
ACAN2517 Arduino library
For the MCP2517FD, MCP2518FD and MCP251863

CANFD Controllers
in CAN 2.0B mode
Version 1.1.15

Pierre Molinaro

January 19, 2025

Contents

1 Versions 3

2 Features 4

3 MCP2517FD or MCP2518FD? 5
3.1 Reset . 5
3.2 Clock . 6
3.3 Restricted Operation Mode . 6

4 Data flow 7
4.1 Data flow in default configuration . 7
4.2 Data flow, custom configuration . 8

5 A simple example: LoopBackDemo 8

6 The CANMessage class 11

7 Connecting a MCP2517FD to your microcontroller 12
7.1 Pullup resistor on nCS pin . 12
7.2 Using alternate pins on Teensy 3.x . 13
7.3 Using alternate pins on an Adafruit Feather M0 . 14
7.4 Connecting to an ESP32 . 15

7.4.1 Connecting MCP2517_CS and MCP2517_INT . 15
7.4.2 Using SPI . 15
7.4.3 Using HSPI . 16

7.5 Connection with no interrupt pin . 16
7.6 Wiring schemes . 17

7.6.1 Arduino Uno - MCP2518FDClick . 17

1

CONTENTS CONTENTS

8 Clock configuration 17

9 Transmit FIFO 19
9.1 The driverTransmitBufferSize method . 20
9.2 The driverTransmitBufferCount method . 20
9.3 The driverTransmitBufferPeakCount method . 20

10 Transmit Queue (TXQ) 20

11 Receive FIFO 21

12 RAM usage 21

13 Sending frames: the tryToSend method 22

14 Retrieving received messages using the receive method 23
14.1 Driver receive buffer size . 24
14.2 The receiveBufferSize method . 24
14.3 The receiveBufferCount method . 25
14.4 The receiveBufferPeakCount method . 25

15 Acceptance filters 25
15.1 An example . 25
15.2 The appendPassAllFilter method . 26
15.3 The appendFormatFilter method . 26
15.4 The appendFrameFilter method . 27
15.5 The appendFilter method . 27

16 The dispatchReceivedMessage method 28

17 The ACAN2517::begin method reference 29
17.1 The prototypes . 29
17.2 Defining explicitly the interrupt service routine . 29
17.3 The error code . 29

17.3.1 kRequestedConfigurationModeTimeOut . 29
17.3.2 kReadBackErrorWith1MHzSPIClock . 30
17.3.3 kTooFarFromDesiredBitRate . 30
17.3.4 kInconsistentBitRateSettings . 30
17.3.5 kINTPinIsNotAnInterrupt . 31
17.3.6 kISRIsNull . 31
17.3.7 kFilterDefinitionError . 31
17.3.8 kMoreThan32Filters . 31
17.3.9 kControllerReceiveFIFOSizeIsZero . 31
17.3.10 kControllerReceiveFIFOSizeGreaterThan32 31
17.3.11 kControllerTransmitFIFOSizeIsZero . 31
17.3.12 kControllerTransmitFIFOSizeGreaterThan32 31
17.3.13 kControllerRamUsageGreaterThan2048 . 31
17.3.14 kControllerTXQPriorityGreaterThan31 . 32
17.3.15 kControllerTransmitFIFOPriorityGreaterThan31 32
17.3.16 kControllerTXQSizeGreaterThan32 . 32

2

1 VERSIONS

17.3.17 kRequestedModeTimeOut . 32
17.3.18 kX10PLLNotReadyWithin1MS . 32
17.3.19 kReadBackErrorWithFullSpeedSPIClock . 32
17.3.20 kISRNotNullAndNoIntPin . 32

18 ACAN2517Settings class reference 33
18.1 The ACAN2517Settings constructor: computation of the CAN bit settings 33
18.2 The CANBitSettingConsistency method . 36
18.3 The actualBitRate method . 36
18.4 The exactBitRate method . 37
18.5 The ppmFromDesiredBitRate method . 37
18.6 The samplePointFromBitStart method . 38
18.7 Properties of the ACAN2517Settings class . 38

18.7.1 The mTXCANIsOpenDrain property . 38
18.7.2 The mINTIsOpenDrain property . 38
18.7.3 The CLKO/SOF pin . 39
18.7.4 The mRequestedMode property . 40

19 Handling GPIO0, GPIO1 and XSTBY 40
19.1 The gpioSetMode method . 40
19.2 The gpioWrite method . 41
19.3 The gpioRead method . 41
19.4 The configureGPIO0AsXSTBY method . 41

20 Other ACAN2517FD methods 42
20.1 The currentOperationMode method . 42
20.2 The recoverFromRestrictedOperationMode method 42
20.3 The errorCounters method . 42
20.4 The diagInfos method . 42

1 Versions

Version Date Comment
1.1.15 January 19, 2025 ESP32 V3.1.1: xTaskCreate priority is set to 16 (thank to

EarlVadim).
1.1.14 March 24, 2024 • CANMessage.h renamed to ACAN2517_CANMessage.h

• ACANBuffer.h renamed to ACAN2517_ACANBuffer.h

1.1.13 August 14, 2023 • Fixed maximum SPI clock frequency to 80 % of master clock
frequency.
• Added handling of GPIO0, GPIO1 and XSTBY, see section 19
page 40.

1.1.12 October 1, 2021 Added data_s64, data_s32, data_s16 and data_s8 to
CANMessage class union members, see section 6 page 11
(thanks to tomtom0707).

1.1.11 April 21, 2021 Added Arduino Uno – MCP2518FDClick wiring scheme (thanks
to soso49).

1.1.10 January 27, 2021 Fixed retransmission attempts setting bug.

3

2 FEATURES

Added NoRetransmissionAttemptsDemoTeensy3x.ino sketch.
1.1.9 January 14, 2021 Release 1.1.8 is broken, does not compile (thanks to W.J.

Loor).
Improved method to read also the BDIAG0_REGISTER diagnostic
register (thanks to turmary), see section 20.4 page 42.

1.1.8 May 31, 2020 Fix retransmission attempts settings (thanks to Flole)
1.1.7 April 27, 2020 Added dataFloat to CANMessage (thanks to Koryphon)
1.1.6 Sept. 19, 2019 Bug fixes.

Added ACAN2517::currentOperationModemethod, see section
20.1 page 42.
Added ACAN2517::recoverFromRestrictedOperationMode

method, see section 20.2 page 42.
Added ACAN2517::errorCounters method, see section 20.3
page 42.

1.1.5 June 2, 2019 Fixed a race condition on ESP32 (thanks to Nick Kirkby).
1.1.4 March 22, 2019 Several speed enhancements (thanks to thomasfla).

Fixed TxQ enable bug (thanks to danielhenz for having fixed
this in ACAN2517FD).
Added demo sketch LoopBackIntensiveTestTeensy3xUsingTxQ.

1.1.3 February 8, 2019 Compatibility for Arduino Uno.
Added demo sketch LoopBackDemoArduinoUno.

1.1.2 February 3, 2019 Added setting mINTIsOpenDrain (section 18.7.2 page 38).
Remove useless mutex (ESP32).

1.1.1 January 31, 2019 New option: no interrupt pin (section 7.5 page 16).
1.1.0 January 27, 2019 First release running on ESP32 (section 7.4 page 15).
1.0.4 January 14, 2019 Fixed mask and acceptance filters for extended messages.

New LoopBackDemoTeensy3xStandardFilterTest.ino sample
code for checking standard reception filters.
New LoopBackDemoTeensy3xExtendedFilterTest.ino sample
code for checking extended reception filters.

1.0.3 January 6, 2019 Fixed identifiers for extended messages.
Updated TestWithACAN.ino sample code for checking extended
message identifiers.
Changed mode names.
MCP2517Filters -> ACAN2517Filters

1.0.2 Nov. 3, 2018 Changed mode names.
1.0.1 October 24, 2018 Corrected typos.
1.0.0 October 23, 2018 Initial release

2 Features

The ACAN2517 library is a MCP2517FD CAN (”Controller Area Network”) Controller driver for any board
running Arduino.

This driver configures the MCP2517FD in CAN 2.0B mode. It does not handle the CANFD capabilities.

4

3 MCP2517FD OR MCP2518FD?

This library is compatible with:

• the ACAN 1.0.6 and above library (https://github.com/pierremolinaro/acan), CAN driver
for FlexCan module embedded in Teensy 3.1 / 3.2, 3.5, 3.6 microcontrollers;

• the ACAN2515 1.0.1 and above library (https://github.com/pierremolinaro/acan2515), CAN
driver for MCP2515 CAN controller;

• the ACAN2517FD library (https://github.com/pierremolinaro/acan2517FD), CAN driver for
the MCP2517FD and MCP2518FD CAN controllers, in CANFD mode.

It has been designed to make it easy to start and to be easily configurable:

• default configuration sends and receives any frame – no default filter to provide;

• efficient built-in CAN bit settings computation from user bit rate;

• user can fully define its own CAN bit setting values;

• all 32 reception filter registers are easily defined;

• reception filters accept call back functions;

• driver and controller transmit buffer sizes are customisable;

• driver and controller receive buffer size is customisable;

• overflow of the driver receive buffer is detectable;

• MCP2517FD internal RAM allocation is customizable and the driver checks no overflow occurs;

• loop back, self reception, listing only MCP2517FD controller modes are selectable.

3 MCP2517FD or MCP2518FD?

In short: I recommend using a MCP2518FD. My opinion is that the MCP2517FD has hardware
bugs.

3.1 Reset

An originality of the MCP2517FD is that it has no reset pin. Resetting the MCP2517FD can only
be done by software, by sending a RESET command through the SPI. But sometimes, for rea-
sons I don’t know, the reset is not done correctly.We can see this because the value returned by
the ACAN2517FD::begin function is not zero (see section 17.3 page 29). Some possible errors
are 0x1 (kRequestedConfigurationModeTimeOut, the MCP2517FD cannot reach the configuration
mode), 0x40000 (kReadBackErrorWithFullSpeedSPIClock, the MCP2517FD RAM cannot be writ-
ten and read back). Typically, this can happen when uploading and starting a new version of the
firmware into the microcontroller. So I recommend to always check the value returned by the
ACAN2517FD::begin function is zero. In such case, you should power off and the power on.

With a MCP2518FD, uploading and starting a new version of the firmware into the microcontroller
always succeeds, but if the previous sketch has provided invalid clock setting, as enabling PLL with
a 40MHz clock.

5

https://github.com/pierremolinaro/acan
https://github.com/pierremolinaro/acan2515
https://github.com/pierremolinaro/acan2517FD

3.2 Clock 3 MCP2517FD OR MCP2518FD?

Note you should also add a pullup resistor on the nCS pin (section 7.1 page 12) with a MCP2517FD, I
don’t think this resistance is necessary with a MCP2518FD.

3.2 Clock

In short: I recommend using an external clock, as an integrated oscillator. Do not use a
crystal oscillator.

Using a crystal oscillator may be tricky: just take a look to section 3.1.1 page 13 of the DS20005678D
document, that gives few guidelines for selecting the correct crystal oscillator or ceramic resonator.
This section gives very precise references for crystal oscillator and associated capacitors. Note also
an Optional Feedback Resistor has been added in the C revision of this document, and the section
3.1.1 has been updated in the C and D revisions.

4MHz crystal oscillator. I have tried a 4MHz crystal oscillator (HC49US-FF3F18-4.0000), with two
22pF capacitors, so the clock setting is ACAN2517FDSettings::OSC_4MHz10xPLL. I noticed that a
MCP2517FD worked well for a data bit rate up to 1Mbps; above 1Mbps, the MCP2517FD often enters in
Restricted Operation Mode, but maybe it’s due to internal bugs (see section 3.3 page 6). A MCP2518FD
works prefectly with this oscillator.

40MHz crystal oscillator. I have also tried a 40MHz crystal oscillator (YIC-HC49US), with the same
two 22pF capacitors, and the ACAN2517FD- Settings::OSC_40MHz setting. Surprisingly, the observed
frequency on the OSC2 pin was… 13.3MHz! Exactly one third of 40MHz. Probably the 22pF capacitors
are not appropriate. The OSC2 pin signal, observed at the oscilloscope, had a very small amplitude:
300mV.

Morality: if you choose a crystal oscillator, always observe the frequency obtained with an
oscilloscope.

