
ACAN2515 library for Arduino
Version 1.0.1

Pierre Molinaro

October 23, 2018

Contents
1 Versions 2

2 Features 3

3 Data flow 3

4 A simple example: LoopBackDemo 4

5 The CANMessage class 8

6 Connecting a MCP2515 to your microcontroller 8
6.1 Using alternate pins on Teensy 3.x . 9
6.2 Using alternate pins on an Adafruit Feather M0 . 10

7 Sending frames 11
7.1 The tryToSend method . 11
7.2 Driver transmit buffer sizes . 13
7.3 The transmitBufferSize method . 13
7.4 The transmitBufferCount method . 13
7.5 The transmitBufferPeakCount method . 13

8 Retrieving received messages using the receive method 14
8.1 Driver receive buffer size . 15
8.2 The receiveBufferSize method . 15
8.3 The receiveBufferCount method . 15
8.4 The receiveBufferPeakCount method . 15

9 Acceptance filters 16
9.1 Default behaviour . 16
9.2 Defining filters . 17

1

1 VERSIONS

9.2.1 Extended frames acceptance . 19
9.2.2 Standard frames acceptance . 20

10 The dispatchReceivedMessage method 21

11 The ACAN2515::begin method reference 22
11.1 The ACAN2515::begin method prototypes . 22
11.2 Defining explicitly the interrupt service routine . 22
11.3 The error code . 22

11.3.1 kNoMCP2515 . 23
11.3.2 kTooFarFromDesiredBitRate . 23
11.3.3 kInconsistentBitRateSettings . 23
11.3.4 kINTPinIsNotAnInterrupt . 23
11.3.5 kISRIsNull . 24
11.3.6 kRequestedModeTimeOut . 24
11.3.7 kAcceptanceFilterArrayIsNULL . 24
11.3.8 kOneFilterMaskRequiresOneOrTwoAcceptanceFilters 24
11.3.9 kTwoFilterMasksRequireThreeToSixAcceptanceFilters 24

12 ACAN2515Settings class reference 24
12.1 The ACAN2515Settings constructor: computation of the CAN bit settings 24
12.2 The CANBitSettingConsistency method . 28
12.3 The actualBitRate method . 29
12.4 The exactBitRate method . 29
12.5 The ppmFromDesiredBitRate method . 30
12.6 The samplePointFromBitStart method . 30
12.7 Properties of the ACAN2515Settings class . 31

12.7.1 The mOneShotModeEnabled property . 31
12.7.2 The mTXBPriority property . 32
12.7.3 The mRequestedMode property . 32
12.7.4 The mCLKOUT property . 32
12.7.5 The mRolloverEnable property . 32

13 CAN controller state 32
13.1 The receiveErrorCounter method . 32
13.2 The transmitErrorCounter method . 32

1 Versions

Version Date Comment
1.0.0 October 12, 2018 Initial release
1.0.1 October 23, 2018 Workaround external interrupt masking for Teensy 3.5 / 3.6

Use of a lambda function for interrupt service routine

2

3 DATA FLOW

2 Features

The ACAN2515 library is a MCP2515 CAN (”Controller Area Network”) Controller driver for any board
running Arduino. It has been designed to make it easy to start and to be easily configurable:

• default configuration sends and receives any frame – no default filter to provide;

• efficient built-in CAN bit settings computation from user bit rate;

• user can fully define its own CAN bit setting values;

• all reception filter registers are easily defined (2 mask registers, 6 acceptance registers);

• reception filters accept call back functions;

• driver transmit buffer sizes are customisable;

• driver receive buffer size is customisable;

• overflow of the driver receive buffer is detectable;

• loop back, self reception, listing only MCP2515 controller modes are selectable.

3 Data flow

The figure 1 illustrates message flow for sending and receiving CAN messages.

