
ACAN2517 Arduino library
For MCP2517FD, in CAN 2.0B mode

Version 1.1.0

Pierre Molinaro

January 27, 2019

Contents

1 Versions 3

2 Features 3

3 Data flow 4
3.1 Data flow in default configuration . 4
3.2 Data flow, custom configuration . 5

4 A simple example: LoopBackDemo 6

5 The CANMessage class 8

6 Connecting a MCP2517FD to your microcontroller 9
6.1 Pullup resistor on nCS pin . 9
6.2 Using alternate pins on Teensy 3.x . 9
6.3 Using alternate pins on an Adafruit Feather M0 . 11
6.4 Connecting to an ESP32 . 11

6.4.1 Connecting MCP2517_CS and MCP2517_INT . 12
6.4.2 Using SPI . 12
6.4.3 Using HSPI . 12

7 Clock configuration 13

8 Transmit FIFO 14
8.1 The driverTransmitBufferSize method . 15
8.2 The driverTransmitBufferCount method . 15
8.3 The driverTransmitBufferPeakCount method . 15

9 Transmit Queue (TXQ) 15

10 Receive FIFO 16

11 RAM usage 16

12 Sending frames: the tryToSend method 17

1

CONTENTS CONTENTS

13 Retrieving received messages using the receive method 18
13.1 Driver receive buffer size . 19
13.2 The receiveBufferSize method . 19
13.3 The receiveBufferCount method . 20
13.4 The receiveBufferPeakCount method . 20

14 Acceptance filters 20
14.1 An example . 20
14.2 The appendPassAllFilter method . 21
14.3 The appendFormatFilter method . 21
14.4 The appendFrameFilter method . 22
14.5 The appendFilter method . 22

15 The dispatchReceivedMessage method 23

16 The ACAN2517::begin method reference 24
16.1 The prototypes . 24
16.2 Defining explicitly the interrupt service routine . 24
16.3 The error code . 24

16.3.1 kRequestedConfigurationModeTimeOut . 24
16.3.2 kReadBackErrorWith1MHzSPIClock . 24
16.3.3 kTooFarFromDesiredBitRate . 25
16.3.4 kInconsistentBitRateSettings . 25
16.3.5 kINTPinIsNotAnInterrupt . 25
16.3.6 kISRIsNull . 25
16.3.7 kFilterDefinitionError . 26
16.3.8 kMoreThan32Filters . 26
16.3.9 kControllerReceiveFIFOSizeIsZero . 26
16.3.10 kControllerReceiveFIFOSizeGreaterThan32 . 26
16.3.11 kControllerTransmitFIFOSizeIsZero . 26
16.3.12 kControllerTransmitFIFOSizeGreaterThan32 . 26
16.3.13 kControllerRamUsageGreaterThan2048 . 26
16.3.14 kControllerTXQPriorityGreaterThan31 . 26
16.3.15 kControllerTransmitFIFOPriorityGreaterThan31 26
16.3.16 kControllerTXQSizeGreaterThan32 . 26
16.3.17 kRequestedModeTimeOut . 27
16.3.18 kX10PLLNotReadyWithin1MS . 27
16.3.19 kReadBackErrorWithFullSpeedSPIClock . 27

17 ACAN2517Settings class reference 27
17.1 The ACAN2517Settings constructor: computation of the CAN bit settings 27
17.2 The CANBitSettingConsistency method . 30
17.3 The actualBitRate method . 30
17.4 The exactBitRate method . 31
17.5 The ppmFromDesiredBitRate method . 32
17.6 The samplePointFromBitStart method . 32
17.7 Properties of the ACAN2517Settings class . 32

17.7.1 The mTXCANIsOpenDrain property . 32
17.7.2 The CLKO/SOF pin . 33

2

2 FEATURES

17.7.3 The mRequestedMode property . 34

1 Versions

Version Date Comment
1.1.0 January 27, 2019 First release running on ESP32 (section 6.4 page 11).
1.0.4 January 14, 2019 Fixed mask and acceptance filters for extended messages.

New LoopBackDemoTeensy3xStandardFilterTest.ino sample code for
checking standard reception filters.
New LoopBackDemoTeensy3xExtendedFilterTest.ino sample code for
checking extended reception filters.

1.0.3 January 6, 2019 Fixed identifiers for extended messages.
Updated TestWithACAN.ino sample code for checking extended mes-
sage identifiers.
Changed mode names.
MCP2517Filters -> ACAN2517Filters

1.0.2 November 3, 2018 Changed mode names.
1.0.1 October 24, 2018 Corrected typos.
1.0.0 October 23, 2018 Initial release

2 Features

The ACAN2517 library is a MCP2517FD CAN (”Controller Area Network”) Controller driver for any board running
Arduino.

This driver configures the MCP2517FD in CAN 2.0B mode. It does not handle the CANFD capabilities.

This library is compatible with:

• the ACAN 1.0.6 and above library (https://github.com/pierremolinaro/acan), CAN driver for FlexCan
module embedded in Teensy 3.1 / 3.2, 3.5, 3.6 microcontrollers;

• the ACAN2515 1.0.1 and above library (https://github.com/pierremolinaro/acan2515), CAN driver for
MCP2515 CAN controller;

• the ACAN2517FD library (https://github.com/pierremolinaro/acan2517FD), CAN driver for MCP2517FD
CAN controller, in CANFD mode.

It has been designed to make it easy to start and to be easily configurable:

• default configuration sends and receives any frame – no default filter to provide;

• efficient built-in CAN bit settings computation from user bit rate;

• user can fully define its own CAN bit setting values;

• all 32 reception filter registers are easily defined;

• reception filters accept call back functions;

• driver and controller transmit buffer sizes are customisable;

• driver and controller receive buffer size is customisable;

3

https://github.com/pierremolinaro/acan
https://github.com/pierremolinaro/acan2515
https://github.com/pierremolinaro/acan2517FD

3 DATA FLOW

• overflow of the driver receive buffer is detectable;

• MCP2517FD internal RAM allocation is customizable and the driver checks no overflow occurs;

• loop back, self reception, listing only MCP2517FD controller modes are selectable.

3 Data flow

Two figures illustrate message flow for sending and receiving CAN messages: figure 1 is the default configuration,
figure 2 is the customized configuration.

3.1 Data flow in default configuration

The figure 1 illustrates message flow in the default configuration.

User code

ACAN2517 driver

available
receive

dispatchReceivedMessagetryToSend

MCP2517FD

lost

idx

0
̸= 0

Driver
Transmit FIFO

16

Driver
Reception FIFO

32

CAN Protocol Engine

TXCAN RXCAN

Controller
Transmit FIFO

32

Reception Filters
[Pass all]

Controller
Receive FIFO

32

Figure 1 – Message flow in ACAN2517 driver and MCP2517FD CAN Controller, default configuration

Sending messages. The ACAN2517 driver defines a driver transmit FIFO (default size: 16 messages), and
configures the MCP2517FD with a controller transmit FIFO with a size of 32 messages.

A message is defined by an instance of CANMessage class. For sending a message, user code calls the tryToSend
method – see section 12 page 17, and the idx property of the sent message should be equal to 0 (default value).

4

3.2 Data flow, custom configuration 3 DATA FLOW

Receiving messages. The MCP2517FD CAN Protocol Engine transmits all correct frames to the reception
filters. By default, they are configured as pass-all, see section 14 page 20 for configuring them. Messages that pass
the filters are stored in the Controller Reception FIFO; its size is 32 message by default. The interrupt service
routine transfers the messages from this FIFO to the Driver Receive FIFO. The size of the Driver Receive Buffer
is 32 by default – see section 13.1 page 19 for changing the default value. Three user methods are available:

• the available method returns false if the Driver Receive Buffer is empty, and true otherwise;

• the receive method retrieves messages from the Driver Receive Buffer – see section 13 page 18;

• the dispatchReceivedMessage method if you have defined the reception filters that name a call-back func-
tion – see section 15 page 23.

3.2 Data flow, custom configuration

The figure 2 illustrates message flow in a custom configuration.

Note. The transmit Event FIFO and the transmitEvent function are not currently implemented.

User code

ACAN2517 driver

available
receive

dispatchReceivedMessagetryToSend transmitEvent

MCP2517FD

idx

0 255 Other

LostDriver
Transmit FIFO

Driver
Transmit Event

FIFO
Driver

Reception FIFO

CAN Protocol Engine

TXCAN RXCAN

Controller Transmit
FIFO

Controller Transmit
Queue

Controller Transmit
Event FIFO

Reception Filters

Controller Receive
FIFO

Figure 2 – Message flow in ACAN2517 driver and MCP2517FD CAN Controller, custom configuration

You can allocate the Controller transmit Queue: send order is defined by frame priority (see section 9 page 15).
You can also define up to 32 receive filters (see section 14 page 20). Sizes of MCP2517FD internal buffer are easily
customizable.

5

4 A SIMPLE EXAMPLE: LOOPBACKDEMO

4 A simple example: LoopBackDemo

The following code is a sample code for introducing the ACAN2517 library, extracted from the LoopBackDemo
sample code included in the library distribution. It runs natively on any Arduino compatible board, and is easily
adaptable to any microcontroller supporting SPI. It demonstrates how to configure the driver, to send a CAN
message, and to receive a CAN message.

Note: this code runs without any CAN transceiver (the TXCAN and RXCAN pins of the MCP2517FD are left open),
the MCP2517FD is configured in the loop back mode.

#include <ACAN2517.h>

This line includes the ACAN2517 library.

static const byte MCP2517_CS = 20 ; // CS input of MCP2517FD
static const byte MCP2517_INT = 37 ; // INT output of MCP2517FD

Define the pins connected to CS and INT pins.

ACAN2517 can (MCP2517_CS, SPI, MCP2517_INT) ;

Instanciation of the ACAN2517 library, declaration and initialization of the can object that implements the driver.
The constructor names: the number of the pin connected to the CS pin, the SPI object (you can use SPI1, SPI2,
…), the number of the pin connected to the INT pin.

void setup () {
//--- Switch on builtin led

pinMode (LED_BUILTIN, OUTPUT) ;
digitalWrite (LED_BUILTIN, HIGH) ;

//--- Start serial
Serial.begin (38400) ;

//--- Wait for serial (blink led at 10 Hz during waiting)
while (!Serial) {

delay (50) ;
digitalWrite (LED_BUILTIN, !digitalRead (LED_BUILTIN)) ;

}

Builtin led is used for signaling. It blinks led at 10 Hz during until serial monitor is ready.