4MHz integrated oscillator. I use a 4MHz integrated oscillator (LFSPXO024978BULK, the supply volt-
age of my MCP2517FD is 3.3V), connected to OSC1. OSC2 is left unconnected. The clock setting is
ACAN2517FDSettings::OSC_4MHz10xPLL. I have observed with oscilloscope the OSC1 pin signal, it
has the correct frequency, and the amplitude I expected: 3.3V.

Same behaviour as with the 4MHz crystal oscillator: buggy with a MCP2517FD above 1Mbs, sucess with
a MCP2518FD.

40MHz integrated oscillator. I use a 40MHz integrated oscillator (LFSPXO026068BULK. The clock
setting is ACAN2517FDSettings::OSC_40MHz. I have also observed with oscilloscope the OSC1 pin
signal, it has the correct frequency, and the amplitude I expected: 3.3V.

Same behaviour as with the 4MHz integrated oscillator: buggy with a MCP2517FD above 1Mbs, sucess
with a MCP2518FD.

3.3 Restricted Operation Mode

In CANFD mode (not handled by this library, but the ACAN2517FD CANFD library), and for data bit
rates higher than 1Mbps with a MCP2517FD, I have noticed the error counters may have not zero
values (error counters can be read by the errorCounters method, see section 20.3 page 42), and
the MCP2517FD enters sometimes in Restricted Operation Mode. The modes operation is described
in DS20005678D, figure 2.1 page 9. Restricted Operation Mode is reached from Normal Modes on

6

4 DATA FLOW

System Error, as the driver lets the SERR2LOM bit equal to 0.

System Error is described in section 10.5.6, page 63. The MCP2517FD Data Sheet Errata (DS80000792B)
gives an explanation: The SPI Interface can block the CANFD Controller module from accessing RAM
in between SPI bytes and between the last byte and the rising edge of the nCS line during an SPI
READ or SPI READ CRC instruction while accessing RAM. If the CANFD Controller module is blocked
for more than TSPIMAXDLY, a TX MAB underflow or an RX MAB overflow can occur. Within the CANFD
Control Field, TSPIMAXDLY is 3 NBT + 5 DBT, that is for an 1Mbps arbitration bit rate and a data bit
factor x8 (8Mbps) : 3 · 1µs + 5 · 125ns = 3.625µs. The challenge is to write a driver that checks these
constraints. This is not easy, as transfers are made through transfer and transfer16 SPI Arduino
routines, and their implementation may vary from one platform to another. In the ACAN2517 code, I
have masked interruptions during transfers to minimize the delay between bytes, and to ensure that
the nCS signal becomes inactive (high) as quickly as possible at the end of the transfer. In CAN2.0B,
as bit rate is at most 1 Mbps, TSPIMAXDLY is 8µs. A slow CPU may exceed this limit.

You can check current MCP2517FD operation mode by calling the ACAN2517FD::currentOperationMode
function (section 20.1 page 42. It returns 7 for the Restricted Operation Mode. You can recover
from Restricted Operation Mode by calling the ACAN2517FD::recoverFromRestrictedOperationMode
function (section 20.2 page 42); however, some send or receive data has been lost.

I have never observed that a MCP2518FD enters the Restricted Operation Mode.

4 Data flow

Two figures illustrate message flow for sending and receiving CAN messages: figure 1 is the default
configuration, figure 2 is the customized configuration.

4.1 Data flow in default configuration

The figure 1 illustrates message flow in the default configuration.

Sending messages. The ACAN2517 driver defines a driver transmit FIFO (default size: 16 mes-
sages), and configures the MCP2517FD with a controller transmit FIFO with a size of 32 messages.

A message is defined by an instance of CANMessage class. For sending a message, user code calls
the tryToSend method – see section 13 page 22, and the idx property of the sent message should
be equal to 0 (default value).

Receiving messages. The MCP2517FD CAN Protocol Engine transmits all correct frames to the
reception filters. By default, they are configured as pass-all, see section 15 page 25 for configuring
them. Messages that pass the filters are stored in the Controller Reception FIFO; its size is 32
message by default. The interrupt service routine transfers the messages from this FIFO to the
Driver Receive FIFO. The size of the Driver Receive Buffer is 32 by default – see section 14.1 page
24 for changing the default value. Three user methods are available:

• the available method returns false if the Driver Receive Buffer is empty, and true otherwise;

• the receive method retrieves messages from the Driver Receive Buffer – see section 14 page
23;

7

4.2 Data flow, custom configuration 5 A SIMPLE EXAMPLE: LOOPBACKDEMO

User code

ACAN2517 driver

available

receive

dispatchReceivedMessagetryToSend

MCP2517FD

lost

idx

0
̸= 0

Driver
Transmit FIFO

16

Driver
Reception FIFO

32

CAN Protocol Engine

TXCAN RXCAN

Controller
Transmit FIFO

32

Reception Filters
[Pass all]

Controller
Receive FIFO

32

Figure 1 – Message flow in ACAN2517 driver and MCP2517FD CAN Controller, default configuration

• the dispatchReceivedMessage method if you have defined the reception filters that name a
call-back function – see section 16 page 28.

4.2 Data flow, custom configuration

The figure 2 illustrates message flow in a custom configuration.

Note. The transmit Event FIFO and the transmitEvent function are not currently implemented.

You can allocate the Controller transmit Queue: send order is defined by frame priority (see section
10 page 20). You can also define up to 32 receive filters (see section 15 page 25). Sizes of MCP2517FD
internal buffer are easily customizable.

5 A simple example: LoopBackDemo

The following code is a sample code for introducing the ACAN2517 library, extracted from the LoopBackDemo
sample code included in the library distribution. It runs natively on any Arduino compatible board,
and is easily adaptable to any microcontroller supporting SPI. It demonstrates how to configure the
driver, to send a CAN message, and to receive a CAN message.

8

5 A SIMPLE EXAMPLE: LOOPBACKDEMO

User code

ACAN2517 driver

available

receive

dispatchReceivedMessagetryToSend transmitEvent

MCP2517FD

idx

0 255 Other

LostDriver
Transmit FIFO

Driver
Transmit Event

FIFO

Driver
Reception FIFO

CAN Protocol Engine

TXCAN RXCAN

Controller Transmit
FIFO

Controller Transmit
Queue

Controller Transmit
Event FIFO

Reception Filters

Controller Receive
FIFO

Figure 2 – Message flow in ACAN2517 driver and MCP2517FD CAN Controller, custom configuration

Note: this code runs without any CAN transceiver (the TXCAN and RXCAN pins of the MCP2517FD are
left open), the MCP2517FD is configured in the loop back mode.

#include <ACAN2517.h>

This line includes the ACAN2517 library.

static const byte MCP2517_CS = 20 ; // CS input of MCP2517FD

static const byte MCP2517_INT = 37 ; // INT output of MCP2517FD

Define the pins connected to CS and INT pins.

ACAN2517 can (MCP2517_CS, SPI, MCP2517_INT) ;

Instanciation of the ACAN2517 library, declaration and initialization of the can object that implements
the driver. The constructor names: the number of the pin connected to the CS pin, the SPI object
(you can use SPI1, SPI2, …), the number of the pin connected to the INT pin.

void setup () {

//--- Switch on builtin led

pinMode (LED_BUILTIN, OUTPUT) ;

digitalWrite (LED_BUILTIN, HIGH) ;

//--- Start serial

Serial.begin (38400) ;

//--- Wait for serial (blink led at 10 Hz during waiting)

9

5 A SIMPLE EXAMPLE: LOOPBACKDEMO

while (!Serial) {

delay (50) ;

digitalWrite (LED_BUILTIN, !digitalRead (LED_BUILTIN)) ;

}

Builtin led is used for signaling. It blinks led at 10 Hz during until serial monitor is ready.

SPI.begin () ;

You should call SPI.begin. Many platforms define alternate pins for SPI. On Teensy 3.x (section
7.2 page 13), selecting alternate pins should be done before calling SPI.begin, on Adafruit Feather
M0 (section 7.3 page 14), this should be done after. Calling SPI.begin explicitly allows you to fully
handle alternate pins.

ACAN2517Settings settings (ACAN2517Settings::OSC_4MHz10xPLL, 125 * 1000) ;

Configuration is a four-step operation. This line is the first step. It instanciates the settings object
of the ACAN2517Settings class. The constructor has two parameters: the MCP2517FD quartz speci-
fication, and the desired CAN bit rate (here, 125 kb/s). It returns a settings object fully initialized
with CAN bit settings for the desired bit rate, and default values for other configuration properties.

settings.mRequestedMode = ACAN2517Settings::InternalLoopBack ;

This is the second step. You can override the values of the properties of settings object. Here, the
mRequestedMode property is set to InternalLoopBack – its value is Normal20B by default. Setting
this property enables loop back, that is you can run this demo sketch even it you have no connection
to a physical CAN network. The section 18.7 page 38 lists all properties you can override.

const uint32_t errorCode = can.begin (settings, [] { can.isr () ; }) ;

This is the third step, configuration of the can driver with settings values. The driver is configured
for being able to send any (standard / extended, data / remote) frame, and to receive all (standard
/ extended, data / remote) frames. If you want to define reception filters, see section 15 page 25.
The second argument is the interrupt service routine, and is defined by a C++ lambda expression1.
See section 17.2 page 29 for using a function instead.

if (errorCode != 0) {

Serial.print ("Configuration␣error␣0x") ;

Serial.println (errorCode, HEX) ;

}

}

Last step: the configuration of the can driver returns an error code, stored in the errorCode constant.
It has the value 0 if all is ok – see section 17.3 page 29.

static uint32_t gBlinkLedDate = 0 ;

static uint32_t gReceivedFrameCount = 0 ;

static uint32_t gSentFrameCount = 0 ;

The gSendDate global variable is used for sending a CAN message every 2 s. The gSentCount

global variable counts the number of sent messages. The gReceivedCount global variable counts the
number of received messages.

void loop() {

CANMessage frame ;

1
https://en.cppreference.com/w/cpp/language/lambda

10

https://en.cppreference.com/w/cpp/language/lambda

6 THE CANMESSAGE CLASS

The message object is fully initialized by the default constructor, it represents a standard data frame,
with an identifier equal to 0, and without any data – see section 6 page 11.

if (gBlinkLedDate < millis ()) {

gBlinkLedDate += 2000 ;

digitalWrite (LED_BUILTIN, !digitalRead (LED_BUILTIN)) ;

const bool ok = can.tryToSend (frame) ;

if (ok) {

gSentFrameCount += 1 ;

Serial.print ("Sent:␣") ;

Serial.println (gSentFrameCount) ;

}else{

Serial.println ("Send␣failure") ;

}

}

We try to send the data message. Actually, we try to transfer it into the Driver transmit buffer. The
transfer succeeds if the buffer is not full. The tryToSend method returns false if the buffer is full,
and true otherwise. Note the returned value only tells if the transfer into the Driver transmit buffer
is successful or not: we have no way to know if the frame is actually sent on the the CAN network.
Then, we act the successfull transfer by setting gSendDate to the next send date and incrementing
the gSentCount variable. Note if the transfer did fail, the send date is not changed, so the tryToSend
method will be called on the execution of the loop function.

if (can.available ()) {

can.receive (frame) ;

gReceivedFrameCount ++ ;

Serial.print ("Received:␣") ;

Serial.println (gReceivedFrameCount) ;

}

}

As the MCP2517FD controller is configured in loop back mode, all sent messages are received. The
receive method returns false if no message is available from the driver reception buffer. It returns
true if a message has been successfully removed from the driver reception buffer. This message is
assigned to the message object. If a message has been received, the gReceivedCount is incremented
ans displayed.

6 The CANMessage class

Note. The CANMessage class is declared in the CANMessage.h header file. The class declaration is
protected by an include guard that causes the macro GENERIC_CAN_MESSAGE_DEFINED to be defined.
The ACAN2 (version 1.0.3 and above) driver, the ACAN25153 driver contain an identical CANMessage.h
file header, enabling using ACAN driver, ACAN2515 driver and ACAN2517 driver in a same sketch.

A CANmessage is an object that contains all CAN frame user informations. All properties are initialized
by default, and represent a standard data frame, with an identifier equal to 0, and without any data.

class CANMessage {

public : uint32_t id = 0 ; // Frame identifier

public : bool ext = false ; // false -> standard frame, true -> extended frame

2The ACAN driver is a CAN driver for FlexCAN modules integrated in the Teensy 3.x microcontrollers, https://github.com/
pierremolinaro/acan.