Sending messages. A message is defined by an instance of CANMessage class. For sending a message,
user code calls the tryToSend method – see section 7 page 11, and the idx property of the sent message
specifies a transmit buffer. The ACAN2515 driver defines 3 transmit buffers, each of them corresponding
to the one of the 3 MCP2515 transmit buffers (TXB0, TXB1, TXB2). These buffers can contain at most one
message. The message is transfered in a driver transmit before to be moved by the interrupt service
routine into the corresponding MCP2515 transmit buffer. The size of the Driver Transmit Buffer 0 is
16 by default, the size of the Driver Transmit Buffer 1 and Driver Transmit Buffer 1 are zero by default
– see section 7.2 page 13 for changing the default values.

Receiving messages. The MCP2515 CAN Protocol Engine transmits all correct frames to the reception
filters. By default, they are configured as pass-all, see section 9 page 16 for configuring them. Messages
that pass the filters are stored in the Reception Registers (RXB0 and RXB1). The interrupt service routine
transfers the messages from these registers to the Driver Receive Buffer. The size of the Driver Receive
Buffer is 32 by default – see section 8.1 page 15 for changing the default value. Three user methods are
available:

• the available method returns false if the Driver Receive Buffer is empty, and true otherwise;

• the receive method retrieves messages from the Driver Receive Buffer – see section 8 page 14;

• the dispatchReceivedMessage method if you have defined the reception filters that name a call-
back function – see section 10 page 21.

3

4 A SIMPLE EXAMPLE: LOOPBACKDEMO

User code

ACAN2515 driver

available
receive

dispatchReceivedMessagetryToSend

MCP2515

Driver
Transmit Buffer 0

(FIFO)

Driver
Transmit Buffer 1

(FIFO)

Driver
Transmit Buffer 2

(FIFO)

Driver
Reception Buffer

(FIFO)

CAN Protocol Engine

TXCAN RXCAN

TXB0 TXB1 TXB2

Reception filters

Reception Registers

Figure 1 – Message flow in ACAN2515 driver and MCP2515 CAN Controller

Sequentiality. The ACAN2515 driver and the configuration of the MCP2515 controller can ensure sequen-
tiality of data messages1, under some conditions. The driver ensures the sequentiality of the emissions,
provided that you use only one transmit buffer: if an user program calls tryToSend first for a message
M1 specifying the Bi buffer and then for a message M2 specifying the same buffer, the driver ensures
that M1 will be sent on the CAN bus before M2. However, if M2 specifies an other buffer, there is
no guarantee that M1 will appear on the bus before M2. In reception, the driver ensures sequential-
ity based on the reception filters: if a received message M1 passes a given filter, and then a received
message M2 passes the same filter, then the messages are retrieved in this order by the receive or the
dispatchReceivedMessage methods.

4 A simple example: LoopBackDemo

The following code is a sample code for introducing the ACAN2515 library, extracted from the LoopBackDemo
sample code included in the library distribution. It runs natively on any Arduino compatible board, and
is easily adaptable to any microcontroller supporting SPI. It demonstrates how to configure the driver,

1Sequentiality means that if an user program calls tryToSend first for a message M1 and then for a message M2, the
message M1 will be allways retrieved by receive or dispatchReceivedMessage before the message M2.

4

4 A SIMPLE EXAMPLE: LOOPBACKDEMO

to send a CAN message, and to receive a CAN message.

Note: this code runs without any CAN transceiver (the TXCAN and RXCAN pins of the MCP2515 are left
open), the MCP2515 is configured with the loop back setting on.

#include <ACAN2515.h>

This line includes the ACAN2515 library.

static const byte MCP2515_SCK = 27 ; // SCK input of MCP2515
static const byte MCP2515_SI = 28 ; // SI input of MCP2515
static const byte MCP2515_SO = 39 ; // SO output of MCP2515

Define the SPI alternate pins. This is actually required if you uses SPI alternate pins.

static const byte MCP2515_CS = 20 ; // CS input of MCP2515
static const byte MCP2515_INT = 37 ; // INT output of MCP2515

Define the pins connected to CS and INT pins.