SPI.begin () ;

You should call SPI.begin. Many platforms define alternate pins for SPI. On Teensy 3.x (section 6.2 page 9),
selecting alternate pins should be done before calling SPI.begin, on Adafruit Feather M0 (section 6.3 page 11),
this should be done after. Calling SPI.begin explicitly allows you to fully handle alternate pins.

ACAN2517Settings settings (ACAN2517Settings::OSC_4MHz10xPLL, 125 * 1000) ;

Configuration is a four-step operation. This line is the first step. It instanciates the settings object of the
ACAN2517Settings class. The constructor has two parameters: the MCP2517FD quartz specification, and the

6

4 A SIMPLE EXAMPLE: LOOPBACKDEMO

desired CAN bit rate (here, 125 kb/s). It returns a settings object fully initialized with CAN bit settings for
the desired bit rate, and default values for other configuration properties.

settings.mRequestedMode = ACAN2517Settings::InternalLoopBack ;

This is the second step. You can override the values of the properties of settings object. Here, the mRequestedMode
property is set to InternalLoopBack – its value is Normal20B by default. Setting this property enables loop back,
that is you can run this demo sketch even it you have no connection to a physical CAN network. The section
17.7 page 32 lists all properties you can override.

const uint32_t errorCode = can.begin (settings, [] { can.isr () ; }) ;

This is the third step, configuration of the can driver with settings values. The driver is configured for being
able to send any (standard / extended, data / remote) frame, and to receive all (standard / extended, data
/ remote) frames. If you want to define reception filters, see section 14 page 20. The second argument is the
interrupt service routine, and is defined by a C++ lambda expression1. See section 16.2 page 24 for using a
function instead.

if (errorCode != 0) {
Serial.print ("Configuration error 0x") ;
Serial.println (errorCode, HEX) ;

}
}

Last step: the configuration of the can driver returns an error code, stored in the errorCode constant. It has the
value 0 if all is ok – see section 16.3 page 24.

static uint32_t gBlinkLedDate = 0 ;
static uint32_t gReceivedFrameCount = 0 ;
static uint32_t gSentFrameCount = 0 ;

The gSendDate global variable is used for sending a CAN message every 2 s. The gSentCount global variable
counts the number of sent messages. The gReceivedCount global variable counts the number of received messages.

void loop() {
CANMessage frame ;

The message object is fully initialized by the default constructor, it represents a standard data frame, with an
identifier equal to 0, and without any data – see section 5 page 8.

if (gBlinkLedDate < millis ()) {
gBlinkLedDate += 2000 ;
digitalWrite (LED_BUILTIN, !digitalRead (LED_BUILTIN)) ;
const bool ok = can.tryToSend (frame) ;
if (ok) {

gSentFrameCount += 1 ;
Serial.print ("Sent: ") ;
Serial.println (gSentFrameCount) ;

1https://en.cppreference.com/w/cpp/language/lambda

7

https://en.cppreference.com/w/cpp/language/lambda

5 THE CANMESSAGE CLASS

}else{
Serial.println ("Send failure") ;

}
}

We try to send the data message. Actually, we try to transfer it into the Driver transmit buffer. The transfer
succeeds if the buffer is not full. The tryToSend method returns false if the buffer is full, and true otherwise.
Note the returned value only tells if the transfer into the Driver transmit buffer is successful or not: we have
no way to know if the frame is actually sent on the the CAN network. Then, we act the successfull transfer by
setting gSendDate to the next send date and incrementing the gSentCount variable. Note if the transfer did fail,
the send date is not changed, so the tryToSend method will be called on the execution of the loop function.

if (can.available ()) {
can.receive (frame) ;
gReceivedFrameCount ++ ;
Serial.print ("Received: ") ;
Serial.println (gReceivedFrameCount) ;

}
}

As the MCP2517FD controller is configured in loop back mode, all sent messages are received. The receive method
returns false if no message is available from the driver reception buffer. It returns true if a message has been
successfully removed from the driver reception buffer. This message is assigned to the message object. If a
message has been received, the gReceivedCount is incremented ans displayed.

5 The CANMessage class

Note. The CANMessage class is declared in the CANMessage.h header file. The class declaration is protected
by an include guard that causes the macro GENERIC_CAN_MESSAGE_DEFINED to be defined. The ACAN2 (version
1.0.3 and above) driver, the ACAN25153 driver contain an identical CANMessage.h file header, enabling using
ACAN driver, ACAN2515 driver and ACAN2517 driver in a same sketch.

A CAN message is an object that contains all CAN frame user informations. All properties are initialized by
default, and represent a standard data frame, with an identifier equal to 0, and without any data.

class CANMessage {
public : uint32_t id = 0 ; // Frame identifier
public : bool ext = false ; // false -> standard frame, true -> extended frame
public : bool rtr = false ; // false -> data frame, true -> remote frame
public : uint8_t idx = 0 ; // Used by the driver
public : uint8_t len = 0 ; // Length of data (0 ... 8)
public : union {

uint64_t data64 ; // Caution: subject to endianness
uint32_t data32 [2] ; // Caution: subject to endianness
uint16_t data16 [4] ; // Caution: subject to endianness
uint8_t data [8] = {0, 0, 0, 0, 0, 0, 0, 0} ;

} ;
} ;

2The ACAN driver is a CAN driver for FlexCAN modules integrated in the Teensy 3.x microcontrollers, https://github.com/
pierremolinaro/acan.

3The ACAN2515 driver is a CAN driver for the MCP2515 CAN controller, https://github.com/pierremolinaro/acan2515.

8

https://github.com/pierremolinaro/acan
https://github.com/pierremolinaro/acan
https://github.com/pierremolinaro/acan2515

6 CONNECTING A MCP2517FD TO YOUR MICROCONTROLLER

Note the message datas are defined by an union. So message datas can be seen as height bytes, four 16-bit
unsigned integers, two 32-bit, or one 64-bit. Be aware that multi-byte integers are subject to endianness (Cortex
M4 processors of Teensy 3.x are little-endian).

The idx property is not used in CAN frames, but:

• for a received message, it contains the acceptance filter index (see section 15 page 23);

• on sending messages, it is used for selecting the transmit buffer (see section 12 page 17).

6 Connecting a MCP2517FD to your microcontroller

Connecting a MCP2517FD requires 5 pins (figure 3):

• hardware SPI requires you use dedicaced pins of your microcontroller. You can use alternate pins (see
below), and if your microcontroller supports several hardware SPIs, you can select any of them;

• connecting the CS signal requires one digital pin, that the driver configures as an OUTPUT ;

• connecting the INT signal requires one other digital pin, that the driver configures with INPUT_PULLUP and
uses as an external interrupt input; so this pin should have interrupt capability (checked by the begin
method of the driver object);

• the INT0 and INT1 signals are not used by driver and are left not connected.

Microcontroller MCP2517FD

nc INT0
nc INT1

INTMCP2517_INT

nCSCS
Vcc 10kΩ

SCKSCK

SDIMOSI

SD0MISO

Figure 3 – MCP2517FD connection to a microcontroller

6.1 Pullup resistor on nCS pin

Note the 10 kΩ resistor between nCS and Vcc. I have experienced that this resistor is useful in the following case:
a sketch using the MCP2517FD is running, and I upload a new sketch. During this process, the microcontroller is
reset, leaving its CS pin floating. Without the 10 kΩ resistor, the nCS level is unpredictable, and if it becomes
low, initiates transactions. I think this can crash the MCP2517FD firmware, and the following reset command sent
by the driver not handled. With the resistor, the nCS level remains high until the driver sets the nCS as output.

6.2 Using alternate pins on Teensy 3.x

Demo sketch: LoopBackDemoTeensy3x.

9

6.2 Using alternate pins on Teensy 3.x 6 CONNECTING A MCP2517FD TO YOUR MICROCONTROLLER

On Teensy 3.x, ”the main SPI pins are enabled by default. SPI pins can be moved to their alternate position with
SPI.setMOSI(pin), SPI.setMISO(pin), and SPI.setSCK(pin). You can move all of them, or just the ones that
conflict, as you prefer.”4

For example, the LoopBackDemoTeensy3x sketch uses SPI1 on a Teensy 3.5 with these alternate pins5:

Teensy 3.5 MCP2517FD

INTMCP2517_INT

nCSMCP2517_CS
Vcc 10kΩ

SCKSCK1
32

SDIMOSI1
0

SDOMISO1 1

Figure 4 – Using SPI alternate pins on a Teensy 3.5

You call the SPI1.setMOSI, SPI1.setMISO, and SPI1.setSCK functions before calling the begin function of your
ACAN2517 instance:

ACAN2517 can (MCP2517_CS, SPI1, MCP2517_INT) ;
...
static const byte MCP2517_SCK = 32 ; // SCK input of MCP2517
static const byte MCP2517_SDI = 0 ; // SDI input of MCP2517
static const byte MCP2517_SDO = 1 ; // SDO output of MCP2517
...
void setup () {

...
SPI1.setMOSI (MCP2517_SDI) ;
SPI1.setMISO (MCP2517_SDO) ;
SPI1.setSCK (MCP2517_SCK) ;
SPI1.begin () ;
...
const uint32_t errorCode = can.begin (settings, [] { can.isr () ; }) ;
...