3The ACAN2515 driver is a CAN driver for the MCP2515 CAN controller, https://github.com/pierremolinaro/acan2515.

11

https://github.com/pierremolinaro/acan
https://github.com/pierremolinaro/acan
https://github.com/pierremolinaro/acan2515

7 CONNECTING A MCP2517FD TO YOUR MICROCONTROLLER

public : bool rtr = false ; // false -> data frame, true -> remote frame

public : uint8_t idx = 0 ; // This field is used by the driver

public : uint8_t len = 0 ; // Length of data (0 ... 8)

public : union {

uint64_t data64 ; // Caution: subject to endianness

int64_t data_s64 ; // Caution: subject to endianness

uint32_t data32 [2] ; // Caution: subject to endianness

int32_t data_s32 [2] ; // Caution: subject to endianness

float dataFloat [2] ; // Caution: subject to endianness

uint16_t data16 [4] ; // Caution: subject to endianness

int16_t data_s16 [4] ; // Caution: subject to endianness

int8_t data_s8 [8] ;

uint8_t data [8] = {0, 0, 0, 0, 0, 0, 0, 0} ;

} ;

} ;

Note the message datas are defined by an union. So message datas can be seen as height bytes,
four 16-bit unsigned integers, two 32-bit, one 64-bit or two 32-bit floats. Be aware that multi-byte
integers and floats are subject to endianness (Cortex M4 processors of Teensy 3.x are little-endian).

The idx property is not used in CAN frames, but:

• for a received message, it contains the acceptance filter index (see section 16 page 28);

• on sending messages, it is used for selecting the transmit buffer (see section 13 page 22).

7 Connecting a MCP2517FD to your microcontroller

Connecting a MCP2517FD requires 5 pins (figure 3):

• hardware SPI requires you use dedicaced pins of your microcontroller. You can use alternate
pins (see below), and if your microcontroller supports several hardware SPIs, you can select any
of them;

• connecting the CS signal requires one digital pin, that the driver configures as an OUTPUT ;

• connecting the INT signal requires one other digital pin, that the driver configures with INPUT_PULLUP
and uses as an external interrupt input; so this pin should have interrupt capability (checked by
the begin method of the driver object);

• the INT0 and INT1 signals are not used by driver and are left not connected.

7.1 Pullup resistor on nCS pin

Note the 10 kΩ resistor between nCS and Vcc. I have experienced that this resistor is useful in
the following case: a sketch using the MCP2517FD is running, and I upload a new sketch. During
this process, the microcontroller is reset, leaving its CS pin floating. Without the 10 kΩ resistor, the
nCS level is unpredictable, and if it becomes low, initiates transactions. I think this can crash the
MCP2517FD firmware, and the following reset command sent by the driver not handled. With the
resistor, the nCS level remains high until the driver sets the nCS as output.

12

7.2 Using alternate pins on Teensy 3.x7 CONNECTING A MCP2517FD TO YOUR MICROCONTROLLER

Microcontroller MCP2517FD

nc INT0

nc INT1

INTMCP2517_INT

nCSCS
Vcc 10kΩ

SCKSCK

SDIMOSI

SD0MISO

Figure 3 – MCP2517FD connection to a microcontroller

7.2 Using alternate pins on Teensy 3.x

Demo sketch: LoopBackDemoTeensy3x.

On Teensy 3.x, ”the main SPI pins are enabled by default. SPI pins can be moved to their alternate
position with SPI.setMOSI(pin), SPI.setMISO(pin), and SPI.setSCK(pin). You can move all of
them, or just the ones that conflict, as you prefer.”4

For example, the LoopBackDemoTeensy3x sketch uses SPI1 on a Teensy 3.5 with these alternate
pins5:

Teensy 3.5 MCP2517FD

INTMCP2517_INT

nCSMCP2517_CS
Vcc 10kΩ

SCKSCK1
32

SDIMOSI1
0

SDOMISO1
1

Figure 4 – Using SPI alternate pins on a Teensy 3.5

You call the SPI1.setMOSI, SPI1.setMISO, and SPI1.setSCK functions before calling the begin

function of your ACAN2517 instance:

ACAN2517 can (MCP2517_CS, SPI1, MCP2517_INT) ;

...

static const byte MCP2517_SCK = 32 ; // SCK input of MCP2517

static const byte MCP2517_SDI = 0 ; // SDI input of MCP2517

static const byte MCP2517_SDO = 1 ; // SDO output of MCP2517

...

void setup () {

...

SPI1.setMOSI (MCP2517_SDI) ;

SPI1.setMISO (MCP2517_SDO) ;

SPI1.setSCK (MCP2517_SCK) ;

SPI1.begin () ;

...

const uint32_t errorCode = can.begin (settings, [] { can.isr () ; }) ;

...

4See https://www.pjrc.com/teensy/td_libs_SPI.html
5See https://www.pjrc.com/teensy/pinout.html

13

https://www.pjrc.com/teensy/td_libs_SPI.html
https://www.pjrc.com/teensy/pinout.html

7.3 Using alternate pins on an Adafruit Feather M07 CONNECTING A MCP2517FD TO YOUR MICROCONTROLLER

Note you can use the SPI1.pinIsMOSI, SPI1.pinIsMISO, and SPI1.pinIsSCK functions to check if
the alternate pins you select are valid:

void setup () {

...

Serial.print ("Using␣pin␣#") ;

Serial.print (MCP2517_SDI) ;

Serial.print ("␣for␣MOSI:␣") ;

Serial.println (SPI1.pinIsMOSI (MCP2517_SDI) ? "yes" : "NO!!!") ;

Serial.print ("Using␣pin␣#") ;

Serial.print (MCP2517_SDO) ;

Serial.print ("␣for␣MISO:␣") ;

Serial.println (SPI1.pinIsMISO (MCP2517_SDO) ? "yes" : "NO!!!") ;

Serial.print ("Using␣pin␣#") ;

Serial.print (MCP2517_SCK) ;

Serial.print ("␣for␣SCK:␣") ;

Serial.println (SPI1.pinIsSCK (MCP2517_SCK) ? "yes" : "NO!!!") ;

SPI1.setMOSI (MCP2517_SDI) ;

SPI1.setMISO (MCP2517_SDO) ;

SPI1.setSCK (MCP2517_SCK) ;

SPI1.begin () ;

...

const uint32_t errorCode = can.begin (settings, [] { can.isr () ; }) ;

...

7.3 Using alternate pins on an Adafruit Feather M0

Demo sketch: LoopBackDemoAdafruitFeatherM0.

See https://learn.adafruit.com/using-atsamd21-sercom-to-add-more-spi-i2c-serial-ports/
overview document that explains in details how configure and set alternate SPI pins on Adafruit
Feather M0.

For example, the LoopBackDemoAdafruitFeatherM0 sketch uses SERCOM1 on an Adafruit Feather M0
as illustrated in figure 5.

Adafruit Feather M0 MCP2517FD

INTMCP2517_INT
5

nCSMCP2517_CS
6 Vcc 10kΩ

SCKSCK
12

SDIMOSI
11

SDOMISO
10

Figure 5 – Using SPI alternate pins on an Adafruit Feather M0

The configuration code is the following. Note you should call the pinPeripheral function after calling
the mySPI.begin function.

#include <wiring_private.h>

...

static const byte MCP2517_SCK = 12 ; // SCK pin, SCK input of MCP2517FD

static const byte MCP2517_SDI = 11 ; // MOSI pin, SDI input of MCP2517FD

static const byte MCP2517_SDO = 10 ; // MISO pin, SDO output of MCP2517FD

SPIClass mySPI (&sercom1,

14

https://learn.adafruit.com/using-atsamd21-sercom-to-add-more-spi-i2c-serial-ports/overview
https://learn.adafruit.com/using-atsamd21-sercom-to-add-more-spi-i2c-serial-ports/overview

7.4 Connecting to an ESP32 7 CONNECTING A MCP2517FD TO YOUR MICROCONTROLLER

MCP2517_SDO, MCP2517_SDI, MCP2517_SCK,

SPI_PAD_0_SCK_3, SERCOM_RX_PAD_2);

static const byte MCP2517_CS = 6 ; // CS input of MCP2517FD

static const byte MCP2517_INT = 5 ; // INT output of MCP2517FD

...

ACAN2517 can (MCP2517_CS, mySPI, MCP2517_INT) ;

...

void setup () {

...

mySPI.begin () ;

pinPeripheral (MCP2517_SDI, PIO_SERCOM);

pinPeripheral (MCP2517_SCK, PIO_SERCOM);

pinPeripheral (MCP2517_SDO, PIO_SERCOM);

...

const uint32_t errorCode = can.begin (settings, [] { can.isr () ; }) ;

...

7.4 Connecting to an ESP32

Demo sketches: LoopBackDemoESP32 and LoopBackESP32-intensive. See also the ESP32 demo
sketch SPI_Multiple_Busses.

Link: https://randomnerdtutorials.com/esp32-pinout-reference-gpios/

Two ESP32 SPI busses are available in Arduino, HSPI and VSPI. By default, Arduino SPI is VSPI. The
ESP32 default pins are given in table 2.

Port SCK MOSI MISO
VSPI IO18 IO23 IO19

HSPI IO14 IO13 IO12

Table 2 – ESP32 SPI default pins

7.4.1 Connecting MCP2517_CS and MCP2517_INT

For MCP2517_CS, you can use any port that can be configured as digital output. ACAN2517 does not
support hardware chip select. For MCP2517_INT, you can use any port that can be configured as
digital input, as ESP32 provides interrupt capability on any input pin.

Note. IO34 to IO39 are input only pins, without internal pullup or pulldown. So you cannot use theses
pins for MCP2517_CS. If you use one of theses pins for MCP2517_INT, you should add an external pullup
resistor if you configure the INT pin as Open Drain (section 18.7.2 page 38).

7.4.2 Using SPI

Default SPI (i.e. VSPI) pins are: SCK=18, MISO=19, MOSI=23 (figure 6).

You can change the default pins with additional arguments (up to three) for SPI.begin :

SPI.begin (SCK_PIN) ; // Uses MISO and MOSI default pins

or

15

https://randomnerdtutorials.com/esp32-pinout-reference-gpios/

7.5 Connection with no interrupt pin 7 CONNECTING A MCP2517FD TO YOUR MICROCONTROLLER

ESP32 MCP2517FD

INTMCP2517_INT
Vcc10kΩ

nCSMCP2517_CS
Vcc 10kΩ

SCKSCK
18

SDIMOSI
23

SDOMISO
19

Figure 6 – Using VSPI default pins on an ESP32

SPI.begin (SCK_PIN, MISO_PIN) ; // Uses MOSI default pin

or

SPI.begin (SCK_PIN, MISO_PIN, MOSI_PIN) ;

Note that SPI.begin accepts a fourth argument, for CS pin. Do not use this feature with ACAN2517.

7.4.3 Using HSPI

The ESP32 demo sketch SPI_Multiple_Busses shows how to use both HSPI and VSPI. However for
ACAN2517, we proceed in a slightly different way:

#include <SPI.h>

....

SPIClass hspi (HSPI) ;

ACAN2517 can (MCP2517_CS, hspi, MCP2517_INT) ;

....

void setup () {

....

hspi.begin () ; // You can also add parameters for not using default pins

....

}

You declare the hspi object before declaring the can object. You can change the hspi name, the
important point is the HSPI argument that specifies the HSPI bus. Then, instead of using the SPI

name, you use the hspi name in:

• can object declaration;

• in begin SPI instruction.

See the LoopBackESP32-intensive sketch for an example with VSPI.

7.5 Connection with no interrupt pin

See the LoopBackDemoTeensy3xNoInt and LoopBackDemoESP32NoInt sketches.

Note that not using an interruption is only valid if the message throughput is not too high.
Received messages are recovered by polling, so the risk of MCP2517FD internal buffers
overflowing is greater.

For not using the interrupt signal, you should adapt your sketch as following:

16

7.6 Wiring schemes 8 CLOCK CONFIGURATION

MCP2517FD

INTnc

nCSMCP2517_CS
Vcc 10kΩ

SCKSCK

SDIMOSI

SDOMISO

Figure 7 – Connection with no interrupt pin

1. the last argument of can constructor should be 255, meaning no interrupt pin;

2. the second argument of can.begin should be NULL (no interrupt service routine);

3. in the loop function, you should call can.poll as often as possible.