ACAN2515 can (MCP2515_CS , SPI, MCP2515_INT) ;

Instanciation of the ACAN2515 library, declaration and initialization of the can object that implements
the driver. The constructor names: the number of the pin connected to the CS pin, the SPI object (you
can use SPI1, SPI2, …), the number of the pin connected to the INT pin.

static const uint32_t QUARTZ_FREQUENCY = 16 * 1000 * 1000 ; // 16 MHz

Specifies the frequency of the MCP2515 quartz.

void setup () {
//--- Switch on builtin led

pinMode (LED_BUILTIN , OUTPUT) ;
digitalWrite (LED_BUILTIN , HIGH) ;

//--- Start serial
Serial.begin (38400) ;

//--- Wait for serial (blink led at 10 Hz during waiting)
while (!Serial) {

delay (50) ;
digitalWrite (LED_BUILTIN , !digitalRead (LED_BUILTIN)) ;

}

Builtin led is used for signaling. It blinks led at 10 Hz during until serial monitor is ready.

5

4 A SIMPLE EXAMPLE: LOOPBACKDEMO

SPI.begin () ;

You should call SPI.begin. Many platforms define alternate pins for SPI. On Teensy 3.x (section 6.1 page
9), selecting alternate pins should be done before calling SPI.begin, on Adafruit Feather M0 (section
6.2 page 10), this should be done after. Calling SPI.begin explicitly allows you to fully handle alternate
pins.

ACAN2515Settings settings (QUARTZ_FREQUENCY , 125 * 1000) ;

Configuration is a four-step operation. This line is the first step. It instanciates the settings object of
the ACAN2515Settings class. The constructor has two parameters: the MCP2515 quartz frequency, and
the desired CAN bit rate (here, 125 kb/s). It returns a settings object fully initialized with CAN bit
settings for the desired bit rate, and default values for other configuration properties.

settings.mRequestedMode = ACAN2515RequestedMode::LoopBackMode ;

This is the second step. You can override the values of the properties of settings object. Here, the
mRequestedMode property is set to LoopBackMode – its value is NormalMode by default. Setting this
property enables loop back, that is you can run this demo sketch even it you have no connection to a
physical CAN network. The section 12.7 page 31 lists all properties you can override.

const uint32_t errorCode = can.begin (settings , [] { can.isr () ; }) ;

This is the third step, configuration of the can driver with settings values. The driver is configured
for being able to send any (standard / extended, data / remote) frame, and to receive all (standard /
extended, data / remote) frames. If you want to define reception filters, see section 9 page 16. The
second argument is the interrupt service routine, and is defined by a C++ lambda expression2. See
section 11.2 page 22 for using a function instead.

if (errorCode != 0) {
Serial.print ("Configuration␣error␣0x") ;
Serial.println (errorCode , HEX) ;

}
}

Last step: the configuration of the can driver returns an error code, stored in the errorCode constant.
It has the value 0 if all is ok – see section 11.3 page 22.

static unsigned gBlinkLedDate = 0 ;
static unsigned gReceivedFrameCount = 0 ;
static unsigned gSentFrameCount = 0 ;

2https://en.cppreference.com/w/cpp/language/lambda

6

https://en.cppreference.com/w/cpp/language/lambda

4 A SIMPLE EXAMPLE: LOOPBACKDEMO

The gSendDate global variable is used for sending a CAN message every 2 s. The gSentCount global
variable counts the number of sent messages. The gReceivedCount global variable counts the number
of received messages.

void loop() {
CANMessage frame ;

The message object is fully initialized by the default constructor, it represents a standard data frame,
with an identifier equal to 0, and without any data – see section 5 page 8.

if (gBlinkLedDate < millis ()) {
gBlinkLedDate += 2000 ;
digitalWrite (LED_BUILTIN , !digitalRead (LED_BUILTIN)) ;
const bool ok = can.tryToSend (frame) ;
if (ok) {

gSentFrameCount += 1 ;
Serial.print ("Sent:␣") ;
Serial.println (gSentFrameCount) ;

}else{
Serial.println ("Send␣failure") ;