Note you can use the SPI1.pinIsMOSI, SPI1.pinIsMISO, and SPI1.pinIsSCK functions to check if the alternate
pins you select are valid:

void setup () {
...
Serial.print ("Using pin #") ;
Serial.print (MCP2517_SDI) ;
Serial.print (" for MOSI: ") ;
Serial.println (SPI1.pinIsMOSI (MCP2517_SDI) ? "yes" : "NO!!!") ;
Serial.print ("Using pin #") ;
Serial.print (MCP2517_SDO) ;
Serial.print (" for MISO: ") ;
Serial.println (SPI1.pinIsMISO (MCP2517_SDO) ? "yes" : "NO!!!") ;
Serial.print ("Using pin #") ;
Serial.print (MCP2517_SCK) ;
Serial.print (" for SCK: ") ;
Serial.println (SPI1.pinIsSCK (MCP2517_SCK) ? "yes" : "NO!!!") ;
SPI1.setMOSI (MCP2517_SDI) ;
SPI1.setMISO (MCP2517_SDO) ;
SPI1.setSCK (MCP2517_SCK) ;
SPI1.begin () ;

4See https://www.pjrc.com/teensy/td_libs_SPI.html
5See https://www.pjrc.com/teensy/pinout.html

10

https://www.pjrc.com/teensy/td_libs_SPI.html
https://www.pjrc.com/teensy/pinout.html

6.3 Using alternate pins on an Adafruit Feather M06 CONNECTING A MCP2517FD TO YOUR MICROCONTROLLER

...
const uint32_t errorCode = can.begin (settings, [] { can.isr () ; }) ;
...

6.3 Using alternate pins on an Adafruit Feather M0

Demo sketch: LoopBackDemoAdafruitFeatherM0.

See https://learn.adafruit.com/using-atsamd21-sercom-to-add-more-spi-i2c-serial-ports/overview doc-
ument that explains in details how configure and set alternate SPI pins on Adafruit Feather M0.

For example, the LoopBackDemoAdafruitFeatherM0 sketch uses SERCOM1 on an Adafruit Feather M0 as illustrated
in figure 5.

Adafruit Feather M0 MCP2517FD

INTMCP2517_INT 5

nCSMCP2517_CS 6 Vcc 10kΩ

SCKSCK 12

SDIMOSI 11

SDOMISO
10

Figure 5 – Using SPI alternate pins on an Adafruit Feather M0

The configuration code is the following. Note you should call the pinPeripheral function after calling the
mySPI.begin function.

#include <wiring_private.h>
...
static const byte MCP2517_SCK = 12 ; // SCK pin, SCK input of MCP2517FD
static const byte MCP2517_SDI = 11 ; // MOSI pin, SDI input of MCP2517FD
static const byte MCP2517_SDO = 10 ; // MISO pin, SDO output of MCP2517FD

SPIClass mySPI (&sercom1,
MCP2517_SDO, MCP2517_SDI, MCP2517_SCK,
SPI_PAD_0_SCK_3, SERCOM_RX_PAD_2);

static const byte MCP2517_CS = 6 ; // CS input of MCP2517FD
static const byte MCP2517_INT = 5 ; // INT output of MCP2517FD
...
ACAN2517 can (MCP2517_CS, mySPI, MCP2517_INT) ;
...
void setup () {

...
mySPI.begin () ;
pinPeripheral (MCP2517_SDI, PIO_SERCOM);
pinPeripheral (MCP2517_SCK, PIO_SERCOM);
pinPeripheral (MCP2517_SDO, PIO_SERCOM);
...
const uint32_t errorCode = can.begin (settings, [] { can.isr () ; }) ;
...

6.4 Connecting to an ESP32

Demo sketches: LoopBackDemoESP32 and LoopBackESP32-intensive. See also the ESP32 demo sketch

11

https://learn.adafruit.com/using-atsamd21-sercom-to-add-more-spi-i2c-serial-ports/overview

6.4 Connecting to an ESP32 6 CONNECTING A MCP2517FD TO YOUR MICROCONTROLLER

SPI_Multiple_Busses.

Link: https://randomnerdtutorials.com/esp32-pinout-reference-gpios/

Two ESP32 SPI busses are available in Arduino, HSPI and VSPI. By default, Arduino SPI is VSPI. The ESP32
default pins are given in table 1. Note that ACAN2517 does not use hardware CS.

Port SCK MOSI MISO CS, not used by ACAN2517
VSPI IO18 IO23 IO19 IO5
HSPI IO14 IO13 IO12 IO15

Table 1 – ESP32 SPI default pins

6.4.1 Connecting MCP2517_CS and MCP2517_INT

For MCP2517_CS, you can use any port that can be configured as digital output. ACAN2517 does not support
hardware chip select. For MCP2517_INT, you can use any port that can be configured as digital input, as ESP32
provides interrupt capability on any input pin.

Note. IO34 to IO39 are input only pins, without internal pullup or pulldown. So you cannot use theses pins
for MCP2517_CS. If you use one of theses pins for MCP2517_INT, you should add an external pullup resistor if you
configure the INT pin as Open Drain (section 17.7.1 page 32).

6.4.2 Using SPI

Default SPI (i.e. VSPI) pins are: SCK=18, MISO=19, MOSI=23 (figure 6).

ESP32 MCP2517FD

INTMCP2517_INT
Vcc10kΩ

nCSMCP2517_CS
Vcc 10kΩ

SCKSCK
18

SDIMOSI
23

SDOMISO
19

Figure 6 – Using VSPI default pins on an ESP32

You can change the default pins with additional arguments (up to three) for SPI.begin :

SPI.begin (SCK_PIN) ; // Uses MISO and MOSI default pins

or

SPI.begin (SCK_PIN, MISO_PIN) ; // Uses MOSI default pin

or

SPI.begin (SCK_PIN, MISO_PIN, MOSI_PIN) ;

Note that SPI.begin accepts a fourth argument, for CS pin. Do not use this feature with ACAN2517.

6.4.3 Using HSPI

The ESP32 demo sketch SPI_Multiple_Busses shows how to use both HSPI and VSPI. However for ACAN2517,
we proceed in a slightly different way:

12

https://randomnerdtutorials.com/esp32-pinout-reference-gpios/

7 CLOCK CONFIGURATION

#include <SPI.h>
....
SPIClass hspi (HSPI) ;
ACAN2517 can (MCP2517_CS, hspi, MCP2517_INT) ;
....
void setup () {

....
hspi.begin () ; // You can also add parameters for not using default pins
....

}

You declare the hspi object before declaring the can object. You can change the hspi name, the important point
is the HSPI argument that specifies the HSPI bus. Then, instead of using the SPI name, you use the hspi name
in:

• can object declaration;

• in begin SPI instruction.

See the LoopBackESP32-intensive sketch for an example with VSPI.

7 Clock configuration

The MCP251xFD Oscillator Block Diagram is given in figure 7. Microchip recommends using a 4, 40 or 20 MHz
CLKIN, Crystal or Ceramic Resonator. A PLL can be enabled to multiply a 4 MHz clock by 10 by setting the
PLLEN bit. Setting the SCLKDIV bit divides the SYSCLK by 2.6

¤ 2017-2018 Microchip Technology Inc. DS20005678B-page 13

CAN FD Controller Module

3.0 CONFIGURATION
The MCP25xxFD should be reset and must be in Configuration mode before starting
configuration. The oscillator, FIFOs and bit time can only be configured in Configuration mode.
This prevents the device from accidentally disturbing the CAN bus.

3.1 Oscillator Configuration
Figure 3-1 shows the block diagram of the oscillator. The oscillator generates the SYSCLK that
is used by the CAN FD Controller Module. CAN FD requires that the sample point in every node
is setup identically. Therefore, a 40 MHz or 20 MHz SYSCLK is recommended. The oscillator
uses a crystal or ceramic resonator, or an external clock as the clock reference.

The OSC register is used to configure the oscillator. A PLL can be enabled to multiply a 4 MHz
clock by 10 by setting the PLLEN bit. Setting the SCLKDIV bit divides the SYSCLK by 2. The
clock is available on the CLKO pin and can be divided using the CLKODIV bits.

The oscillator will be disabled after requesting Sleep mode. OSCDIS can only be cleared by the
application. It will be set automatically after the module enters Sleep mode. Reading
OSCDIS = ‘1’ indicates that the module has entered Sleep mode.

3.1.1 CRYSTAL/RESONATOR SELECTION
Selecting the correct crystal oscillator or ceramic resonator components depends on multiple
factors that are application dependent. Please review section 6.7 of the “PIC32 Family Reference
Manual (DS611112)” and refer to the application notes listed in Section 13.0 “Related
Documents”.

The following crystals, together with 18 pF load capacitors, were successfully used in one of our
evaluation boards: ABM8G-40.000MHZ-18-D2Y-T and ABM8G-20.000MHZ-18-D2Y-T.

Figure 3-1: MCP251xFD Oscillator Block Diagram

3.2 Input/Output Pin Configuration
The IOCON register configures the I/O of the MCP25xxFD. The INT0/GPIO0/XSTBY and INT1/
GPIO1 pins can be configured as interrupt pins or as GPIO pins using the PM0 and PM1 bits. In
case the pins are configured as GPIO pins the direction of the pin is selected using the TRIS0
and TRIS1 bits.

INT, INT0 and INT1 (when configured as interrupts) can be configured as push/pull or open drain
outputs using the INTOD bit. The TXCAN pin can also be configured as open drain by setting the
TXCANOD bit.

Setting the XSTBYEN bit configures the INT0/GPIO0/XSTBY pin to automatically control the
stand-by pin of an external CAN transceiver. The pin is driven high when the MCP25xxFD enters
Sleep mode, and driven low when it exits Sleep mode. Stand-by pin control is not available in
LPM. IOCON is reset in LPM and GPIO0 will be configured as an input.

OSC1

OSC2

4, 40 or 20 MHz
CLKIN,

Crystal or
Ceramic Res.

40/20 MHz

PLLEN

OSCDIS

Divide
By 1, 2

SCLKDIV

SYSCLK

Divide
By 1, 2, 4, 10

CLKO

CLKODIV

PLL
x10

Figure 7 – MCP251xFD Oscillator Block Diagram (DS20005678B, figure 3.1 page 13)

The ACAN2517Settings class defines an enumerated type for specifying your settings:

class ACAN2517Settings {
public: typedef enum {

OSC_4MHz,
OSC_4MHz_DIVIDED_BY_2 ,
OSC_4MHz10xPLL,
OSC_4MHz10xPLL_DIVIDED_BY_2 ,
OSC_20MHz,
OSC_20MHz_DIVIDED_BY_2 ,
OSC_40MHz,
OSC_40MHz_DIVIDED_BY_2

6DS20005678B, page 13.