ACAN2517 can (MCP2517_CS, SPI, 255) ; // Last argument is 255 -> no interrupt pin

void setup () {

...

const uint32_t errorCode = can.begin (settings, NULL) ; // ISR is null

...

}

void loop () {

can.poll () ;

...

}

7.6 Wiring schemes

Here I list wiring schemes sent by users. If you want to see your wiring scheme here, send it to me.
I will publish it in the next release of the library.

7.6.1 Arduino Uno - MCP2518FDClick

Thanks to soso49 for this wiring scheme (figure 8).

8 Clock configuration

The MCP251xFD Oscillator Block Diagram is given in figure 9. Microchip recommends using a 4, 40 or
20 MHz CLKIN, Crystal or Ceramic Resonator. A PLL can be enabled to multiply a 4 MHz clock by 10
by setting the PLLEN bit. Setting the SCLKDIV bit divides the SYSCLK by 2.6

The ACAN2517Settings class defines an enumerated type for specifying your settings:

class ACAN2517Settings {

public: typedef enum {

OSC_4MHz,

OSC_4MHz_DIVIDED_BY_2,

6DS20005678B, page 13.

17

8 CLOCK CONFIGURATION

Figure 8 – Connecting an Arduino Uno with a MCP2518FDClick board

¤ 2017-2018 Microchip Technology Inc. DS20005678B-page 13

CAN FD Controller Module

3.0 CONFIGURATION
The MCP25xxFD should be reset and must be in Configuration mode before starting
configuration. The oscillator, FIFOs and bit time can only be configured in Configuration mode.
This prevents the device from accidentally disturbing the CAN bus.

3.1 Oscillator Configuration
Figure 3-1 shows the block diagram of the oscillator. The oscillator generates the SYSCLK that
is used by the CAN FD Controller Module. CAN FD requires that the sample point in every node
is setup identically. Therefore, a 40 MHz or 20 MHz SYSCLK is recommended. The oscillator
uses a crystal or ceramic resonator, or an external clock as the clock reference.

The OSC register is used to configure the oscillator. A PLL can be enabled to multiply a 4 MHz
clock by 10 by setting the PLLEN bit. Setting the SCLKDIV bit divides the SYSCLK by 2. The
clock is available on the CLKO pin and can be divided using the CLKODIV bits.

The oscillator will be disabled after requesting Sleep mode. OSCDIS can only be cleared by the
application. It will be set automatically after the module enters Sleep mode. Reading
OSCDIS = ‘1’ indicates that the module has entered Sleep mode.

3.1.1 CRYSTAL/RESONATOR SELECTION
Selecting the correct crystal oscillator or ceramic resonator components depends on multiple
factors that are application dependent. Please review section 6.7 of the “PIC32 Family Reference
Manual (DS611112)” and refer to the application notes listed in Section 13.0 “Related
Documents”.

The following crystals, together with 18 pF load capacitors, were successfully used in one of our
evaluation boards: ABM8G-40.000MHZ-18-D2Y-T and ABM8G-20.000MHZ-18-D2Y-T.

Figure 3-1: MCP251xFD Oscillator Block Diagram

3.2 Input/Output Pin Configuration
The IOCON register configures the I/O of the MCP25xxFD. The INT0/GPIO0/XSTBY and INT1/
GPIO1 pins can be configured as interrupt pins or as GPIO pins using the PM0 and PM1 bits. In
case the pins are configured as GPIO pins the direction of the pin is selected using the TRIS0
and TRIS1 bits.

INT, INT0 and INT1 (when configured as interrupts) can be configured as push/pull or open drain
outputs using the INTOD bit. The TXCAN pin can also be configured as open drain by setting the
TXCANOD bit.

Setting the XSTBYEN bit configures the INT0/GPIO0/XSTBY pin to automatically control the
stand-by pin of an external CAN transceiver. The pin is driven high when the MCP25xxFD enters
Sleep mode, and driven low when it exits Sleep mode. Stand-by pin control is not available in
LPM. IOCON is reset in LPM and GPIO0 will be configured as an input.

OSC1

OSC2

4, 40 or 20 MHz
CLKIN,

Crystal or
Ceramic Res.

40/20 MHz

PLLEN

OSCDIS

Divide
By 1, 2

SCLKDIV

SYSCLK

Divide
By 1, 2, 4, 10

CLKO

CLKODIV

PLL
x10

Figure 9 – MCP251xFD Oscillator Block Diagram (DS20005678B, figure 3.1 page 13)

OSC_4MHz10xPLL,

OSC_4MHz10xPLL_DIVIDED_BY_2,

OSC_20MHz,

OSC_20MHz_DIVIDED_BY_2,

OSC_40MHz,

OSC_40MHz_DIVIDED_BY_2

} Oscillator ;

...

} ;

The first argument of the ACAN2517Settings constructor specifies the oscillator. For example, with
a 4 MHz clock, the following settings lead to a 40 MHz SYSCLK, and a 1 MHz bit rate:

ACAN2517Settings settings2517 (ACAN2517Settings::OSC_4MHz10xPLL, 1000 * 1000) ;

The eight clock settings are given in the table 3. Note Microchip recommends a 40 MHz or 20 MHz
SYSCLK. The ACAN2517Settings class has two accessors that return current settings: oscillator()
and sysClock().

18

9 TRANSMIT FIFO

Quartz Oscillator parameter SYSCLK
4 MHz OSC_4MHz 4 MHz
4 MHz OSC_4MHz_DIVIDE_BY_2 2 MHz
4 MHz OSC_4MHz10xPLL 40 MHz
4 MHz OSC_4MHz10xPLL_DIVIDE_BY_2 20 MHz
20 MHz OSC_20MHz 20 MHz
20 MHz OSC_20MHz_DIVIDE_BY_2 10 MHz
40 MHz OSC_40MHz 40 MHz
40 MHz OSC_40MHz_DIVIDE_BY_2 20 MHz

Table 3 – The ACAN2517 oscillator selection

The begin function of ACAN2517 library first configures the selected SPI with a frequency of 1 Mbit/s,
for resetting the MCP2517FD and programming the PLLEN and SCLKDIV bits. Then SPI clock is set to
a frequency equal to SYSCLK / 2, the maximum allowed frequency. More precisely, the SPI library
of your microcontroller may adopt a lower frequency; for example, the maximum frequency of the
Arduino Uno SPI is 8 Mbit/s.

Note that an incorrect setting may crash the MCP2517FD firmware (for example, enabling the PLL with
a 20 MHz or 40 MHz quartz). In such case, no SPI communication can then be established, and in
particular, the MCP2517FD cannot be reset by software. As the MCP2517FD has no RESET pin, the only
way is to power off and power on the MCP2517FD.

9 Transmit FIFO

The transmit FIFO (see figure 1 page 8) is composed by:

• the driver transmit FIFO, whose size is positive or zero (default 16); you can change the default
size by setting the mDriverTransmitFIFOSize property of your settings object;

• the controller transmit FIFO, whose size is between 1 and 32 (default 32); you can change the
default size by setting the mControllerTransmitFIFOSize property of your settings object.

Having a driver transmit FIFO of zero size is valid; in this case, the FIFO must be considered both
empty and full.

For sending a message throught the Transmit FIFO, call the tryToSendmethod with a message whose
idx property is zero:

• if the controller transmit FIFO is not full, the message is appended to it, and tryToSend returns
true;

• otherwise, if the driver transmit FIFO is not full, the message is appended to it, and tryToSend

returns true; the interrupt service routine will transfer messages from driver transmit FIFO to
the controller transmit FIFO when it becomes not full;

• otherwise, both FIFOs are full, the message is not stored and tryToSend returns false.

The transmit FIFO ensures sequentiality of emissions.

There are two other parameters you can override:

19

9.1 The driverTransmitBufferSize method 10 TRANSMIT QUEUE (TXQ)

• inSettings.mControllerTransmitFIFORetransmissionAttempts is the number of retransmis-
sion attempts; by default, it is set to UnlimitedNumber; other values are Disabled and ThreeAttempts;

• inSettings.mControllerTransmitFIFOPriority is the priority of the transmit FIFO: between
0 (lowest priority) and 31 (highest priority); default value is 0.

The controller transmit FIFO is located in the MCP2517FD RAM. It requires 16 bytes for each message
(see section 12 page 21).

9.1 The driverTransmitBufferSize method

The driverTransmitBufferSize method returns the allocated size of this driver transmit buffer, that
is the value of settings.mDriverTransmitBufferSize when the begin method is called.

const uint32_t s = can.driverTransmitBufferSize () ;

9.2 The driverTransmitBufferCount method

The driverTransmitBufferCount method returns the current number of messages in the driver
transmit buffer.

const uint32_t n = can.driverTransmitBufferCount () ;

9.3 The driverTransmitBufferPeakCount method

The driverTransmitBufferPeakCountmethod returns the peak value of message count in the driver
transmit buffer

const uint32_t max = can.driverTransmitBufferPeakCount () ;

If the transmit buffer is full when tryToSend is called, the return value of this call is false. In such
case, the following calls of driverTransmitBufferPeakCount()will return driverTransmitBufferSize
()+1.

So, when driverTransmitBufferPeakCount() returns a value lower or equal to transmitBufferSize
(), it means that calls to tryToSend have always returned true, and no overflow occurs on driver
transmit buffer.

10 Transmit Queue (TXQ)

The Transmit Queue is handled by the MCP2517FD, its contents is located in its RAM. It is not a FIFO.
Messages inside the TXQ will be transmitted based on their ID. The message with the highest priority
ID, lowest ID value will be transmitted first7.

By default, the transmit queue is disabled (its default size is 0); you can change the default size by
setting the mControllerTXQSize property of your settings object. The maximum valid size is 32.

For sending a message throught the transmit queue, call the tryToSend method with a message
whose idx property is 255:

7DS20005678B, section 4.5, page 28.

20

12 RAM USAGE

• if the transmit queue size is not zero and if it is not full, the message is appended to it, and
tryToSend returns true;

• otherwise, the message is not stored and tryToSend returns false.

There are two other parameters you can override:

• inSettings.mControllerTXQBufferRetransmissionAttempts is the number of retransmission
attempts; by default, it is set to UnlimitedNumber; other values are Disabled and ThreeAttempts;

• inSettings.mControllerTXQBufferPriority is the priority of the TXQ buffer: between 0 (low-
est priority) and 31 (highest priority); default value is 31.

The transmit queue is located in the MCP2517FD RAM. It requires 16 bytes for each message (see
section 12 page 21).

11 Receive FIFO

The receive FIFO (see figure 1 page 8) is composed by:

• the driver receive FIFO, whose size is positive (default 32); you can change the default size by
setting the mDriverReceiveFIFOSize property of your settings object;

• the controller receive FIFO, whose size is between 1 and 32 (default 32); you can change the
default size by setting the mControllerReceiveFIFOSize property of your settings object.

When an incoming message is accepted by a receive filter:

• if the controller receive FIFO is full, the message is lost;

• otherwise, it is stored in the controller receive FIFO.

Then, if the driver receive FIFO is not full, the message is transferred by the interrupt service routine
from controller receive FIFO to the driver receive FIFO. So the driver receive FIFO never overflows,
but controller receive FIFO may.

The ACAN2517::available, ACAN2517::receive and ACAN2517::dispatchReceivedMessage meth-
ods work only with the driver receive FIFO. As soon as it becomes not full, messages from controller
receive FIFO are transferred by the interrupt service routine.

The receive FIFO ensures sequentiality of reception.

The controller receive FIFO is located in the MCP2517FD RAM. It requires 16 bytes for each message
(see next section).

12 RAM usage

The MCP2517FD contains a 2048 bytes RAM that is used to store message objects8. There are three
different kinds of message objects:

8DS20005688B, section 3.3, page 63.

21

13 SENDING FRAMES: THE TRYTOSEND METHOD

• Transmit Message Objects used by the TXQ buffer;

• Transmit Message Objects used by the transmit FIFO;

• Receive Message Objects used by the receive FIFO.

Every message object is 16 bytes9, so you can use up to 128 message objects.

By default, the transmit FIFO is 32 message deep (512 bytes), the TXQ buffer is disabled (0 byte),
and the receive FIFO is 32 message deep (512 bytes), given a total amount of 1024 bytes.