}
}

We try to send the data message. Actually, we try to transfer it into the Driver transmit buffer. The
transfer succeeds if the buffer is not full. The tryToSend method returns false if the buffer is full,
and true otherwise. Note the returned value only tells if the transfer into the Driver transmit buffer
is successful or not: we have no way to know if the frame is actually sent on the the CAN network.
Then, we act the successfull transfer by setting gSendDate to the next send date and incrementing the
gSentCount variable. Note if the transfer did fail, the send date is not changed, so the tryToSend
method will be called on the execution of the loop function.

if (can.available ()) {
can.receive (frame) ;
gReceivedFrameCount ++ ;
Serial.print ("Received:␣") ;
Serial.println (gReceivedFrameCount) ;

}
}

As the MCP2515 controller is configured in loop back mode, all sent messages are received. The receive
method returns false if no message is available from the driver reception buffer. It returns true if a
message has been successfully removed from the driver reception buffer. This message is assigned to the
message object. If a message has been received, the gReceivedCount is incremented ans displayed.

7

6 CONNECTING A MCP2515 TO YOUR MICROCONTROLLER

5 The CANMessage class

Note. The CANMessage class is declared in the CANMessage.h header file. The class declaration is
protected by an include guard that causes the macro GENERIC_CAN_MESSAGE_DEFINED to be defined. The
ACAN3 (version 1.0.3 and above) driver, the ACAN25174 driver contain an identical CANMessage.h file
header, enabling using ACAN driver, ACAN2515 driver and ACAN2517 driver in a same sketch.

A CAN message is an object that contains all CAN frame user informations. All properties are initialized
by default, and represent a standard data frame, with an identifier equal to 0, and without any data.

class CANMessage {
public : uint32_t id = 0 ; // Frame identifier
public : bool ext = false ; // false -> standard frame, true -> extended frame
public : bool rtr = false ; // false -> data frame, true -> remote frame
public : uint8_t idx = 0 ; // Used by the driver
public : uint8_t len = 0 ; // Length of data (0 ... 8)
public : union {

uint64_t data64 ; // Caution: subject to endianness
uint32_t data32 [2] ; // Caution: subject to endianness
uint16_t data16 [4] ; // Caution: subject to endianness
uint8_t data [8] = {0, 0, 0, 0, 0, 0, 0, 0} ;

} ;
} ;

Note the message datas are defined by an union. So message datas can be seen as height bytes, four
16-bit unsigned integers, two 32-bit, or one 64-bit. Be aware that multi-byte integers are subject to
endianness (Cortex M4 processors of Teensy 3.x are little-endian).

The idx property is not used in CAN frames, but:

• for a received message, it contains the acceptance filter index (see section 10 page 21);

• on sending messages, it is used for selecting the transmit buffer (see section 7.1 page 11).

6 Connecting a MCP2515 to your microcontroller

Connecting a MCP2515 requires 5 pins (figure 2):

• hardware SPI requires you use dedicaced pins of your microcontroller. You can use alternate pins
(see below), and if your microcontroller supports several hardware SPIs, you can select any of them;

• connecting the CS signal requires one digital pin, that the driver configures as an OUTPUT ;
3The ACAN driver is a CAN driver for FlexCAN modules integrated in the Teensy 3.x microcontrollers, https://

github.com/pierremolinaro/acan.
4The ACAN2517 driver is a CAN driver for the MCP2517 CAN controller, https://github.com/pierremolinaro/

acan2517.

8

https://github.com/pierremolinaro/acan
https://github.com/pierremolinaro/acan
https://github.com/pierremolinaro/acan2517
https://github.com/pierremolinaro/acan2517

6.1 Using alternate pins on Teensy 3.x6 CONNECTING A MCP2515 TO YOUR MICROCONTROLLER

• connecting the INT signal requires one other digital pin, that the driver configures as an external
interrupt input; so this pin should have interrupt capability (checked by the begin method of the
driver object).

Microcontroller MCP2515

INTMCP2515_INT

CSMCP2515_CS
SCKSCK
SIMOSI
SOMISO

Figure 2 – MCP2515 connection to a microcontroller

The begin function of ACAN2515 library configures the selected SPI with a frequency of 10 Mbit/s (the
maximum frequency supported by the MCP2515). More precisely, the SPI library of your microcontroller
may adopt a frequency lower than 10 Mbit/s; for example, the maximum frequency of the Arduino Uno
SPI is 8 Mbit/s.