13

8 TRANSMIT FIFO

} Oscillator ;
...

} ;

The first argument of the ACAN2517Settings constructor specifies the oscillator. For example, with a 4 MHz
clock, the following settings lead to a 40 MHz SYSCLK, and a 1 MHz bit rate:

ACAN2517Settings settings2517 (ACAN2517Settings::OSC_4MHz10xPLL, 1000 * 1000) ;

The eight clock settings are given in the table 2. Note Microchip recommends a 40 MHz or 20 MHz SYSCLK. The
ACAN2517Settings class has two accessors that return current settings: oscillator() and sysClock().

Quartz Oscillator parameter SYSCLK
4 MHz OSC_4MHz 4 MHz
4 MHz OSC_4MHz_DIVIDE_BY_2 2 MHz
4 MHz OSC_4MHz10xPLL 40 MHz
4 MHz OSC_4MHz10xPLL_DIVIDE_BY_2 20 MHz
20 MHz OSC_20MHz 20 MHz
20 MHz OSC_20MHz_DIVIDE_BY_2 10 MHz
40 MHz OSC_40MHz 40 MHz
40 MHz OSC_40MHz_DIVIDE_BY_2 20 MHz

Table 2 – The ACAN2517 oscillator selection

The begin function of ACAN2517 library first configures the selected SPI with a frequency of 1 Mbit/s, for resetting
the MCP2517FD and programming the PLLEN and SCLKDIV bits. Then SPI clock is set to a frequency equal to
SYSCLK / 2, the maximum allowed frequency. More precisely, the SPI library of your microcontroller may adopt
a lower frequency; for example, the maximum frequency of the Arduino Uno SPI is 8 Mbit/s.

Note that an incorrect setting may crash the MCP2517FD firmware (for example, enabling the PLL with a 20
MHz or 40 MHz quartz). In such case, no SPI communication can then be established, and in particular, the
MCP2517FD cannot be reset by software. As the MCP2517FD has no RESET pin, the only way is to power off and
power on the MCP2517FD.

8 Transmit FIFO

The transmit FIFO (see figure 1 page 4) is composed by:

• the driver transmit FIFO, whose size is positive or zero (default 16); you can change the default size by
setting the mDriverTransmitFIFOSize property of your settings object;

• the controller transmit FIFO, whose size is between 1 and 32 (default 32); you can change the default size
by setting the mControllerTransmitFIFOSize property of your settings object.

Having a driver transmit FIFO of zero size is valid; in this case, the FIFO must be considered both empty and
full.

For sending a message throught the Transmit FIFO, call the tryToSend method with a message whose idx
property is zero:

• if the controller transmit FIFO is not full, the message is appended to it, and tryToSend returns true;

• otherwise, if the driver transmit FIFO is not full, the message is appended to it, and tryToSend returns true;
the interrupt service routine will transfer messages from driver transmit FIFO to the controller transmit
FIFO when it becomes not full;

14

8.1 The driverTransmitBufferSize method 9 TRANSMIT QUEUE (TXQ)

• otherwise, both FIFOs are full, the message is not stored and tryToSend returns false.

The transmit FIFO ensures sequentiality of emissions.

There are two other parameters you can override:

• inSettings.mControllerTransmitFIFORetransmissionAttempts is the number of retransmission attempts;
by default, it is set to UnlimitedNumber; other values are Disabled and ThreeAttempts;

• inSettings.mControllerTransmitFIFOPriority is the priority of the transmit FIFO: between 0 (lowest
priority) and 31 (highest priority); default value is 0.

The controller transmit FIFO is located in the MCP2517FD RAM. It requires 16 bytes for each message (see section
11 page 16).

8.1 The driverTransmitBufferSize method

The driverTransmitBufferSize method returns the allocated size of this driver transmit buffer, that is the value
of settings.mDriverTransmitBufferSize when the begin method is called.

const uint32_t s = can.driverTransmitBufferSize () ;

8.2 The driverTransmitBufferCount method

The driverTransmitBufferCount method returns the current number of messages in the driver transmit buffer.

const uint32_t n = can.driverTransmitBufferCount () ;

8.3 The driverTransmitBufferPeakCount method

The driverTransmitBufferPeakCount method returns the peak value of message count in the driver transmit
buffer

const uint32_t max = can.driverTransmitBufferPeakCount () ;

If the transmit buffer is full when tryToSend is called, the return value of this call is false. In such case, the
following calls of driverTransmitBufferPeakCount() will return driverTransmitBufferSize ()+1.

So, when driverTransmitBufferPeakCount() returns a value lower or equal to transmitBufferSize (), it means
that calls to tryToSend have allways returned true, and no overflow occurs on driver transmit buffer.

9 Transmit Queue (TXQ)

The Transmit Queue is handled by the MCP2517FD, its contents is located in its RAM. It is not a FIFO. Messages
inside the TXQ will be transmitted based on their ID. The message with the highest priority ID, lowest ID value
will be transmitted first7.

By default, the transmit queue is disabled (its default size is 0); you can change the default size by setting the
mControllerTXQSize property of your settings object. The maximum valid size is 32.

For sending a message throught the transmit queue, call the tryToSend method with a message whose idx
property is 255:

7DS20005678B, section 4.5, page 28.

15

11 RAM USAGE

• if the transmit queue size is not zero and if it is not full, the message is appended to it, and tryToSend
returns true;

• otherwise, the message is not stored and tryToSend returns false.

There are two other parameters you can override:

• inSettings.mControllerTXQBufferRetransmissionAttempts is the number of retransmission attempts; by
default, it is set to UnlimitedNumber; other values are Disabled and ThreeAttempts;

• inSettings.mControllerTXQBufferPriority is the priority of the TXQ buffer: between 0 (lowest priority)
and 31 (highest priority); default value is 31.

The transmit queue is located in the MCP2517FD RAM. It requires 16 bytes for each message (see section 11 page
16).

10 Receive FIFO

The receive FIFO (see figure 1 page 4) is composed by:

• the driver receive FIFO, whose size is positive (default 32); you can change the default size by setting the
mDriverReceiveFIFOSize property of your settings object;

• the controller receive FIFO, whose size is between 1 and 32 (default 32); you can change the default size
by setting the mControllerReceiveFIFOSize property of your settings object.

When an incoming message is accepted by a receive filter:

• if the controller receive FIFO is full, the message is lost;

• otherwise, it is stored in the controller receive FIFO.

Then, if the driver receive FIFO is not full, the message is transferred by the interrupt service routine from
controller receive FIFO to the driver receive FIFO. So the driver receive FIFO never overflows, but controller
receive FIFO may.

The ACAN2517::available, ACAN2517::receive and ACAN2517::dispatchReceivedMessage methods work only
with the driver receive FIFO. As soon as it becomes not full, messages from controller receive FIFO are transferred
by the interrupt service routine.

The receive FIFO ensures sequentiality of reception.

The controller receive FIFO is located in the MCP2517FD RAM. It requires 16 bytes for each message (see next
section).

11 RAM usage

The MCP2517FD contains a 2048 bytes RAM that is used to store message objects8. There are three different
kinds of message objects:

• Transmit Message Objects used by the TXQ buffer;
8DS20005688B, section 3.3, page 63.

16

12 SENDING FRAMES: THE TRYTOSEND METHOD

• Transmit Message Objects used by the transmit FIFO;

• Receive Message Objects used by the receive FIFO.

Every message object is 16 bytes9, so you can use up to 128 message objects.

By default, the transmit FIFO is 32 message deep (512 bytes), the TXQ buffer is disabled (0 byte), and the
receive FIFO is 32 message deep (512 bytes), given a total amount of 1024 bytes.
The ACAN2517Settings::ramUsage method computes the required memory amount:

uint32_t ACAN2517Settings::ramUsage (void) const {
uint32_t result = 0 ;

//--- TXQ
result += 16 * mControllerTXQSize ;

//--- Receive FIFO (FIFO #1)
result += 16 * mControllerReceiveFIFOSize ;

//--- Send FIFO (FIFO #2)
result += 16 * mControllerTransmitFIFOSize ;

//---
return result ;

}

The ACAN2517:begin method checks the required memory amount is lower or equal than 2048 bytes. Otherwise,
it raises the error code kControllerRamUsageGreaterThan2048.

You can also use the MCP2517FD RAM Usage Calculations Excel sheet from Microchip10.

12 Sending frames: the tryToSend method

...
CANMessage message ;
// Setup message
const bool ok = can.tryToSend (message) ;
...

You call the tryToSend method for sending a message in the CAN network. Note this function returns before
the message is actually sent; this function only appends the message to a transmit buffer.

The idx field of the message specifies the transmit buffer:

• 0 for the transmit FIFO (section 8 page 14) ;

• 255 for the transmit Queue (section 9 page 15).

The method tryToSend returns:

• true if the message has been successfully transmitted to the transmit buffer; note that does not mean that
the CAN frame has been actually sent;

• false if the message has not been successfully transmitted to the transmit buffer, it was full.

So it is wise to systematically test the returned value.

A way is to use a global variable to note if the message has been successfully transmitted to driver transmit
buffer. For example, for sending a message every 2 seconds:

916 bytes because the MCP2517FD is in the CAN 2.0B mode, otherwise a CANFD message object can require up to 72 bytes.
10http://ww1.microchip.com/downloads/en/DeviceDoc/MCP2517FD%20RAM%20Usage%20Calculations%20-%20UG.xlsx

17

http://ww1.microchip.com/downloads/en/DeviceDoc/MCP2517FD%20RAM%20Usage%20Calculations%20-%20UG.xlsx

13 RETRIEVING RECEIVED MESSAGES USING THE RECEIVE METHOD

static uint32_t gSendDate = 0 ;

void loop () {
if (gSendDate < millis ()) {

CANMessage message ;
// Initialize message properties
const bool ok = can.tryToSend (message) ;
if (ok) {

gSendDate += 2000 ;
}

}
}

An other hint to use a global boolean variable as a flag that remains true while the message has not been sent.

static bool gSendMessage = false ;

void loop () {
...
if (frame_should_be_sent) {

gSendMessage = true ;
}
...
if (gSendMessage) {

CANMessage message ;
// Initialize message properties
const bool ok = can.tryToSend (message) ;
if (ok) {

gSendMessage = false ;
}

}
...