The ACAN2517Settings::ramUsage method computes the required memory amount:

uint32_t ACAN2517Settings::ramUsage (void) const {

uint32_t result = 0 ;

//--- TXQ

result += 16 * mControllerTXQSize ;

//--- Receive FIFO (FIFO #1)

result += 16 * mControllerReceiveFIFOSize ;

//--- Send FIFO (FIFO #2)

result += 16 * mControllerTransmitFIFOSize ;

//---

return result ;

}

The ACAN2517:beginmethod checks the required memory amount is lower or equal than 2048 bytes.
Otherwise, it raises the error code kControllerRamUsageGreaterThan2048.

You can also use the MCP2517FD RAM Usage Calculations Excel sheet from Microchip10.

13 Sending frames: the tryToSend method

...

CANMessage message ;

// Setup message

const bool ok = can.tryToSend (message) ;

...

You call the tryToSend method for sending a message in the CAN network. Note this function returns
before the message is actually sent; this function only appends the message to a transmit buffer.

The idx field of the message specifies the transmit buffer:

• 0 for the transmit FIFO (section 9 page 19) ;

• 255 for the transmit Queue (section 10 page 20).

The method tryToSend returns:

• true if the message has been successfully transmitted to the transmit buffer; note that does
not mean that the CAN frame has been actually sent;

• false if the message has not been successfully transmitted to the transmit buffer, it was full.
916 bytes because the MCP2517FD is in the CAN 2.0B mode, otherwise a CANFD message object can require up to 72 bytes.
10
http://ww1.microchip.com/downloads/en/DeviceDoc/MCP2517FD%20RAM%20Usage%20Calculations%20-%20UG.xlsx

22

http://ww1.microchip.com/downloads/en/DeviceDoc/MCP2517FD%20RAM%20Usage%20Calculations%20-%20UG.xlsx

14 RETRIEVING RECEIVED MESSAGES USING THE RECEIVE METHOD

So it is wise to systematically test the returned value.

A way is to use a global variable to note if the message has been successfully transmitted to driver
transmit buffer. For example, for sending a message every 2 seconds:

static uint32_t gSendDate = 0 ;

void loop () {

if (gSendDate < millis ()) {

CANMessage message ;

// Initialize message properties

const bool ok = can.tryToSend (message) ;

if (ok) {

gSendDate += 2000 ;

}

}

}

An other hint to use a global boolean variable as a flag that remains true while the message has not
been sent.

static bool gSendMessage = false ;

void loop () {

...

if (frame_should_be_sent) {

gSendMessage = true ;

}

...

if (gSendMessage) {

CANMessage message ;

// Initialize message properties

const bool ok = can.tryToSend (message) ;

if (ok) {

gSendMessage = false ;

}

}

...

}

14 Retrieving received messages using the receive method

There are two ways for retrieving received messages :

• using the receive method, as explained in this section;

• using the dispatchReceivedMessage method (see section 16 page 28).

This is a basic example:

void loop () {

CANMessage message ;

if (can.receive (message)) {

// Handle received message

}

...

}

23

14.1 Driver receive buffer size14 RETRIEVING RECEIVED MESSAGES USING THE RECEIVE METHOD

The receive method:

• returns false if the driver receive buffer is empty, message argument is not modified;

• returns true if a message has been has been removed from the driver receive buffer, and the
message argument is assigned.

You need to manually dispatch the received messages. If you did not provide any receive filter, you
should check the rtr bit (remote or data frame?), the ext bit (standard or extended frame), and the
id (identifier value). The following snippet dispatches three messages:

void loop () {

CANMessage message ;

if (can.receive (message)) {

if (!message.rtr && message.ext && (message.id == 0x123456)) {

handle_myMessage_0 (message) ; // Extended data frame, id is 0x123456

}else if (!message.rtr && !message.ext && (message.id == 0x234)) {

handle_myMessage_1 (message) ; // Standard data frame, id is 0x234

}else if (message.rtr && !message.ext && (message.id == 0x542)) {

handle_myMessage_2 (message) ; // Standard remote frame, id is 0x542

}

}

...

}

The handle_myMessage_0 function has the following header:

void handle_myMessage_0 (const CANMessage & inMessage) {

...

}

So are the header of the handle_myMessage_1 and the handle_myMessage_2 functions.

14.1 Driver receive buffer size

By default, the driver receive buffer size is 32. You can change it by setting the mReceiveBufferSize
property of settings variable before calling the begin method:

ACAN2517Settings settings (ACAN2517Settings::OSC_4MHz10xPLL, 125 * 1000) ;

settings.mReceiveBufferSize = 100 ;

const uint32_t errorCode = can.begin (settings, [] { can.isr () ; }) ;

...

As the size of CANMessage class is 16 bytes, the actual size of the driver receive buffer is the value
of settings.mReceiveBufferSize * 16.

14.2 The receiveBufferSize method

The receiveBufferSize method returns the size of the driver receive buffer, that is the value of the
mReceiveBufferSize property of settings variable when the the begin method is called.

const uint32_t s = can.receiveBufferSize () ;

24

14.3 The receiveBufferCount method 15 ACCEPTANCE FILTERS

14.3 The receiveBufferCount method

The receiveBufferCount method returns the current number of messages in the driver receive
buffer.

const uint32_t n = can.receiveBufferCount () ;

14.4 The receiveBufferPeakCount method

The receiveBufferPeakCount method returns the peak value of message count in the driver receive
buffer.

const uint32_t max = can.receiveBufferPeakCount () ;

Note the driver receive buffer can overflow, if messages are not retrieved (by calling the receive or
the dispatchReceivedMessagemethods). If an overflow occurs, further calls of can.receiveBufferPeakCount
() return can.receiveBufferSize ()+1.

15 Acceptance filters

Note. The acceptance filters ACAN2517FD library, that handles a MCP2517FD CAN Controller in the
CANFD mode11, are almost identical, they differ only from the prototype of the callback routine.

If you invoke the ACAN2517.begin method with two arguments, it configures the MCP2517FD for
receiving all messages.

const uint32_t errorCode = can.begin (settings, [] { can.isr () ; }) ;

If you want to define receive filters, you have to set up an ACAN2517Filters instance object, and
pass it as third argument of the ACAN2517.begin method:

ACAN2517Filters filters ;

... // Append filters

const uint32_t errorCode = can.begin (settings, [] { can.isr () ; }, filters) ;

...

15.1 An example

Sample sketch: the LoopBackDemoTeensy3xWithFilters sketch is an example of filter definition.

ACAN2517Filters filters ;

First, you instanciate an ACAN2517Filters object. It represents an empty list of filters. So, if you
do not append any filter, can.begin (settings, [] { can.isr () ; }, filters) configures the
controller in such a way that no messages can be received.

// Filter #0: receive standard frame with identifier 0x123

filters.appendFrameFilter (kStandard, 0x123, receiveFromFilter0) ;

// Filter #1: receive extended frame with identifier 0x12345678

filters.appendFrameFilter (kExtended, 0x12345678, receiveFromFilter1) ;

11
https://github.com/pierremolinaro/acan2517FD

25

https://github.com/pierremolinaro/acan2517FD

15.2 The appendPassAllFilter method 15 ACCEPTANCE FILTERS

You define the filters sequentially, with the four methods: appendPassAllFilter, appendFormatFilter,
appendFrameFilter, appendFilter. Theses methods have as last argument an optional callback
routine, that is called by the dispatchReceivedMessage method (see section 16 page 28).

The appendFrameFilter defines a filter that matches for an extended or standard identifier of a given
value.

You can define up to 32 filters. Filter definition registers are outside the MCP2517FD RAM, so defining
filter does not restrict the receive and transmit buffer sizes. Note that MCP2517FD filter does not allow
to establish a filter based on the data / remote information.

// Filter #2: receive standard frame with identifier 0x3n4 (0 <= n <= 15)

filters.appendFilter (kStandard, 0x70F, 0x304, receiveFromFilter2) ;

The appendFilter defines a filter that matches for an identifier that matches the condition:

identifier & 0x70F == 0x304

The kStandard argument constraints to accept only standard frames. So the accepted standard
identifiers are 0x304, 0x314, 0x324, ..., 0x3E4, 0x3F4.

//----------------------------------- Filters ok ?

if (filters.filterStatus () != ACAN2517Filters::kFiltersOk) {

Serial.print ("Error␣filter␣") ;

Serial.print (filters.filterErrorIndex ()) ;

Serial.print (":␣") ;

Serial.println (filters.filterStatus ()) ;

}

Filter definitions can have error(s), you can check error kind with the filterStatus method. If it
returns a value different than ACAN2517Filters::kFiltersOk, there is at least one error: only the
last one is reported, and the filterErrorIndex returns the corresponding filter index. Note this
does not check the number of filters is lower or equal than 32.

const uint32_t errorCode = can.begin (settings, [] { can.isr () ; }, filters) ;

The begin method checks the filter definition:

• it raises the kMoreThan32Filters error if more than 32 filters are defined;

• it raises the kFilterDefinitionError error if one or more filter definitions are erroneous (that
is if filterStatus returns a value different than ACAN2517Filters::kFiltersOk).

15.2 The appendPassAllFilter method

void ACAN2517Filters::appendPassAllFilter (const ACANCallBackRoutine inCallBackRoutine) ;

This defines a filter that accepts all (standard / extended, remote / data) frames.

If used, this filter must be the last one: as the MCP2517FD tests the filters sequentially, the following
filters will never match.

15.3 The appendFormatFilter method

26

15.4 The appendFrameFilter method 15 ACCEPTANCE FILTERS

void ACAN2517Filters::appendFormatFilter (const tFrameFormat inFormat,

const ACANCallBackRoutine inCallBackRoutine) ;

This defines a filter that accepts:

• if inFormat is equal to kStandard, all standard remote frames and all standard data frames;

• if inFormat is equal to kExtended, all extended remote frames and all extended data frames.

15.4 The appendFrameFilter method

void ACAN2517Filters::appendFrameFilter (const tFrameFormat inFormat,

const uint32_t inIdentifier,

const ACANCallBackRoutine inCallBackRoutine) ;

This defines a filter that accepts:

• if inFormat is equal to kStandard, all standard remote frames and all standard data frames
with a given identifier;

• if inFormat is equal to kExtended, all extended remote frames and all extended data frames
with a given identifier.

If inFormat is equal to kStandard, the inIdentifier should be lower or equal to 0x7FF. Otherwise,
settings.filterStatus () returns the kStandardIdentifierTooLarge error.

If inFormat is equal to kExtended, the inIdentifier should be lower or equal to 0x1FFFFFFF.
Otherwise, settings.filterStatus () returns the kExtendedIdentifierTooLarge error.

15.5 The appendFilter method

void ACAN2517Filters::appendFilter (const tFrameFormat inFormat,

const uint32_t inMask,

const uint32_t inAcceptance,

const ACANCallBackRoutine inCallBackRoutine) ;

The inMask and inAcceptance arguments defines a filter that accepts frame whose identifier verifies:

identifier & inMask == inAcceptance

The inFormat filters standard (if inFormat is equal to kStandard) frames, or extended ones (if
inFormat is equal to kExtended).

Note that inMask and inAcceptance arguments should verify:

inAcceptance & inMask == inAcceptance

Otherwise, settings.filterStatus () returns the kInconsistencyBetweenMaskAndAcceptance er-
ror.

If inFormat is equal to kStandard:

27

16 THE DISPATCHRECEIVEDMESSAGE METHOD

• the inAcceptance should be lower or equal to 0x7FF; Otherwise, settings.filterStatus ()

returns the kStandardAcceptanceTooLarge error;

• the inMask should be lower or equal to 0x7FF; Otherwise, settings.filterStatus () returns
the kStandardMaskTooLarge error.

If inFormat is equal to kExtended:

• the inAcceptance should be lower or equal to 0x1FFFFFFF; Otherwise, settings.filterStatus
() returns the kExtendedAcceptanceTooLarge error;

• the inMask should be lower or equal to 0x1FFFFFFF; Otherwise, settings.filterStatus ()

returns the kExtendedMaskTooLarge error.

16 The dispatchReceivedMessage method

Sample sketch: the LoopBackDemoTeensy3xWithFilters shows how using the dispatchReceivedMessage
method.