6.1 Using alternate pins on Teensy 3.x

Demo sketch: LoopBackDemoTeensy3x.

On Teensy 3.x, ”the main SPI pins are enabled by default. SPI pins can be moved to their alternate
position with SPI.setMOSI(pin), SPI.setMISO(pin), and SPI.setSCK(pin). You can move all of them,
or just the ones that conflict, as you prefer.”5

For example, the LoopBackDemoTeensy3x sketch uses SPI0 on a Teensy 3.5 with these alternate pins6:

Teensy 3.5 MCP2515

INTMCP2515_INT

CSMCP2515_CS
SCKSCK0

27

SIMOSI0
28

SOMISO0
39

Figure 3 – Using SPI alternate pins on a Teensy 3.5

You call the SPI.setMOSI, SPI.setMISO, and SPI.setSCK functions before calling the begin function
of your ACAN2515 instance (generally done in the setup function):

ACAN2515 can (MCP2515_CS , SPI, MCP2515_INT) ;
...
static const byte MCP2515_SCK = 27 ; // SCK input of MCP2515
static const byte MCP2515_SI = 28 ; // SI input of MCP2515
static const byte MCP2515_SO = 39 ; // SO output of MCP2515
...

5See https://www.pjrc.com/teensy/td_libs_SPI.html
6See https://www.pjrc.com/teensy/pinout.html

9

https://www.pjrc.com/teensy/td_libs_SPI.html
https://www.pjrc.com/teensy/pinout.html

6.2 Using alternate pins on an Adafruit Feather M06 CONNECTING A MCP2515 TO YOUR MICROCONTROLLER

void setup () {
...
SPI.setMOSI (MCP2515_SI) ;
SPI.setMISO (MCP2515_SO) ;
SPI.setSCK (MCP2515_SCK) ;
SPI.begin () ;
...
const uint32_t errorCode = can.begin (settings , [] { can.isr () ; }) ;
...

Note you can use the SPI.pinIsMOSI, SPI.pinIsMISO, and SPI.pinIsSCK functions to check if the
alternate pins you select are valid:

void setup () {
...
Serial.print ("Using␣pin␣#") ;
Serial.print (MCP2515_SI) ;
Serial.print ("␣for␣MOSI:␣") ;
Serial.println (SPI.pinIsMOSI (MCP2515_SI) ? "yes" : "NO!!!") ;
Serial.print ("Using␣pin␣#") ;
Serial.print (MCP2515_SO) ;
Serial.print ("␣for␣MISO:␣") ;
Serial.println (SPI.pinIsMISO (MCP2515_SO) ? "yes" : "NO!!!") ;
Serial.print ("Using␣pin␣#") ;
Serial.print (MCP2515_SCK) ;
Serial.print ("␣for␣SCK:␣") ;
Serial.println (SPI.pinIsSCK (MCP2515_SCK) ? "yes" : "NO!!!") ;
SPI.setMOSI (MCP2515_SI) ;
SPI.setMISO (MCP2515_SO) ;
SPI.setSCK (MCP2515_SCK) ;
SPI.begin () ;
...
const uint32_t errorCode = can.begin (settings , [] { can.isr () ; }) ;
...

6.2 Using alternate pins on an Adafruit Feather M0

Demo sketch: LoopBackDemoAdafruitFeatherM0.

See https://learn.adafruit.com/using-atsamd21-sercom-to-add-more-spi-i2c-serial-ports/
overview document that explains in details how configure and set an alternate SPI on Adafruit Feather
M0.

For example, the LoopBackDemoAdafruitFeatherM0 sketch uses SERCOM1 on an Adafruit Feather M0 as
illustrated in figure 4.

The configuration code is the following. Note you should call the pinPeripheral function after calling
the mySPI.begin function.