}

13 Retrieving received messages using the receive method

There are two ways for retrieving received messages :

• using the receive method, as explained in this section;

• using the dispatchReceivedMessage method (see section 15 page 23).

This is a basic example:

void loop () {
CANMessage message ;
if (can.receive (message)) {

// Handle received message
}
...

}

The receive method:

18

13.1 Driver receive buffer size 13 RETRIEVING RECEIVED MESSAGES USING THE RECEIVE METHOD

• returns false if the driver receive buffer is empty, message argument is not modified;

• returns true if a message has been has been removed from the driver receive buffer, and the message
argument is assigned.

You need to manually dispatch the received messages. If you did not provide any receive filter, you should check
the rtr bit (remote or data frame?), the ext bit (standard or extended frame), and the id (identifier value). The
following snippet dispatches three messages:

void loop () {
CANMessage message ;
if (can.receive (message)) {

if (!message.rtr && message.ext && (message.id == 0x123456)) {
handle_myMessage_0 (message) ; // Extended data frame, id is 0x123456

}else if (!message.rtr && !message.ext && (message.id == 0x234)) {
handle_myMessage_1 (message) ; // Standard data frame, id is 0x234

}else if (message.rtr && !message.ext && (message.id == 0x542)) {
handle_myMessage_2 (message) ; // Standard remote frame, id is 0x542

}
}
...

}

The handle_myMessage_0 function has the following header:

void handle_myMessage_0 (const CANMessage & inMessage) {
...

}

So are the header of the handle_myMessage_1 and the handle_myMessage_2 functions.

13.1 Driver receive buffer size

By default, the driver receive buffer size is 32. You can change it by setting the mReceiveBufferSize property
of settings variable before calling the begin method:

ACAN2517Settings settings (ACAN2517Settings::OSC_4MHz10xPLL, 125 * 1000) ;
settings.mReceiveBufferSize = 100 ;
const uint32_t errorCode = can.begin (settings, [] { can.isr () ; }) ;
...

As the size of CANMessage class is 16 bytes, the actual size of the driver receive buffer is the value of settings.mReceiveBufferSize
* 16.

13.2 The receiveBufferSize method

The receiveBufferSize method returns the size of the driver receive buffer, that is the value of the mReceiveBufferSize
property of settings variable when the the begin method is called.

const uint32_t s = can.receiveBufferSize () ;

19

13.3 The receiveBufferCount method 14 ACCEPTANCE FILTERS

13.3 The receiveBufferCount method

The receiveBufferCount method returns the current number of messages in the driver receive buffer.

const uint32_t n = can.receiveBufferCount () ;

13.4 The receiveBufferPeakCount method

The receiveBufferPeakCount method returns the peak value of message count in the driver receive buffer.

const uint32_t max = can.receiveBufferPeakCount () ;

Note the driver receive buffer can overflow, if messages are not retrieved (by calling the receive or the dispatchReceivedMessage
methods). If an overflow occurs, further calls of can.receiveBufferPeakCount () return can.receiveBufferSize
()+1.

14 Acceptance filters

Note. The acceptance filters ACAN2517FD library, that handles a MCP2517FD CAN Controller in the CANFD
mode11, are almost identical, they differ only from the prototype of the callback routine.
If you invoke the ACAN2517.begin method with two arguments, it configures the MCP2517FD for receiving all
messages.

const uint32_t errorCode = can.begin (settings, [] { can.isr () ; }) ;

If you want to define receive filters, you have to set up an ACAN2517Filters instance object, and pass it as third
argument of the ACAN2517.begin method:

ACAN2517Filters filters ;
... // Append filters
const uint32_t errorCode = can.begin (settings, [] { can.isr () ; }, filters) ;
...

14.1 An example

Sample sketch: the LoopBackDemoTeensy3xWithFilters sketch is an example of filter definition.

ACAN2517Filters filters ;

First, you instanciate an ACAN2517Filters object. It represents an empty list of filters. So, if you do not append
any filter, can.begin (settings, [] { can.isr () ; }, filters) configures the controller in such a way that
no messages can be received.

// Filter #0: receive standard frame with identifier 0x123
filters.appendFrameFilter (kStandard, 0x123, receiveFromFilter0) ;

// Filter #1: receive extended frame with identifier 0x12345678
filters.appendFrameFilter (kExtended, 0x12345678, receiveFromFilter1) ;

You define the filters sequentially, with the four methods: appendPassAllFilter, appendFormatFilter, appendFrameFilter,
appendFilter. Theses methods have as last argument an optional callback routine, that is called by the
dispatchReceivedMessage method (see section 15 page 23).

11https://github.com/pierremolinaro/acan2517FD

20

https://github.com/pierremolinaro/acan2517FD

14.2 The appendPassAllFilter method 14 ACCEPTANCE FILTERS

The appendFrameFilter defines a filter that matches for an extended or standard identifier of a given value.

You can define up to 32 filters. Filter definition registers are outside the MCP2517FD RAM, so defining filter does
not restrict the receive and transmit buffer sizes. Note that MCP2517FD filter does not allow to establish a filter
based on the data / remote information.

// Filter #2: receive standard frame with identifier 0x3n4 (0 <= n <= 15)
filters.appendFilter (kStandard, 0x70F, 0x304, receiveFromFilter2) ;

The appendFilter defines a filter that matches for an identifier that matches the condition:

identifier & 0x70F == 0x304

The kStandard argument constraints to accept only standard frames. So the accepted standard identifiers are
0x304, 0x314, 0x324, ..., 0x3E4, 0x3F4.

//----------------------------------- Filters ok ?
if (filters.filterStatus () != ACAN2517Filters::kFiltersOk) {

Serial.print ("Error filter ") ;
Serial.print (filters.filterErrorIndex ()) ;
Serial.print (": ") ;
Serial.println (filters.filterStatus ()) ;

}

Filter definitions can have error(s), you can check error kind with the filterStatus method. If it returns a value
different than ACAN2517Filters::kFiltersOk, there is at least one error: only the last one is reported, and the
filterErrorIndex returns the corresponding filter index. Note this does not check the number of filters is lower
or equal than 32.

const uint32_t errorCode = can.begin (settings, [] { can.isr () ; }, filters) ;

The begin method checks the filter definition:

• it raises the kMoreThan32Filters error if more than 32 filters are defined;

• it raises the kFilterDefinitionError error if one or more filter definitions are erroneous (that is if
filterStatus returns a value different than ACAN2517Filters::kFiltersOk).

14.2 The appendPassAllFilter method

void ACAN2517Filters::appendPassAllFilter (const ACANCallBackRoutine inCallBackRoutine) ;

This defines a filter that accepts all (standard / extended, remote / data) frames.

If used, this filter must be the last one: as the MCP2517FD tests the filters sequentially, the following filters will
never match.

14.3 The appendFormatFilter method

void ACAN2517Filters::appendFormatFilter (const tFrameFormat inFormat,
const ACANCallBackRoutine inCallBackRoutine) ;

21

14.4 The appendFrameFilter method 14 ACCEPTANCE FILTERS

This defines a filter that accepts:

• if inFormat is equal to kStandard, all standard remote frames and all standard data frames;

• if inFormat is equal to kExtended, all extended remote frames and all extended data frames.

14.4 The appendFrameFilter method

void ACAN2517Filters::appendFrameFilter (const tFrameFormat inFormat,
const uint32_t inIdentifier,
const ACANCallBackRoutine inCallBackRoutine) ;

This defines a filter that accepts:

• if inFormat is equal to kStandard, all standard remote frames and all standard data frames with a given
identifier;

• if inFormat is equal to kExtended, all extended remote frames and all extended data frames with a given
identifier.

If inFormat is equal to kStandard, the inIdentifier should be lower or equal to 0x7FF. Otherwise, settings.filterStatus
() returns the kStandardIdentifierTooLarge error.

If inFormat is equal to kExtended, the inIdentifier should be lower or equal to 0x1FFFFFFF. Otherwise,
settings.filterStatus () returns the kExtendedIdentifierTooLarge error.

14.5 The appendFilter method

void ACAN2517Filters::appendFilter (const tFrameFormat inFormat,
const uint32_t inMask,
const uint32_t inAcceptance,
const ACANCallBackRoutine inCallBackRoutine) ;

The inMask and inAcceptance arguments defines a filter that accepts frame whose identifier verifies:

identifier & inMask == inAcceptance

The inFormat filters standard (if inFormat is equal to kStandard) frames, or extended ones (if inFormat is equal
to kExtended).

Note that inMask and inAcceptance arguments should verify:

inAcceptance & inMask == inAcceptance

Otherwise, settings.filterStatus () returns the kInconsistencyBetweenMaskAndAcceptance error.

If inFormat is equal to kStandard:

• the inAcceptance should be lower or equal to 0x7FF; Otherwise, settings.filterStatus () returns the
kStandardAcceptanceTooLarge error;

• the inMask should be lower or equal to 0x7FF; Otherwise, settings.filterStatus () returns the kStandardMaskTooLarge
error.

22

15 THE DISPATCHRECEIVEDMESSAGE METHOD

If inFormat is equal to kExtended:

• the inAcceptance should be lower or equal to 0x1FFFFFFF; Otherwise, settings.filterStatus () returns
the kExtendedAcceptanceTooLarge error;

• the inMask should be lower or equal to 0x1FFFFFFF; Otherwise, settings.filterStatus () returns the
kExtendedMaskTooLarge error.

15 The dispatchReceivedMessage method

Sample sketch: the LoopBackDemoTeensy3xWithFilters shows how using the dispatchReceivedMessage method.

Instead of calling the receive method, call the dispatchReceivedMessage method in your loop function. It calls
the call back function associated with the matching filter.

If you have not defined any filter, do not use this function, call the receive method.

void loop () {
can.dispatchReceivedMessage () ; // Do not use can.receive any more
...