Instead of calling the receive method, call the dispatchReceivedMessage method in your loop
function. It calls the call back function associated with the matching filter.

If you have not defined any filter, do not use this function, call the receive method.

void loop () {

can.dispatchReceivedMessage () ; // Do not use can.receive any more

...

}

The dispatchReceivedMessage method handles one message at a time. More precisely:

• if it returns false, the driver receive buffer was empty;

• if it returns true, the driver receive buffer was not empty, one message has been removed and
dispatched.

So, the return value can used for emptying and dispatching all received messages:

void loop () {

while (can.dispatchReceivedMessage ()) {

}

...

}

If a filter definition does not name a call back function, the corresponding messages are lost.

The dispatchReceivedMessage method has an optional argument – NULL by default: a function
name. This function is called for every message that pass the receive filters, with an argument equal
to the matching filter index:

void filterMatchFunction (const uint32_t inFilterIndex) {

...

}

void loop () {

28

17 THE ACAN2517::BEGIN METHOD REFERENCE

can.dispatchReceivedMessage (filterMatchFunction) ;

...

}

You can use this function for maintaining statistics about receiver filter matches.

17 The ACAN2517::begin method reference

17.1 The prototypes

uint32_t ACAN2517::begin (const ACAN2517Settings & inSettings,

void (* inInterruptServiceRoutine) (void)) ;

This prototype has two arguments, a ACAN2517Settings instance that defines the settings, and the
interrupt service routine, that can be specified by a lambda expression or a function (see section 17.2
page 29). It configures the controller in such a way that all messages are received (pass-all filter).

uint32_t ACAN2517::begin (const ACAN2517Settings & inSettings,

void (* inInterruptServiceRoutine) (void),

const ACAN2517Filters & inFilters) ;

The second prototype has a third argument, an instance of ACAN2517Filters class that defines the
receive filters.

17.2 Defining explicitly the interrupt service routine

In this document, the interrupt service routine is defined by a lambda expression:

const uint32_t errorCode = can.begin (settings, [] { can.isr () ; }) ;

Instead of a lambda expression, you are free to define the interrupt service routine as a function:

void canISR () {

can.isr () ;

}

And you pass canISR as argument to the begin method:

const uint32_t errorCode = can.begin (settings, canISR) ;

17.3 The error code

The ACAN2517::begin method returns an error code. The value 0 denotes no error. Otherwise, you
consider every bit as an error flag, as described in table 4. An error code could report several errors.
The ACAN2517 class defines static constants for naming errors.

17.3.1 kRequestedConfigurationModeTimeOut

The ACAN2517::begin method first configures SPI with a 1 Mbit/s clock, and then requests the
configuration mode. This error is raised when the MCP2517FD does not reach the configuration mode
in 2ms. It means that the MCP2517FD cannot be accessed via SPI.

29

17.3 The error code 17 THE ACAN2517::BEGIN METHOD REFERENCE

Bit Static constant Name Link
0 kRequestedConfigurationModeTimeOut section 17.3.1 page 29
1 kReadBackErrorWith1MHzSPIClock section 17.3.2 page 30
2 kTooFarFromDesiredBitRate section 17.3.3 page 30
3 kInconsistentBitRateSettings section 17.3.4 page 30
4 kINTPinIsNotAnInterrupt section 17.3.5 page 31
5 kISRIsNull section 17.3.6 page 31
6 kFilterDefinitionError section 17.3.7 page 31
7 kMoreThan32Filters section 17.3.8 page 31
8 kControllerReceiveFIFOSizeIsZero section 17.3.9 page 31
9 kControllerReceiveFIFOSizeGreaterThan32 section 17.3.10 page 31

10 kControllerTransmitFIFOSizeIsZero section 17.3.11 page 31
11 kControllerTransmitFIFOSizeGreaterThan32 section 17.3.12 page 31
12 kControllerRamUsageGreaterThan2048 section 17.3.13 page 31
13 kControllerTXQPriorityGreaterThan31 section 17.3.14 page 32
14 kControllerTransmitFIFOPriorityGreaterThan31 section 17.3.15 page 32
15 kControllerTXQSizeGreaterThan32 section 17.3.16 page 32
16 kRequestedModeTimeOut section 17.3.17 page 32
17 kX10PLLNotReadyWithin1MS section 17.3.18 page 32
18 kReadBackErrorWithFullSpeedSPIClock section 17.3.19 page 32
19 kISRNotNullAndNoIntPin section 17.3.20 page 32

Table 4 – The ACAN2517::begin method error code bits

17.3.2 kReadBackErrorWith1MHzSPIClock

Then, the ACAN2517::begin method checks accessibility by writing and reading back 32-bit values
at the first MCP2517FD RAM address (0x400). The values are 1 << n, with 0 ⩽ n ⩽ 31. This error is
raised when the read value is different from the written one. It means that the MCP2517FD cannot be
accessed via SPI.

17.3.3 kTooFarFromDesiredBitRate

This error occurs when the mBitRateClosedToDesiredRate property of the settings object is false.
This means that the ACAN2517Settings constructor cannot compute a CAN bit configuration close
enough to the desired bit rate. For example:

void setup () {

ACAN2517Settings settings (ACAN2517Settings::OSC_4MHz10xPLL, 1) ; // 1 bit/s !!!

// Here, settings.mBitRateClosedToDesiredRate is false

const uint32_t errorCode = can.begin (settings, [] { can.isr () ; }) ;

// Here, errorCode contains ACAN2517::kCANBitConfigurationTooFarFromDesiredBitRate

}

17.3.4 kInconsistentBitRateSettings

The ACAN2517Settings constructor always returns consistent bit rate settings – even if the set-
tings provide a bit rate too far away the desired bit rate. So this error occurs only when you
have changed the CAN bit properties (mBitRatePrescaler, mPropagationSegment, mPhaseSegment1,
mPhaseSegment2, mSJW), and one or more resulting values are inconsistent. See section 18.2 page
36.

30

17.3 The error code 17 THE ACAN2517::BEGIN METHOD REFERENCE

17.3.5 kINTPinIsNotAnInterrupt

The pin you provide for handling the MCP2517FD interrupt has no interrupt capability.

17.3.6 kISRIsNull

The interrupt service routine argument is NULL, you should provide a valid function.

17.3.7 kFilterDefinitionError

settings.filterStatus() returns a value different than ACAN2517Filters::kFiltersOk, meaning
that one or more filters are erroneous. See section 15.1 page 25.

17.3.8 kMoreThan32Filters

You have defined more than 32 filters. MCP2517FD cannot handle more than 32 filters.

17.3.9 kControllerReceiveFIFOSizeIsZero

You have assigned 0 to settings.mControllerReceiveFIFOSize. The controller receive FIFO size
should be greater than 0.

17.3.10 kControllerReceiveFIFOSizeGreaterThan32

You have assigned a value greater than 32 to settings.mControllerReceiveFIFOSize. The con-
troller receive FIFO size should be lower or equal than 32.

17.3.11 kControllerTransmitFIFOSizeIsZero

You have assigned 0 to settings.mControllerTransmitFIFOSize. The controller transmit FIFO size
should be greater than 0.

17.3.12 kControllerTransmitFIFOSizeGreaterThan32

You have assigned a value greater than 32 to settings.mControllerTransmitFIFOSize. The con-
troller transmit FIFO size should be lower or equal than 32.

17.3.13 kControllerRamUsageGreaterThan2048

The configuration you have defined requires more than 2048 bytes of MCP2517FD internal RAM. See
section 12 page 21.

31

17.3 The error code 17 THE ACAN2517::BEGIN METHOD REFERENCE

17.3.14 kControllerTXQPriorityGreaterThan31

You have assigned a value greater than 31 to settings.mControllerTXQBufferPriority. The con-
troller transmit FIFO size should be lower or equal than 31.

17.3.15 kControllerTransmitFIFOPriorityGreaterThan31

You have assigned a value greater than 31 to settings.mControllerTransmitFIFOPriority. The
controller transmit FIFO size should be lower or equal than 31.

17.3.16 kControllerTXQSizeGreaterThan32

You have assigned a value greater than 32 to settings.mControllerTXQSize. The controller transmit
FIFO size should be lower than 32.

17.3.17 kRequestedModeTimeOut

During configuration by the ACAN2517::begin method, the MCP2517FD is in the configuration mode.
At this end of this process, the mode specified by the inSettings.mRequestedMode value is re-
quested. The switch to this mode is not immediate, a register is repetitively read for checking the
switch is done. This error is raised if the switch is not completed within a delay between 1 ms and 2
ms.

17.3.18 kX10PLLNotReadyWithin1MS

You have requested the QUARTZ_4MHz10xPLL oscillator mode, enabling the 10x PLL. The ACAN2517::begin
method waits during 2ms the PLL to be locked. This error is raised when the PLL is not locked within
2 ms.

17.3.19 kReadBackErrorWithFullSpeedSPIClock

After the oscillator configuration has been established, the ACAN2517::begin method configures the
SPI at its full speed (SYSCLK/2, and checks accessibility by writing and reading back 32-bit values at
the first MCP2517FD RAM address (0x400). The values are 1 << n, with 0 ⩽ n ⩽ 31. This error is raised
when the read value is different from the written one.

17.3.20 kISRNotNullAndNoIntPin

This error occurs when you have no INT pin, and a not-null interrupt service routine:

ACAN2517 can (MCP2517_CS, SPI, 255) ; // Last argument is 255 -> no interrupt pin

void setup () {

...

const uint32_t errorCode = can.begin (settings, [] { can.isr () ; }) ; // ISR is not null

...

}

32

18 ACAN2517SETTINGS CLASS REFERENCE

Interrupt service routine should be NULL if no INT pin is defined:

ACAN2517 can (MCP2517_CS, SPI, 255) ; // Last argument is 255 -> no interrupt pin

void setup () {

...

const uint32_t errorCode = can.begin (settings, NULL) ; // Ok, ISR is null

...

}

See the LoopBackDemoTeensy3xNoInt and LoopBackDemoESP32NoInt sketches.

18 ACAN2517Settings class reference

Note. The ACAN2517Settings class is not Arduino specific. You can compile it on your desktop com-
puter with your favorite C++ compiler. In the https://github.com/pierremolinaro/ACAN2517-dev
GitHub repository, a command line tool is defined for exploring all CAN bit rates from 1 bit/s and 20
Mbit/s. It also checks that computed CAN bit decompositions are all consistent, even if they are too
far from the desired baud rate.

18.1 The ACAN2517Settings constructor: computation of the CAN bit settings

The constructor of the ACAN2517Settings has two mandatory arguments: the quartz frequency, and
the desired bit rate. It tries to compute the CAN bit settings for this bit rate. If it succeeds, the
constructed object has its mBitRateClosedToDesiredRate property set to true, otherwise it is set
to false. For example:

void setup () {

ACAN2517Settings settings (ACAN2517Settings::OSC_4MHz10xPLL,

1 * 1000 * 1000) ; // 1 Mbit/s

// Here, settings.mBitRateClosedToDesiredRate is true

...

}

Of course, with a 40 MHz or 20 MHz SYSCLK, CAN bit computation always succeeds for classical bit
rates: 1 Mbit/s, 500 kbit/s, 250 kbit/s, 125 kbit/s. But CAN bit computation can also succeed for
some unusual bit rates, as 727 kbit/s. You can check the result by computing actual bit rate, and the
distance from the desired bit rate:

void setup () {

...

ACAN2517Settings settings (ACAN2517Settings::OSC_4MHz10xPLL,

727 * 1000) ; // 727 kbit/s

Serial.print ("mBitRateClosedToDesiredRate:␣") ;

Serial.println (settings.mBitRateClosedToDesiredRate) ; // 1 (--> is true)

Serial.print ("actual␣bit␣rate:␣") ;

Serial.println (settings.actualBitRate ()) ; // 727272 bit/s

Serial.print ("distance:␣") ;

Serial.println (settings.ppmFromDesiredBitRate ()) ; // 375 ppm

...

}

The actual bit rate is 727,272 bit/s, and its distance from desired bit rate is 375 ppm. ”ppm” stands
for ”part-per-million”, and 1 ppm = 10−6. In other words, 10, 000 ppm = 1%.

