrationTQCountNotDivisibleByDataBitRateFactor error
	The actualArbitrationBitRate method
	The exactArbitrationBitRate method
	The exactDataBitRate method
	The ppmFromDesiredArbitrationBitRate method
	The ppmFromDesiredDataBitRate method
	The arbitrationSamplePointFromBitStart method
	The dataSamplePointFromBitStart method
	Properties of the ACAN2517FDSettings class
	The mTXCANIsOpenDrain property
	The mINTIsOpenDrain property
	The CLKO/SOF pin
	The mRequestedMode property
	The mISOCRCEnabled property
	The mTDCO property

	Handling GPIO0, GPIO1 and XSTBY
	The gpioSetMode method
	The gpioWrite method
	The gpioRead method
	The configureGPIO0AsXSTBY method

	Other ACAN2517FD methods
	The currentOperationMode method
	The setOperationMode method
	The recoverFromRestrictedOperationMode method
	The performSleepModeToConfigurationMode method
	The errorCounters method
	The diagInfos method
	The end method

	The sendfd-odd and sendfd-even sketches