}

The dispatchReceivedMessage method handles one message at a time. More precisely:

• if it returns false, the driver receive buffer was empty;

• if it returns true, the driver receive buffer was not empty, one message has been removed and dispatched.

So, the return value can used for emptying and dispatching all received messages:

void loop () {
while (can.dispatchReceivedMessage ()) {
}
...

}

If a filter definition does not name a call back function, the corresponding messages are lost.

The dispatchReceivedMessage method has an optional argument – NULL by default: a function name. This
function is called for every message that pass the receive filters, with an argument equal to the matching filter
index:

void filterMatchFunction (const uint32_t inFilterIndex) {
...

}

void loop () {
can.dispatchReceivedMessage (filterMatchFunction) ;
...

}

You can use this function for maintaining statistics about receiver filter matches.

23

16 THE ACAN2517::BEGIN METHOD REFERENCE

16 The ACAN2517::begin method reference

16.1 The prototypes

uint32_t ACAN2517::begin (const ACAN2517Settings & inSettings,
void (* inInterruptServiceRoutine) (void)) ;

This prototype has two arguments, a ACAN2517Settings instance that defines the settings, and the interrupt
service routine, that can be specified by a lambda expression or a function (see section 16.2 page 24). It configures
the controller in such a way that all messages are received (pass-all filter).

uint32_t ACAN2517::begin (const ACAN2517Settings & inSettings,
void (* inInterruptServiceRoutine) (void),
const ACAN2517Filters & inFilters) ;

The second prototype has a third argument, an instance of ACAN2517Filters class that defines the receive filters.

16.2 Defining explicitly the interrupt service routine

In this document, the interrupt service routine is defined by a lambda expression:

const uint32_t errorCode = can.begin (settings, [] { can.isr () ; }) ;

Instead of a lambda expression, you are free to define the interrupt service routine as a function:

void canISR () {
can.isr () ;

}

And you pass canISR as argument to the begin method:

const uint32_t errorCode = can.begin (settings, canISR) ;

16.3 The error code

The ACAN2517::begin method returns an error code. The value 0 denotes no error. Otherwise, you consider
every bit as an error flag, as described in table 3. An error code could report several errors. The ACAN2517 class
defines static constants for naming errors.

16.3.1 kRequestedConfigurationModeTimeOut

The ACAN2517::begin method first configures SPI with a 1 Mbit/s clock, and then requests the configuration
mode. This error is raised when the LCP2517FD does not reach the configuration mode with 2ms. It means that
the MCP2517FD cannot be accessed via SPI.

16.3.2 kReadBackErrorWith1MHzSPIClock

Then, the ACAN2517::begin method checks accessibility by writing and reading back 32-bit values at the first
MCP2517FD RAM address (0x400). The values are 1 << n, with 0 ⩽ n ⩽ 31. This error is raised when the read
value is different from the written one. It means that the MCP2517FD cannot be accessed via SPI.

24

16.3 The error code 16 THE ACAN2517::BEGIN METHOD REFERENCE

Bit Static constant Name Link
0 kRequestedConfigurationModeTimeOut section 16.3.1 page 24
1 kReadBackErrorWith1MHzSPIClock section 16.3.2 page 24
2 kTooFarFromDesiredBitRate section 16.3.3 page 25
3 kInconsistentBitRateSettings section 16.3.4 page 25
4 kINTPinIsNotAnInterrupt section 16.3.5 page 25
5 kISRIsNull section 16.3.6 page 25
6 kFilterDefinitionError section 16.3.7 page 26
7 kMoreThan32Filters section 16.3.8 page 26
8 kControllerReceiveFIFOSizeIsZero section 16.3.9 page 26
9 kControllerReceiveFIFOSizeGreaterThan32 section 16.3.10 page 26
10 kControllerTransmitFIFOSizeIsZero section 16.3.11 page 26
11 kControllerTransmitFIFOSizeGreaterThan32 section 16.3.12 page 26
12 kControllerRamUsageGreaterThan2048 section 16.3.13 page 26
13 kControllerTXQPriorityGreaterThan31 section 16.3.14 page 26
14 kControllerTransmitFIFOPriorityGreaterThan31 section 16.3.15 page 26
15 kControllerTXQSizeGreaterThan32 section 16.3.16 page 26
16 kRequestedModeTimeOut section 16.3.17 page 27
17 kX10PLLNotReadyWithin1MS section 16.3.18 page 27
18 kReadBackErrorWithFullSpeedSPIClock section 16.3.19 page 27

Table 3 – The ACAN2517::begin method error code bits

16.3.3 kTooFarFromDesiredBitRate

This error occurs when the mBitRateClosedToDesiredRate property of the settings object is false. This means
that the ACAN2517Settings constructor cannot compute a CAN bit configuration close enough to the desired bit
rate. For example:

void setup () {
ACAN2517Settings settings (ACAN2517Settings::OSC_4MHz10xPLL, 1) ; // 1 bit/s !!!
// Here, settings.mBitRateClosedToDesiredRate is false
const uint32_t errorCode = can.begin (settings, [] { can.isr () ; }) ;
// Here, errorCode contains ACAN2517::kCANBitConfigurationTooFarFromDesiredBitRate

}

16.3.4 kInconsistentBitRateSettings

The ACAN2517Settings constructor allways returns consistent bit rate settings – even if the settings provide
a bit rate too far away the desired bit rate. So this error occurs only when you have changed the CAN bit
properties (mBitRatePrescaler, mPropagationSegment, mPhaseSegment1, mPhaseSegment2, mSJW), and one or
more resulting values are inconsistent. See section 17.2 page 30.

16.3.5 kINTPinIsNotAnInterrupt

The pin you provide for handling the MCP2517FD interrupt has no interrupt capability.

16.3.6 kISRIsNull

The interrupt service routine argument is NULL, you should provide a valid function.

25

16.3 The error code 16 THE ACAN2517::BEGIN METHOD REFERENCE

16.3.7 kFilterDefinitionError

settings.filterStatus() returns a value different than ACAN2517Filters::kFiltersOk, meaning that one or
more filters are erroneous. See section 14.1 page 20.

16.3.8 kMoreThan32Filters

You have defined more than 32 filters. MCP2517FD cannot handle more than 32 filters.

16.3.9 kControllerReceiveFIFOSizeIsZero

You have assigned 0 to settings.mControllerReceiveFIFOSize. The controller receive FIFO size should be
greater than 0.

16.3.10 kControllerReceiveFIFOSizeGreaterThan32

You have assigned a value greater than 32 to settings.mControllerReceiveFIFOSize. The controller receive
FIFO size should be lower or equal than 32.

16.3.11 kControllerTransmitFIFOSizeIsZero

You have assigned 0 to settings.mControllerTransmitFIFOSize. The controller transmit FIFO size should be
greater than 0.

16.3.12 kControllerTransmitFIFOSizeGreaterThan32

You have assigned a value greater than 32 to settings.mControllerTransmitFIFOSize. The controller transmit
FIFO size should be lower or equal than 32.

16.3.13 kControllerRamUsageGreaterThan2048

The configuration you have defined requires more than 2048 bytes of MCP2517FD internal RAM. See section 11
page 16.

16.3.14 kControllerTXQPriorityGreaterThan31

You have assigned a value greater than 31 to settings.mControllerTXQBufferPriority. The controller transmit
FIFO size should be lower or equal than 31.

16.3.15 kControllerTransmitFIFOPriorityGreaterThan31

You have assigned a value greater than 31 to settings.mControllerTransmitFIFOPriority. The controller
transmit FIFO size should be lower or equal than 31.

16.3.16 kControllerTXQSizeGreaterThan32

You have assigned a value greater than 32 to settings.mControllerTXQSize. The controller transmit FIFO size
should be lower than 32.

26

17 ACAN2517SETTINGS CLASS REFERENCE

16.3.17 kRequestedModeTimeOut

During configuration by the ACAN2517::begin method, the MCP2517FD is in the configuration mode. At this end
of this process, the mode specified by the inSettings.mRequestedMode value is requested. The switch to this
mode is not immediate, a register is repetitively read for checking the switch is done. This error is raised if the
switch is not completed within a delay between 1 ms and 2 ms.

16.3.18 kX10PLLNotReadyWithin1MS

You have requested the QUARTZ_4MHz10xPLL oscillator mode, enabling the 10x PLL. The ACAN2517::begin method
waits during 2ms the PLL to be locked. This error is raised when the PLL is not locked within 2 ms.

16.3.19 kReadBackErrorWithFullSpeedSPIClock

After the oscillator configuration has been established, the ACAN2517::begin method configures the SPI at its
full speed (SYSCLK/2, and checks accessibility by writing and reading back 32-bit values at the first MCP2517FD
RAM address (0x400). The values are 1 << n, with 0 ⩽ n ⩽ 31. This error is raised when the read value is
different from the written one.

17 ACAN2517Settings class reference

Note. The ACAN2517Settings class is not Arduino specific. You can compile it on your desktop computer with
your favorite C++ compiler. In the https://github.com/pierremolinaro/ACAN2517-dev GitHub repository, a
command line tool is defined for exploring all CAN bit rates from 1 bit/s and 20 Mbit/s. It also checks that
computed CAN bit decompositions are all consistent, even if they are too far from the desired baud rate.

17.1 The ACAN2517Settings constructor: computation of the CAN bit settings

The constructor of the ACAN2517Settings has two mandatory arguments: the quartz frequency, and the desired
bit rate. It tries to compute the CAN bit settings for this bit rate. If it succeeds, the constructed object has its
mBitRateClosedToDesiredRate property set to true, otherwise it is set to false. For example:

void setup () {
ACAN2517Settings settings (ACAN2517Settings::OSC_4MHz10xPLL,

1 * 1000 * 1000) ; // 1 Mbit/s
// Here, settings.mBitRateClosedToDesiredRate is true
...