33

https://github.com/pierremolinaro/ACAN2517-dev

18.1 The ACAN2517Settings constructor: computation of the CAN bit settings18 ACAN2517SETTINGS CLASS REFERENCE

By default, a desired bit rate is accepted if the distance from the computed actual bit rate is lower
or equal to 1, 000 ppm = 0.1 %. You can change this default value by adding your own value as third
argument of ACAN2517Settings constructor:

void setup () {

...

ACAN2517Settings settings (ACAN2517Settings::OSC_4MHz10xPLL,

727 * 1000, 100) ;

Serial.print ("mBitRateClosedToDesiredRate:␣") ;

Serial.println (settings.mBitRateClosedToDesiredRate) ; // 0 (--> is false)

Serial.print ("actual␣bit␣rate:␣") ;

Serial.println (settings.actualBitRate ()) ; // 727272 bit/s

Serial.print ("distance:␣") ;

Serial.println (settings.ppmFromDesiredBitRate ()) ; // 375 ppm

...

}

The third argument does not change the CAN bit computation, it only changes the acceptance test
for setting the mBitRateClosedToDesiredRate property. For example, you can specify that you want
the computed actual bit to be exactly the desired bit rate:

void setup () {

...

ACAN2517Settings settings (ACAN2517Settings::OSC_4MHz10xPLL,

500 * 1000, 0) ; // Max distance is 0 ppm

Serial.print ("mBitRateClosedToDesiredRate:␣") ;

Serial.println (settings.mBitRateClosedToDesiredRate) ; // 1 (--> is true)

Serial.print ("actual␣bit␣rate:␣") ;

Serial.println (settings.actualBitRate ()) ; // 500,000 bit/s

Serial.print ("distance:␣") ;

Serial.println (settings.ppmFromDesiredBitRate ()) ; // 0 ppm

...

}

In any way, the bit rate computation always gives a consistent result, resulting an actual bit rate
closest from the desired bit rate. For example:

void setup () {

...

ACAN2517Settings settings (ACAN2517Settings::OSC_4MHz10xPLL,

423 * 1000) ; // 423 kbit/s

Serial.print ("mBitRateClosedToDesiredRate:␣") ;

Serial.println (settings.mBitRateClosedToDesiredRate) ; // 0 (--> is false)

Serial.print ("actual␣bit␣rate:␣") ;

Serial.println (settings.actualBitRate ()) ; // 421052 bit/s

Serial.print ("distance:␣") ;

Serial.println (settings.ppmFromDesiredBitRate ()) ; // 4603 ppm

...

}

You can get the details of the CAN bit decomposition. For example:

void setup () {

...

ACAN2517Settings settings (ACAN2517Settings::OSC_4MHz10xPLL,

423 * 1000) ; // 423 kbit/s

Serial.print ("mBitRateClosedToDesiredRate:␣") ;

Serial.println (settings.mBitRateClosedToDesiredRate) ; // 0 (--> is false)

Serial.print ("actual␣bit␣rate:␣") ;

Serial.println (settings.actualBitRate ()) ; // 421052 bit/s

34

18.1 The ACAN2517Settings constructor: computation of the CAN bit settings18 ACAN2517SETTINGS CLASS REFERENCE

Serial.print ("distance:␣") ;

Serial.println (settings.ppmFromDesiredBitRate ()) ; // 4603 ppm

Serial.print ("Bit␣rate␣prescaler:␣") ;

Serial.println (settings.mBitRatePrescaler) ; // BRP = 1

Serial.print ("Phase␣segment␣1:␣") ;

Serial.println (settings.mPhaseSegment1) ; // PS1 = 75

Serial.print ("Phase␣segment␣2:␣") ;

Serial.println (settings.mPhaseSegment2) ; // PS2 = 19

Serial.print ("Resynchronization␣Jump␣Width:␣") ;

Serial.println (settings.mSJW) ; // SJW = 19

Serial.print ("Triple␣Sampling:␣") ;

Serial.println (settings.mTripleSampling) ; // 0, meaning single sampling

Serial.print ("Sample␣Point:␣") ;

Serial.println (settings.samplePointFromBitStart ()) ; // 80, meaning 80%

Serial.print ("Consistency:␣") ;

Serial.println (settings.CANBitSettingConsistency ()) ; // 0, meaning Ok

...

}

The samplePointFromBitStart method returns sample point, expressed in per-cent of the bit dura-
tion from the beginning of the bit.

Note the computation may calculate a bit decomposition too far from the desired bit rate, but it is
always consistent. You can check this by calling the CANBitSettingConsistency method.

You can change the property values for adapting to the particularities of your CAN network propaga-
tion time. By example, you can increment the mPhaseSegment1 value, and decrement the mPhaseSegment2
value in order to sample the CAN Rx pin later.

void setup () {

...

ACAN2517Settings settings (ACAN2517Settings::OSC_4MHz10xPLL,

500 * 1000) ; // 500 kbit/s

Serial.print ("mBitRateClosedToDesiredRate:␣") ;

Serial.println (settings.mBitRateClosedToDesiredRate) ; // 1 (--> is true)

settings.mPhaseSegment1 -= 8 ; // 63 -> 55: safe, 1 <= PS1 <= 256

settings.mPhaseSegment2 += 8 ; // 16 -> 24: safe, 1 <= PS2 <= 128

settings.mSJW += 8 ; // 16 -> 24: safe, 1 <= SJW <= PS2

Serial.print ("Sample␣Point:␣") ;

Serial.println (settings.samplePointFromBitStart ()) ; // 68, meaning 68%

Serial.print ("actual␣bit␣rate:␣") ;

Serial.println (settings.actualBitRate ()) ; // 500000: ok, bit rate did not change

Serial.print ("Consistency:␣") ;

Serial.println (settings.CANBitSettingConsistency ()) ; // 0, meaning Ok

...

}

Be aware to always respect CAN bit timing consistency! The MCP2517FD constraints are:

1 ⩽ mBitRatePrescaler ⩽ 256

2 ⩽ mPhaseSegment1 ⩽ 256

1 ⩽ mPhaseSegment2 ⩽ 128

1 ⩽ mSJW ⩽ mPhaseSegment2

35

18.2 The CANBitSettingConsistency method 18 ACAN2517SETTINGS CLASS REFERENCE

Resulting actual bit rate is given by:

Actual bit rate =
SYSCLK

mBitRatePrescaler · (1 + mPhaseSegment1+ mPhaseSegment2)

And the sampling point (in per-cent unit) are given by:

Sampling point = 100 ·
1 + mPhaseSegment1

1 + mPhaseSegment1+ mPhaseSegment2

18.2 The CANBitSettingConsistency method

This method checks the CAN bit decomposition (given by mBitRatePrescaler, mPhaseSegment1,
mPhaseSegment2, mSJW property values) is consistent.

void setup () {

...

ACAN2517Settings settings (ACAN2517Settings::OSC_4MHz10xPLL,

500 * 1000) ; // 500 kbit/s

Serial.print ("mBitRateClosedToDesiredRate:␣") ;

Serial.println (settings.mBitRateClosedToDesiredRate) ; // 1 (--> is true)

settings.mPhaseSegment1 = 0 ; // Error, mPhaseSegment1 should be >= 1 (and <= 8)

Serial.print ("Consistency:␣0x") ;

Serial.println (settings.CANBitSettingConsistency (), HEX) ; // 0x10, meaning error

...

}

The CANBitSettingConsistencymethod returns 0 if CAN bit decomposition is consistent. Otherwise,
the returned value is a bit field that can report several errors – see table 5.

The ACAN2517Settings class defines static constant properties that can be used as mask error. For
example:

public: static const uint32_t kBitRatePrescalerIsZero = 1 << 0 ;

Bit Error Name Error
0 kBitRatePrescalerIsZero mBitRatePrescaler == 0
1 kBitRatePrescalerIsGreaterThan256 mBitRatePrescaler > 256
2 kPhaseSegment1IsLowerThan2 mPhaseSegment1 < 2
3 kPhaseSegment1IsGreaterThan256 mPhaseSegment1 > 256
4 kPhaseSegment2IsZero mPhaseSegment2 == 0
5 kPhaseSegment2IsGreaterThan128 mPhaseSegment2 > 128
6 kSJWIsZero mSJW == 0
7 kSJWIsGreaterThan128 mSJW > 128
8 kSJWIsGreaterThanPhaseSegment1 mSJW > mPhaseSegment1

9 kSJWIsGreaterThanPhaseSegment2 mSJW > mPhaseSegment2

Table 5 – The ACAN2517Settings::CANBitSettingConsistency method error codes

18.3 The actualBitRate method

The actualBitRatemethod returns the actual bit computed from mBitRatePrescaler, mPropagationSegment,
mPhaseSegment1, mPhaseSegment2, mSJW property values.

void setup () {

36

18.4 The exactBitRate method 18 ACAN2517SETTINGS CLASS REFERENCE

...

ACAN2517Settings settings (ACAN2517Settings::OSC_4MHz10xPLL,

440 * 1000) ; // 440 kbit/s

Serial.print ("mBitRateClosedToDesiredRate:␣") ;

Serial.println (settings.mBitRateClosedToDesiredRate) ; // 0 (--> is false)

Serial.print ("actual␣bit␣rate:␣") ;

Serial.println (settings.actualBitRate ()) ; // 444,444 bit/s

...

}

Note. If CAN bit settings are not consistent (see section 18.2 page 36), the returned value is
irrelevant.

18.4 The exactBitRate method

The exactBitRate method returns true if the actual bit rate is equal to the desired bit rate, and
false otherwise.

void setup () {

...

ACAN2517Settings settings (ACAN2517Settings::OSC_4MHz10xPLL,

727 * 1000) ; // 727 kbit/s

Serial.print ("mBitRateClosedToDesiredRate:␣") ;

Serial.println (settings.mBitRateClosedToDesiredRate) ; // 1 (--> is true)

Serial.print ("actual␣bit␣rate:␣") ;

Serial.println (settings.actualBitRate ()) ; // 727272 bit/s

Serial.print ("distance:␣") ;

Serial.println (settings.ppmFromDesiredBitRate ()) ; // 375 ppm

Serial.print ("Exact:␣") ;

Serial.println (settings.exactBitRate ()) ; // 0 (---> false)

...

}

Note. If CAN bit settings are not consistent (see section 18.2 page 36), the returned value is
irrelevant.

With a 40 MHz SYSCLK, the 46 exact bit rates are : 500 bit/s, 625 bit/s, 640 bit/s, 800 bit/s, 1 kbit/s,
1250 bit/s, 1280 bit/s, 1600 bit/s, 2 kbit/s, 2500 bit/s, 2560 bit/s, 3125 bit/s, 3200 bit/s, 4 kbit/s,
5 kbit/s, 6250 bit/s, 6400 bit/s, 8 kbit/s, 10 kbit/s, 12500 bit/s, 12800 bit/s, 15625 bit/s, 16 kbit/s,
20 kbit/s, 25 kbit/s, 31250 bit/s, 32 kbit/s, 40 kbit/s, 50 kbit/s, 62500 bit/s, 64 kbit/s, 78125 bit/s,
80 kbit/s, 100 kbit/s, 125 kbit/s, 156250 bit/s, 160 kbit/s, 200 kbit/s, 250 kbit/s, 312500 bit/s, 320
kbit/s, 400 kbit/s, 500 kbit/s, 625 kbit/s, 800 kbit/s, 1 Mbit/s.

18.5 The ppmFromDesiredBitRate method

The ppmFromDesiredBitRate method returns the distance from the actual bit rate to the desired bit
rate, expressed in part-per-million (ppm): 1 ppm = 10−6. In other words, 10, 000 ppm = 1%.

void setup () {

...

ACAN2517Settings settings (ACAN2517Settings::OSC_4MHz10xPLL,

727 * 1000) ; // 727 kbit/s

Serial.print ("mBitRateClosedToDesiredRate:␣") ;

Serial.println (settings.mBitRateClosedToDesiredRate) ; // 1 (--> is true)

37

18.6 The samplePointFromBitStart method 18 ACAN2517SETTINGS CLASS REFERENCE

Serial.print ("actual␣bit␣rate:␣") ;

Serial.println (settings.actualBitRate ()) ; // 727272 bit/s

Serial.print ("distance:␣") ;

Serial.println (settings.ppmFromDesiredBitRate ()) ; // 375 ppm

...

}

Note. If CAN bit settings are not consistent (see section 18.2 page 36), the returned value is
irrelevant.