#include <wiring_private.h>

10

https://learn.adafruit.com/using-atsamd21-sercom-to-add-more-spi-i2c-serial-ports/overview
https://learn.adafruit.com/using-atsamd21-sercom-to-add-more-spi-i2c-serial-ports/overview

7 SENDING FRAMES

Adafruit Feather M0 MCP2515

INTMCP2515_INT 5

CSMCP2515_CS 6

SCKSCK 12

SIMOSI 11

SOMISO
10

Figure 4 – Using SPI alternate pins on an Adafruit Feather M0

...
static const byte MCP2515_SCK = 12 ; // SCK pin, SCK input of MCP2515
static const byte MCP2515_SI = 11 ; // MOSI pin, SI input of MCP2515
static const byte MCP2515_SO = 10 ; // MISO pin, SO output of MCP2515
...
SPIClass mySPI (&sercom1,

MCP2515_SO , MCP2515_SI , MCP2515_SCK ,
SPI_PAD_0_SCK_3 , SERCOM_RX_PAD_2);

...
static const byte MCP2515_CS = 6 ; // CS input of MCP2515
static const byte MCP2515_INT = 5 ; // INT output of MCP2515
...
ACAN2515 can (MCP2515_CS , mySPI, MCP2515_INT) ;
...
void setup () {

...
mySPI.begin () ;
pinPeripheral (MCP2515_SI , PIO_SERCOM);
pinPeripheral (MCP2515_SCK , PIO_SERCOM);
pinPeripheral (MCP2515_SO , PIO_SERCOM);
...
const uint32_t errorCode = can.begin (settings , [] { can.isr () ; }) ;
...

7 Sending frames

The ACAN2515 driver define three transmit buffers, each of them corresponding to a MCP2515 hardware
buffer.

7.1 The tryToSend method

...
CANMessage message ;
// Setup message
const bool ok = can.tryToSend (message) ;

11

7.1 The tryToSend method 7 SENDING FRAMES

...

You call the tryToSend method for sending a message in the CAN network. Note this function returns
before the message is actually sent; this function only appends the message to a transmit buffer.

The idx field of the message specifies the transmit buffer (0 → transmit buffer 0, 1 → transmit buffer 1,
2 → transmit buffer 2, any other value → transmit buffer 0). The default value of the idx field is zero:
the message is sent throught TXB0.

The method tryToSend returns:

• true if the message has been successfully transmitted to driver transmit buffer; note that does not
mean that the CAN frame has been actually sent;

• false if the message has not been successfully transmitted to driver transmit buffer, it was full.

So it is wise to systematically test the returned value.

A way is to use a global variable to note if the message has been successfully transmitted to driver
transmit buffer. For example, for sending a message every 2 seconds:

static unsigned gSendDate = 0 ;

void loop () {
if (gSendDate < millis ()) {

CANMessage message ;
// Initialize message properties
const bool ok = can.tryToSend (message) ;
if (ok) {

gSendDate += 2000 ;
}

}
}

An other hint to use a global boolean variable as a flag that remains true while the message has not
been sent.

static bool gSendMessage = false ;

void loop () {
...
if (frame_should_be_sent) {

gSendMessage = true ;
}
...
if (gSendMessage) {

CANMessage message ;
// Initialize message properties

12

7.2 Driver transmit buffer sizes 7 SENDING FRAMES

const bool ok = can.tryToSend (message) ;
if (ok) {

gSendMessage = false ;
}

}
...

}

7.2 Driver transmit buffer sizes

By default:

• driver transmit buffer 0 size is 16;

• driver transmit buffer 1 and 2 sizes are 0.

You can change the default values by setting the mTransmitBuffer0Size, mTransmitBuffer1Size,
mTransmitBuffer2Size properties of settings variable; for example:

ACAN2515Settings settings (QUARTZ_FREQUENCY , 125 * 1000) ;
settings.mTransmitBuffer0Size = 30 ;
const uint32_t errorCode = can.begin (settings , [] { can.isr () ; }) ;
...

A zero size is valid: calling the tryToSend method returns true if the corresponding TXBi register is
empty, and false if it is full.