}

Of course, with a 40 MHz or 20 MHz SYSCLK, CAN bit computation allways succeeds for classical bit rates: 1
Mbit/s, 500 kbit/s, 250 kbit/s, 125 kbit/s. But CAN bit computation can also succeed for some unusual bit
rates, as 727 kbit/s. You can check the result by computing actual bit rate, and the distance from the desired
bit rate:

void setup () {
...
ACAN2517Settings settings (ACAN2517Settings::OSC_4MHz10xPLL,

727 * 1000) ; // 727 kbit/s
Serial.print ("mBitRateClosedToDesiredRate: ") ;
Serial.println (settings.mBitRateClosedToDesiredRate) ; // 1 (--> is true)
Serial.print ("actual bit rate: ") ;
Serial.println (settings.actualBitRate ()) ; // 727272 bit/s
Serial.print ("distance: ") ;

27

https://github.com/pierremolinaro/ACAN2517-dev

17.1 The ACAN2517Settings constructor: computation of the CAN bit settings17 ACAN2517SETTINGS CLASS REFERENCE

Serial.println (settings.ppmFromDesiredBitRate ()) ; // 375 ppm
...

}

The actual bit rate is 727,272 bit/s, and its distance from desired bit rate is 375 ppm. ”ppm” stands for ”part-
per-million”, and 1 ppm = 10−6. In other words, 10, 000 ppm = 1%.
By default, a desired bit rate is accepted if the distance from the computed actual bit rate is lower or equal
to 1, 000 ppm = 0.1 %. You can change this default value by adding your own value as third argument of
ACAN2517Settings constructor:

void setup () {
...
ACAN2517Settings settings (ACAN2517Settings::OSC_4MHz10xPLL,

727 * 1000, 100) ;
Serial.print ("mBitRateClosedToDesiredRate: ") ;
Serial.println (settings.mBitRateClosedToDesiredRate) ; // 0 (--> is false)
Serial.print ("actual bit rate: ") ;
Serial.println (settings.actualBitRate ()) ; // 727272 bit/s
Serial.print ("distance: ") ;
Serial.println (settings.ppmFromDesiredBitRate ()) ; // 375 ppm
...

}

The third argument does not change the CAN bit computation, it only changes the acceptance test for setting
the mBitRateClosedToDesiredRate property. For example, you can specify that you want the computed actual
bit to be exactly the desired bit rate:

void setup () {
...
ACAN2517Settings settings (ACAN2517Settings::OSC_4MHz10xPLL,

500 * 1000, 0) ; // Max distance is 0 ppm
Serial.print ("mBitRateClosedToDesiredRate: ") ;
Serial.println (settings.mBitRateClosedToDesiredRate) ; // 1 (--> is true)
Serial.print ("actual bit rate: ") ;
Serial.println (settings.actualBitRate ()) ; // 500,000 bit/s
Serial.print ("distance: ") ;
Serial.println (settings.ppmFromDesiredBitRate ()) ; // 0 ppm
...

}

In any way, the bit rate computation allways gives a consistent result, resulting an actual bit rate closest from
the desired bit rate. For example:

void setup () {
...
ACAN2517Settings settings (ACAN2517Settings::OSC_4MHz10xPLL,

423 * 1000) ; // 423 kbit/s
Serial.print ("mBitRateClosedToDesiredRate: ") ;
Serial.println (settings.mBitRateClosedToDesiredRate) ; // 0 (--> is false)
Serial.print ("actual bit rate: ") ;
Serial.println (settings.actualBitRate ()) ; // 421052 bit/s
Serial.print ("distance: ") ;
Serial.println (settings.ppmFromDesiredBitRate ()) ; // 4603 ppm
...

}

You can get the details of the CAN bit decomposition. For example:

28

17.1 The ACAN2517Settings constructor: computation of the CAN bit settings17 ACAN2517SETTINGS CLASS REFERENCE

void setup () {
...
ACAN2517Settings settings (ACAN2517Settings::OSC_4MHz10xPLL,

423 * 1000) ; // 423 kbit/s
Serial.print ("mBitRateClosedToDesiredRate: ") ;
Serial.println (settings.mBitRateClosedToDesiredRate) ; // 0 (--> is false)
Serial.print ("actual bit rate: ") ;
Serial.println (settings.actualBitRate ()) ; // 421052 bit/s
Serial.print ("distance: ") ;
Serial.println (settings.ppmFromDesiredBitRate ()) ; // 4603 ppm
Serial.print ("Bit rate prescaler: ") ;
Serial.println (settings.mBitRatePrescaler) ; // BRP = 1
Serial.print ("Phase segment 1: ") ;
Serial.println (settings.mPhaseSegment1) ; // PS1 = 75
Serial.print ("Phase segment 2: ") ;
Serial.println (settings.mPhaseSegment2) ; // PS2 = 19
Serial.print ("Resynchronization Jump Width: ") ;
Serial.println (settings.mSJW) ; // SJW = 19
Serial.print ("Triple Sampling: ") ;
Serial.println (settings.mTripleSampling) ; // 0, meaning single sampling
Serial.print ("Sample Point: ") ;
Serial.println (settings.samplePointFromBitStart ()) ; // 80, meaning 80%
Serial.print ("Consistency: ") ;
Serial.println (settings.CANBitSettingConsistency ()) ; // 0, meaning Ok
...

}

The samplePointFromBitStart method returns sample point, expressed in per-cent of the bit duration from the
beginning of the bit.

Note the computation may calculate a bit decomposition too far from the desired bit rate, but it is allways
consistent. You can check this by calling the CANBitSettingConsistency method.

You can change the property values for adapting to the particularities of your CAN network propagation time.
By example, you can increment the mPhaseSegment1 value, and decrement the mPhaseSegment2 value in order to
sample the CAN Rx pin later.

void setup () {
...
ACAN2517Settings settings (ACAN2517Settings::OSC_4MHz10xPLL,

500 * 1000) ; // 500 kbit/s
Serial.print ("mBitRateClosedToDesiredRate: ") ;
Serial.println (settings.mBitRateClosedToDesiredRate) ; // 1 (--> is true)
settings.mPhaseSegment1 -= 8 ; // 63 -> 55: safe, 1 <= PS1 <= 256
settings.mPhaseSegment2 += 8 ; // 16 -> 24: safe, 1 <= PS2 <= 128
settings.mSJW += 8 ; // 16 -> 24: safe, 1 <= SJW <= PS2
Serial.print ("Sample Point: ") ;
Serial.println (settings.samplePointFromBitStart ()) ; // 68, meaning 68%
Serial.print ("actual bit rate: ") ;
Serial.println (settings.actualBitRate ()) ; // 500000: ok, bit rate did not change
Serial.print ("Consistency: ") ;
Serial.println (settings.CANBitSettingConsistency ()) ; // 0, meaning Ok
...

}

Be aware to allways respect CAN bit timing consistency! The MCP2517FD constraints are:

29

17.2 The CANBitSettingConsistency method 17 ACAN2517SETTINGS CLASS REFERENCE

1 ⩽ mBitRatePrescaler ⩽ 256

2 ⩽ mPhaseSegment1 ⩽ 256

1 ⩽ mPhaseSegment2 ⩽ 128

1 ⩽ mSJW ⩽ mPhaseSegment2

Resulting actual bit rate is given by:

Actual bit rate =
SYSCLK

mBitRatePrescaler · (1 + mPhaseSegment1+ mPhaseSegment2)

And the sampling point (in per-cent unit) are given by:

Sampling point = 100 ·
1 + mPhaseSegment1

1 + mPhaseSegment1+ mPhaseSegment2

17.2 The CANBitSettingConsistency method

This method checks the CAN bit decomposition (given by mBitRatePrescaler, mPhaseSegment1, mPhaseSegment2,
mSJW property values) is consistent.

void setup () {
...
ACAN2517Settings settings (ACAN2517Settings::OSC_4MHz10xPLL,

500 * 1000) ; // 500 kbit/s
Serial.print ("mBitRateClosedToDesiredRate: ") ;
Serial.println (settings.mBitRateClosedToDesiredRate) ; // 1 (--> is true)
settings.mPhaseSegment1 = 0 ; // Error, mPhaseSegment1 should be >= 1 (and <= 8)
Serial.print ("Consistency: 0x") ;
Serial.println (settings.CANBitSettingConsistency (), HEX) ; // 0x10, meaning error
...

}

The CANBitSettingConsistency method returns 0 if CAN bit decomposition is consistent. Otherwise, the
returned value is a bit field that can report several errors – see table 4.
The ACAN2517Settings class defines static constant properties that can be used as mask error. For example:

public: static const uint32_t kBitRatePrescalerIsZero = 1 << 0 ;

17.3 The actualBitRate method

The actualBitRate method returns the actual bit computed from mBitRatePrescaler, mPropagationSegment,
mPhaseSegment1, mPhaseSegment2, mSJW property values.

void setup () {
...

30

17.4 The exactBitRate method 17 ACAN2517SETTINGS CLASS REFERENCE

Bit Error Name Error
0 kBitRatePrescalerIsZero mBitRatePrescaler == 0
1 kBitRatePrescalerIsGreaterThan256 mBitRatePrescaler > 256
2 kPhaseSegment1IsLowerThan2 mPhaseSegment1 < 2
3 kPhaseSegment1IsGreaterThan256 mPhaseSegment1 > 256
4 kPhaseSegment2IsZero mPhaseSegment2 == 0
5 kPhaseSegment2IsGreaterThan128 mPhaseSegment2 > 128
6 kSJWIsZero mSJW == 0
7 kSJWIsGreaterThan128 mSJW > 128
8 kSJWIsGreaterThanPhaseSegment1 mSJW > mPhaseSegment1
9 kSJWIsGreaterThanPhaseSegment2 mSJW > mPhaseSegment2

Table 4 – The ACAN2517Settings::CANBitSettingConsistency method error codes

ACAN2517Settings settings (ACAN2517Settings::OSC_4MHz10xPLL,
440 * 1000) ; // 440 kbit/s

Serial.print ("mBitRateClosedToDesiredRate: ") ;
Serial.println (settings.mBitRateClosedToDesiredRate) ; // 0 (--> is false)
Serial.print ("actual bit rate: ") ;
Serial.println (settings.actualBitRate ()) ; // 444,444 bit/s
...

}

Note. If CAN bit settings are not consistent (see section 17.2 page 30), the returned value is irrelevant.