18.6 The samplePointFromBitStart method

The samplePointFromBitStart method returns the distance of sample point from the start of the
CAN bit, expressed in part-per-cent (ppc): 1 ppc = 1% = 10−2. If triple sampling is selected, the
returned value is the distance of the first sample point from the start of the CAN bit. It is a good
practice to get sample point from 65% to 80%. The bit rate calculator tries to set the sample point
at 80%.

void setup () {

...

ACAN2517Settings settings (ACAN2517Settings::OSC_4MHz10xPLL,

500 * 1000) ; // 500 kbit/s

Serial.print ("mBitRateClosedToDesiredRate:␣") ;

Serial.println (settings.mBitRateClosedToDesiredRate) ; // 1 (--> is true)

Serial.print ("Sample␣point:␣") ;

Serial.println (settings.samplePointFromBitStart ()) ; // 80 --> 80%

...

}

Note. If CAN bit settings are not consistent (see section 18.2 page 36), the returned value is
irrelevant.

18.7 Properties of the ACAN2517Settings class

All properties of the ACAN2517Settings class are declared public and are initialized (table 6). The
default values of properties from mDesiredBitRate until mTripleSampling corresponds to a CAN bit
rate of QUARTZ_FREQUENCY / 64, that is 250,000 bit/s for a 16 MHz quartz.

18.7.1 The mTXCANIsOpenDrain property

This property defines the outpiut mode of the TXCAN pin:

• if false (default value), the TXCAN pin is a push/pull output;

• if true, the TXCAN pin is an open drain output.

18.7.2 The mINTIsOpenDrain property

This property defines the outpiut mode of the MCP2517FD INT pin:

38

18.7 Properties of the ACAN2517Settings class 18 ACAN2517SETTINGS CLASS REFERENCE

Property Type Initial value Comment
mOscillator Oscillator Constructor argu-

ment
mSysClock uint32_t Constructor argu-

ment
mDesiredBitRate uint32_t Constructor argu-

ment
mBitRatePrescaler uint16_t 0 See section 18.1 page 33
mPhaseSegment1 uint16_t 0 See section 18.1 page 33
mPhaseSegment2 uint8_t 0 See section 18.1 page 33
mSJW uint8_t 0 See section 18.1 page 33
mBitRateClosedToDesiredRate bool false See section 18.1 page 33
mTXCANIsOpenDrain bool false See section 18.7.1 page 38
mINTIsOpenDrain bool false See section 18.7.2 page 38
mCLKOPin CLKOpin CLKO_DIVIDED_BY_10 See section 18.7.3 page 39
mRequestedMode RequestedMode Normal20B See section 18.7.4 page 40
mDriverTransmitFIFOSize uint16_t 16 See section 9 page 19
mControllerTransmitFIFOSize uint8_t 32 See section 9 page 19
mControllerTransmitFIFOPriorityuint8_t 0 See section 9 page 19
mControllerTransmitFIFO-

RetransmissionAttempts

RetransmissionAttempts UnlimitedNumber See section 9 page 19

mControllerTXQSize uint8_t 0 See section 10 page 20
mControllerTXQBufferPriority uint8_t 31 See section 10 page 20
mControllerTXQBuffer-

RetransmissionAttempts

RetransmissionAttempts UnlimitedNumber See section 10 page 20

mDriverReceiveFIFOSize uint16_t 32 See section 11 page 21
mControllerReceiveFIFOSize uint8_t 32 See section 11 page 21

Table 6 – Properties of the ACAN2517Settings class

• if false (default value), the INT pin is a push/pull output;

• if true, the INT pin is an open drain output.

18.7.3 The CLKO/SOF pin

The CLKO/SOF pin of the MCP2517FD controller is an output pin has five functions12:

• output internally generated clock;

• output internally generated clock divided by 2;

• output internally generated clock divided by 4;

• output internally generated clock divided by 10;

• output SOF (”Start Of Frame”).

By default, after power on, CLKO/SOF pin outputs internally generated clock divided by 10.

The ACAN2517Settings class defines an enumerated type for specifying these settings:

class ACAN2517Settings {

public: typedef enum {CLKO_DIVIDED_BY_1, CLKO_DIVIDED_BY_2,

CLKO_DIVIDED_BY_4, CLKO_DIVIDED_BY_10,

12Internally generated clock is not SYSCLK, see figure 9 page 18.

39

19 HANDLING GPIO0, GPIO1 AND XSTBY

SOF} CLKOpin ;

...

} ;

The mCLKOPin property lets you select the CLKO/SOF pin function; by default, this property value is
CLKO_DIVIDED_BY_10, that corresponds to MCP2517FD power on setting. For example:

ACAN2517Settings settings (ACAN2517Settings::OSC_4MHz10xPLL, CAN_BIT_RATE) ;

...

settings.mCLKOPin = ACAN2517Settings::SOF ;

...

const uint32_t errorCode = can.begin (settings, [] { can.isr () ; }) ;

18.7.4 The mRequestedMode property

This property defines the mode requested at this end of the configuration: Normal20B (default value),
InternalLoopBack, ExternalLoopBack, ListenOnly.

19 Handling GPIO0, GPIO1 and XSTBY

The #8 pin is never used as INT1 by the library. By default, it is an input pin. You can use it as a
input or ouput digital pin. The #9 pin is never used as INT0 by the library. By default, it is an input
pin. You can use it as a input or ouput digital pin, or as XSTBY output pin.

19.1 The gpioSetMode method

void ACAN2517FD::gpioSetMode (const uint8_t inPin, const uint8_t inMode) ;

This method sets the mode of GPIO0 or GPIO1.

Following the inPin value:

• 0: following the inMode value:

– INPUT: pin #9 is no more XSTBY output, configure pin #9 (GPIO0) as digital input;

– OUTPUT: pin #9 is no more XSTBY output, configure pin #9 (GPIO0) as digital output;

– other value: does nothing;

• 1: following the inMode value:

– INPUT: configure pin #8 (GPIO1) as digital input;

– OUTPUT: configure pin #8 (GPIO1) as digital output;

– other value: does nothing;

• other value: does nothing.

Example :

can.gpioSetMode (1, OUTPUT) ; // Configures GPIO1 as digital output

40

19.2 The gpioWrite method 19 HANDLING GPIO0, GPIO1 AND XSTBY

19.2 The gpioWrite method

void ACAN2517FD::gpioWrite (const uint8_t inPin, const uint8_t inLevel) ;

This method outputs a logic value on GPIO0 or GPIO1.

Following the inPin value:

• 0: following the inLevel value:

– 0 or LOW: output a low level on GPIO0;

– HIGH or any value > 0: output a high level on GPIO0;

• 1: following the inLevel value:

– 0 or LOW: output a low level on GPIO1;

– HIGH or any value > 0: output a high level on GPIO1;

• other value: does nothing.

Example :

can.gpioWrite (1, HIGH) ; // If GPIO1 is a digital output, outputs a high level

19.3 The gpioRead method

bool ACAN2517FD::gpioRead (const uint8_t inPin) ;

This method gets the logic value of GPIO0 or GPIO1.

Following the inPin value:

• 0: the function returns the level of GPIO0 pin;

• 1: the function returns the level of GPIO1 pin;

• other value: returns false.

Example :

const bool b = can.gpioRead (1) ; // Get GPIO1 logical level

19.4 The configureGPIO0AsXSTBY method

void ACAN2517FD::configureGPIO0AsXSTBY (void) ;

This method configures the #9 pin as XSTBY, overriding any previous pin mode.

41

20 OTHER ACAN2517FD METHODS

20 Other ACAN2517FD methods

20.1 The currentOperationMode method

ACAN2517FD::OperationMode ACAN2517FD::currentOperationMode (void) ;

This function returns the MCP2517FD current operation mode, as a value of the ACAN2517FD::currentOperationMode
enumerated type. This type is defined in the ACAN2517FD.h header file.

class ACAN2517FD {

...

public: typedef enum : uint8_t {

NormalFD = 0,

Sleep = 1,

InternalLoopBack = 2,

ListenOnly = 3,

Configuration = 4,

ExternalLoopBack = 5,

Normal20B = 6,

RestrictedOperation = 7

} OperationMode ;

...

} ;

20.2 The recoverFromRestrictedOperationMode method

bool ACAN2517FD::recoverFromRestrictedOperationMode (void) ;

If the MCP2517FD is in Restricted Operation Mode, this method requests the operation mode defined
by the mRequestedMode property of the ACAN2517FDSettings class instance. This method has no
effect is the current mode is not the Restricted Operation Mode.

This method returns true if both conditions are met:

• the MCP2517FD is in Restricted Operation Mode;

• the operation mode has been successfully recovered.

It returns false otherwise.

20.3 The errorCounters method

uint32_t ACAN2517FD::errorCounters (void) ;

This method returns the transmit / receive error count register value, as described in DS20005688B,
REGISTER 3-19 page 41. The CiTREC value is zero when there is no error.

20.4 The diagInfos method

uint32_t ACAN2517FD::diagInfos (const int inIndex = 1) ;

42

20.4 The diagInfos method 20 OTHER ACAN2517FD METHODS

Thanks to Flole998 and turmary. This method returns:

• if inIndex is equal to 0, the C1BDIAG0 register value, as described in DS20005688B, REGISTER
3-20 page 42;

• if inIndex is not equal to 0, the C1BDIAG1 register value, as described in DS20005688B, REGISTER
3-21 page 43.

43

	Versions
	Features
	MCP2517FD or MCP2518FD?
	Reset
	Clock
	Restricted Operation Mode

	Data flow
	Data flow in default configuration
	Data flow, custom configuration

	A simple example: LoopBackDemo
	The CANMessage class
	Connecting a MCP2517FD to your microcontroller
	Pullup resistor on nCS pin
	Using alternate pins on Teensy 3.x
	Using alternate pins on an Adafruit Feather M0
	Connecting to an ESP32
	Connecting MCP2517_CS and MCP2517_INT
	Using SPI
	Using HSPI

	Connection with no interrupt pin
	Wiring schemes
	Arduino Uno - MCP2518FDClick

	Clock configuration
	Transmit FIFO
	The driverTransmitBufferSize method
	The driverTransmitBufferCount method
	The driverTransmitBufferPeakCount method

	Transmit Queue (TXQ)
	Receive FIFO
	RAM usage
	Sending frames: the tryToSend method
	Retrieving received messages using the receive method
	Driver receive buffer size
	The receiveBufferSize method
	The receiveBufferCount method
	The receiveBufferPeakCount method

	Acceptance filters
	An example
	The appendPassAllFilter method
	The appendFormatFilter method
	The appendFrameFilter method
	The appendFilter method

	The dispatchReceivedMessage method
	The ACAN2517::begin method reference
	The prototypes
	Defining explicitly the interrupt service routine
	The error code
	kRequestedConfigurationModeTimeOut
	kReadBackErrorWith1MHzSPIClock
	kTooFarFromDesiredBitRate
	kInconsistentBitRateSettings
	kINTPinIsNotAnInterrupt
	kISRIsNull
	kFilterDefinitionError
	kMoreThan32Filters
	kControllerReceiveFIFOSizeIsZero
	kControllerReceiveFIFOSizeGreaterThan32
	kControllerTransmitFIFOSizeIsZero
	kControllerTransmitFIFOSizeGreaterThan32
	kControllerRamUsageGreaterThan2048
	kControllerTXQPriorityGreaterThan31
	kControllerTransmitFIFOPriorityGreaterThan31
	kControllerTXQSizeGreaterThan32
	kRequestedModeTimeOut
	kX10PLLNotReadyWithin1MS
	kReadBackErrorWithFullSpeedSPIClock
	kISRNotNullAndNoIntPin

	ACAN2517Settings class reference
	The ACAN2517Settings constructor: computation of the CAN bit settings
	The CANBitSettingConsistency method
	The actualBitRate method
	The exactBitRate method
	The ppmFromDesiredBitRate method
	The samplePointFromBitStart method
	Properties of the ACAN2517Settings class
	The mTXCANIsOpenDrain property
	The mINTIsOpenDrain property
	The CLKO/SOF pin
	The mRequestedMode property

	Handling GPIO0, GPIO1 and XSTBY
	The gpioSetMode method
	The gpioWrite method
	The gpioRead method
	The configureGPIO0AsXSTBY method

	Other ACAN2517FD methods
	The currentOperationMode method
	The recoverFromRestrictedOperationMode method
	The errorCounters method
	The diagInfos method