7.3 The transmitBufferSize method

The transmitBufferSize method has one argument, the index i of a driver transmit buffer (0 ⩽ i ⩽ 2).
It returns the allocated size of this driver transmit buffer, that is the value of settings.mTransmitBufferiSize
when the begin method is called.

const uint32_t s = can.transmitBufferSize (1) ; // Driver transmit buffer 1

7.4 The transmitBufferCount method

The transmitBufferCount method has one argument, the index i of a driver transmit buffer (0 ⩽ i ⩽ 2).
It returns the current number of messages in the driver transmit buffer i.

const uint32_t n = can.transmitBufferCount (0) ; // Driver transmit buffer 0

7.5 The transmitBufferPeakCount method

The transmitBufferPeakCount method has one argument, the index i of a driver transmit buffer (0 ⩽
i ⩽ 2). It returns the peak value of message count in the driver transmit buffer i.

13

8 RETRIEVING RECEIVED MESSAGES USING THE RECEIVE METHOD

const uint32_t max = can.transmitBufferPeakCount (2) ; // Driver transmit buffer 0

If the transmit buffer is full when tryToSend is called, the return value of this call is false. In such
case, the following calls of transmitBufferPeakCount(i) will return transmitBufferSize (i)+1.

So, when transmitBufferPeakCount(i) returns a value lower or equal to transmitBufferSize (i), it
means that calls to tryToSend have allways returned true, and no overflow occurs on transmit buffer i.

8 Retrieving received messages using the receive method

There are two ways for retrieving received messages :

• using the receive method, as explained in this section;

• using the dispatchReceivedMessage method (see section 10 page 21).

This is a basic example:

void loop () {
CANMessage message ;
if (can.receive (message)) {

// Handle received message
}
...

}

The receive method:

• returns false if the driver receive buffer is empty, message argument is not modified;

• returns true if a message has been has been removed from the driver receive buffer, and the
message argument is assigned.

You need to manually dispatch the received messages. If you did not provide any receive filter, you
should check the rtr bit (remote or data frame?), the ext bit (standard or extended frame), and the id
(identifier value). The following snippet dispatches three messages:

void loop () {
CANMessage message ;
if (can.receive (message)) {

if (!message.rtr && message.ext && (message.id == 0x123456)) {
handle_myMessage_0 (message) ; // Extended data frame, id is 0x123456

}else if (!message.rtr && !message.ext && (message.id == 0x234)) {
handle_myMessage_1 (message) ; // Standard data frame, id is 0x234

}else if (message.rtr && !message.ext && (message.id == 0x542)) {
handle_myMessage_2 (message) ; // Standard remote frame, id is 0x542

}

14

8.1 Driver receive buffer size8 RETRIEVING RECEIVED MESSAGES USING THE RECEIVE METHOD

}
...

}

The handle_myMessage_0 function has the following header:

void handle_myMessage_0 (const CANMessage & inMessage) {
...

}

So are the header of the handle_myMessage_1 and the handle_myMessage_2 functions.

8.1 Driver receive buffer size

By default, the driver receive buffer size is 32. You can change it by setting the mReceiveBufferSize
property of settings variable before calling the begin method:

ACAN2515Settings settings (QUARTZ_FREQUENCY , 125 * 1000) ;
settings.mReceiveBufferSize = 100 ;
const uint32_t errorCode = can.begin (settings , [] { can.isr () ; }) ;
...

As the size of CANMessage class is 16 bytes, the actual size of the driver receive buffer is the value of
settings.mReceiveBufferSize * 16.

8.2 The receiveBufferSize method

The receiveBufferSize method returns the size of the driver receive buffer, that is the value of the
mReceiveBufferSize property of settings variable when the the begin method is called.

const uint32_t s = can.receiveBufferSize () ;

8.3 The receiveBufferCount method

The receiveBufferCount method returns the current number of messages in the driver receive buffer.

const uint32_t n = can.receiveBufferCount () ;

8.4 The receiveBufferPeakCount method

The receiveBufferPeakCount method returns the peak value of message count in the driver receive
buffer.

const uint32_t max = can.receiveBufferPeakCount () ;

15

9 ACCEPTANCE FILTERS

Note the driver receive buffer can overflow, if messages are not retrieved (by calling the receive or the
dispatchReceivedMessage methods). If an overflow occurs, further calls of can.receiveBufferPeakCount
() return can.receiveBufferSize ()+1.