17.4 The exactBitRate method

The exactBitRate method returns true if the actual bit rate is equal to the desired bit rate, and false otherwise.

void setup () {
...
ACAN2517Settings settings (ACAN2517Settings::OSC_4MHz10xPLL,

727 * 1000) ; // 727 kbit/s
Serial.print ("mBitRateClosedToDesiredRate: ") ;
Serial.println (settings.mBitRateClosedToDesiredRate) ; // 1 (--> is true)
Serial.print ("actual bit rate: ") ;
Serial.println (settings.actualBitRate ()) ; // 727272 bit/s
Serial.print ("distance: ") ;
Serial.println (settings.ppmFromDesiredBitRate ()) ; // 375 ppm
Serial.print ("Exact: ") ;
Serial.println (settings.exactBitRate ()) ; // 0 (---> false)
...

}

Note. If CAN bit settings are not consistent (see section 17.2 page 30), the returned value is irrelevant.

With a 40 MHz SYSCLK, the 46 exact bit rates are : 500 bit/s, 625 bit/s, 640 bit/s, 800 bit/s, 1 kbit/s, 1250 bit/s,
1280 bit/s, 1600 bit/s, 2 kbit/s, 2500 bit/s, 2560 bit/s, 3125 bit/s, 3200 bit/s, 4 kbit/s, 5 kbit/s, 6250 bit/s, 6400
bit/s, 8 kbit/s, 10 kbit/s, 12500 bit/s, 12800 bit/s, 15625 bit/s, 16 kbit/s, 20 kbit/s, 25 kbit/s, 31250 bit/s, 32
kbit/s, 40 kbit/s, 50 kbit/s, 62500 bit/s, 64 kbit/s, 78125 bit/s, 80 kbit/s, 100 kbit/s, 125 kbit/s, 156250 bit/s,
160 kbit/s, 200 kbit/s, 250 kbit/s, 312500 bit/s, 320 kbit/s, 400 kbit/s, 500 kbit/s, 625 kbit/s, 800 kbit/s, 1
Mbit/s.

31

17.5 The ppmFromDesiredBitRate method 17 ACAN2517SETTINGS CLASS REFERENCE

17.5 The ppmFromDesiredBitRate method

The ppmFromDesiredBitRate method returns the distance from the actual bit rate to the desired bit rate, ex-
pressed in part-per-million (ppm): 1 ppm = 10−6. In other words, 10, 000 ppm = 1%.

void setup () {
...
ACAN2517Settings settings (ACAN2517Settings::OSC_4MHz10xPLL,

727 * 1000) ; // 727 kbit/s
Serial.print ("mBitRateClosedToDesiredRate: ") ;
Serial.println (settings.mBitRateClosedToDesiredRate) ; // 1 (--> is true)
Serial.print ("actual bit rate: ") ;
Serial.println (settings.actualBitRate ()) ; // 727272 bit/s
Serial.print ("distance: ") ;
Serial.println (settings.ppmFromDesiredBitRate ()) ; // 375 ppm
...

}

Note. If CAN bit settings are not consistent (see section 17.2 page 30), the returned value is irrelevant.

17.6 The samplePointFromBitStart method

The samplePointFromBitStart method returns the distance of sample point from the start of the CAN bit,
expressed in part-per-cent (ppc): 1 ppc = 1% = 10−2. If triple sampling is selected, the returned value is the
distance of the first sample point from the start of the CAN bit. It is a good practice to get sample point from
65% to 80%. The bit rate calculator tries to set the sample point at 80%.

void setup () {
...
ACAN2517Settings settings (ACAN2517Settings::OSC_4MHz10xPLL,

500 * 1000) ; // 500 kbit/s
Serial.print ("mBitRateClosedToDesiredRate: ") ;
Serial.println (settings.mBitRateClosedToDesiredRate) ; // 1 (--> is true)
Serial.print ("Sample point: ") ;
Serial.println (settings.samplePointFromBitStart ()) ; // 80 --> 80%
...

}

Note. If CAN bit settings are not consistent (see section 17.2 page 30), the returned value is irrelevant.

17.7 Properties of the ACAN2517Settings class

All properties of the ACAN2517Settings class are declared public and are initialized (table 5). The default values
of properties from mDesiredBitRate until mTripleSampling corresponds to a CAN bit rate of QUARTZ_FREQUENCY
/ 64, that is 250,000 bit/s for a 16 MHz quartz.

17.7.1 The mTXCANIsOpenDrain property

This property defines the outpiut mode of the TXCAN pin:

• if false (default value), the TXCAN pin is a push/pull output;

• if true, the TXCAN pin is an open drain output.

32

17.7 Properties of the ACAN2517Settings class 17 ACAN2517SETTINGS CLASS REFERENCE

Property Type Initial value Comment
mOscillator Oscillator Constructor argument
mSysClock uint32_t Constructor argument
mDesiredBitRate uint32_t Constructor argument
mBitRatePrescaler uint16_t 0 See section 17.1 page 27
mPhaseSegment1 uint16_t 0 See section 17.1 page 27
mPhaseSegment2 uint8_t 0 See section 17.1 page 27
mSJW uint8_t 0 See section 17.1 page 27
mBitRateClosedToDesiredRate bool false See section 17.1 page 27
mTXCANIsOpenDrain bool false See section 17.7.1 page 32
mCLKOPin CLKOpin CLKO_DIVIDED_BY_10 See section 17.7.2 page 33
mRequestedMode RequestedMode Normal20B See section 17.7.3 page 34
mDriverTransmitFIFOSize uint16_t 16 See section 8 page 14
mControllerTransmitFIFOSize uint8_t 32 See section 8 page 14
mControllerTransmitFIFOPriority uint8_t 0 See section 8 page 14
mControllerTransmitFIFO-
RetransmissionAttempts

RetransmissionAttempts UnlimitedNumber See section 8 page 14

mControllerTXQSize uint8_t 0 See section 9 page 15
mControllerTXQBufferPriority uint8_t 31 See section 9 page 15
mControllerTXQBuffer-
RetransmissionAttempts

RetransmissionAttempts UnlimitedNumber See section 9 page 15

mDriverReceiveFIFOSize uint16_t 32 See section 10 page 16
mControllerReceiveFIFOSize uint8_t 32 See section 10 page 16

Table 5 – Properties of the ACAN2517Settings class

17.7.2 The CLKO/SOF pin

The CLKO/SOF pin of the MCP2517FD controller is an output pin has five functions12:

• output internally generated clock;

• output internally generated clock divided by 2;

• output internally generated clock divided by 4;

• output internally generated clock divided by 10;

• output SOF (”Start Of Frame”).

By default, after power on, CLKO/SOF pin outputs internally generated clock divided by 10.

The ACAN2517Settings class defines an enumerated type for specifying these settings:

class ACAN2517Settings {
public: typedef enum {CLKO_DIVIDED_BY_1, CLKO_DIVIDED_BY_2,

CLKO_DIVIDED_BY_4, CLKO_DIVIDED_BY_10,
SOF} CLKOpin ;

...
} ;

The mCLKOPin property lets you select the CLKO/SOF pin function; by default, this property value is CLKO_DIVIDED_BY_10,
that corresponds to MCP2517FD power on setting. For example:

12Internally generated clock is not SYSCLK, see figure 7 page 13.

33

17.7 Properties of the ACAN2517Settings class 17 ACAN2517SETTINGS CLASS REFERENCE

ACAN2517Settings settings (ACAN2517Settings::OSC_4MHz10xPLL, CAN_BIT_RATE) ;
...
settings.mCLKOPin = ACAN2517Settings::SOF ;
...
const uint32_t errorCode = can.begin (settings, [] { can.isr () ; }) ;

17.7.3 The mRequestedMode property

This property defines the mode requested at this end of the configuration: Normal20B (default value), InternalLoopBack,
ExternalLoopBack, ListenOnly.

34

	Versions
	Features
	Data flow
	Data flow in default configuration
	Data flow, custom configuration

	A simple example: LoopBackDemo
	The CANMessage class
	Connecting a MCP2517FD to your microcontroller
	Pullup resistor on nCS pin
	Using alternate pins on Teensy 3.x
	Using alternate pins on an Adafruit Feather M0
	Connecting to an ESP32
	Connecting MCP2517_CS and MCP2517_INT
	Using SPI
	Using HSPI

	Clock configuration
	Transmit FIFO
	The driverTransmitBufferSize method
	The driverTransmitBufferCount method
	The driverTransmitBufferPeakCount method

	Transmit Queue (TXQ)
	Receive FIFO
	RAM usage
	Sending frames: the tryToSend method
	Retrieving received messages using the receive method
	Driver receive buffer size
	The receiveBufferSize method
	The receiveBufferCount method
	The receiveBufferPeakCount method

	Acceptance filters
	An example
	The appendPassAllFilter method
	The appendFormatFilter method
	The appendFrameFilter method
	The appendFilter method

	The dispatchReceivedMessage method
	The ACAN2517::begin method reference
	The prototypes
	Defining explicitly the interrupt service routine
	The error code
	kRequestedConfigurationModeTimeOut
	kReadBackErrorWith1MHzSPIClock
	kTooFarFromDesiredBitRate
	kInconsistentBitRateSettings
	kINTPinIsNotAnInterrupt
	kISRIsNull
	kFilterDefinitionError
	kMoreThan32Filters
	kControllerReceiveFIFOSizeIsZero
	kControllerReceiveFIFOSizeGreaterThan32
	kControllerTransmitFIFOSizeIsZero
	kControllerTransmitFIFOSizeGreaterThan32
	kControllerRamUsageGreaterThan2048
	kControllerTXQPriorityGreaterThan31
	kControllerTransmitFIFOPriorityGreaterThan31
	kControllerTXQSizeGreaterThan32
	kRequestedModeTimeOut
	kX10PLLNotReadyWithin1MS
	kReadBackErrorWithFullSpeedSPIClock

	ACAN2517Settings class reference
	The ACAN2517Settings constructor: computation of the CAN bit settings
	The CANBitSettingConsistency method
	The actualBitRate method
	The exactBitRate method
	The ppmFromDesiredBitRate method
	The samplePointFromBitStart method
	Properties of the ACAN2517Settings class
	The mTXCANIsOpenDrain property
	The CLKO/SOF pin
	The mRequestedMode property