9 Acceptance filters

It is recommended to read the Microchip documentation DS20001801H, section 4.5 page 33. The figure
5 shows the MCP2515 acceptance filter registers.

¤ 2003-2016 Microchip Technology Inc. DS20001801H-page 25

MCP2515
4.4.3 CONFIGURED AS DIGITAL OUTPUT
When used as digital outputs, the BnBFM bits
(BFPCTRL<1:0>) must be cleared and the BnBFE bits
(BFPCTRL<3:2>) must be set for the associated buffer.
In this mode, the state of the pin is controlled by the
BnBFS bits (BFPCTRL<5:4>). Writing a ‘1’ to a BnBFS
bit will cause a high level to be driven on the associated
buffer full pin, while a ‘0’ will cause the pin to drive low.
When using the pins in this mode, the state of the pin
should be modified only by using the SPI BIT MODIFY
command to prevent glitches from occurring on either
of the buffer full pins.

TABLE 4-1: CONFIGURING RXnBF PINS

FIGURE 4-2: RECEIVE BUFFER BLOCK DIAGRAM

BnBFE BnBFM BnBFS Pin Status

0 X X Disabled, high-impedance
1 1 X Receive buffer interrupt
1 0 0 Digital output = 0
1 0 1 Digital output = 1

Acceptance Mask
RXM1

Acceptance Filter
RXF2

Acceptance Filter
RXF3

Acceptance Filter
RXF4

Acceptance Filter
RXF5

Acceptance Mask
RXM0

Acceptance Filter
RXF0

Acceptance Filter
RXF1

Identifier

Data Field Data Field

Identifier

Note: Messages received in the MAB are initially
applied to the mask and filters of RXB0. In
addition, only one filter match occurs (e.g.,
if the message matches both RXF0 and
RXF2, the match will be for RXF0 and the
message will be moved into RXB0).

A
c
c
e
p
t

A
c
c
e
p
t

R
X
B
0

R
X
B
1

M
A
B

Figure 5 – MCP2515 acceptance filters (DS20001801H, figure 4.2 page 25)

9.1 Default behaviour

The can.begin (settings, [] can.isr () ;) method sets the RXM0 and RXM1 registers to 0, so,
the MCP2515 receives all CAN bus messages.

More precisely, as RXM0 is zero, all messages are received in RXB0. If a new message is received as RXB0
is full, the new message is lost.

You can set the mRolloverEnable property of your ACAN2515Settings object to true (it is false by
default). Doing that, if a new message is received as RXB0 is full, the new message is transferred to RXB1.
If RXB1 is full the new message is lost.

16

9.2 Defining filters 9 ACCEPTANCE FILTERS

9.2 Defining filters

Sample sketch: the loopbackUsingFilters sketch shows how defining filters.

For defining filters, you should:

• define the values for the RXM0 and RXM1 acceptance masks;

• submitting an ACAN2515AcceptanceFilter array to the ACAN2515::begin method.

The ACAN2515AcceptanceFilter array defines the values that the ACAN2515::begin method sets to the
RXFi acceptance filter registers.

Four functions are available for managing filters:

• standard2515Mask and extended2515Mask functions for defining RXMi value;

• standard2515Filter and extended2515Filter functions for defining RXFi value.

RXMi and RXFi values you handle are ACAN2515Mask class instances, that provides four uint8_t properties:
mSIDH, mSIDL, mEID8, mEID0. They correspond to the MCP2515 registers. If you want, you can set directly
these properties, without using the above functions.

Filter remote and data frames. The MCP2515 filters do not handle the RTR bit: for example, you
cannot specify you want to accept data frames and discard remote frames. This should be done by your
code.

Multiple filter matches. From DS20001801H, section 4.5.4 page 34: If more than one acceptance filter
matches, the FILHITn bits will encode the binary value of the lowest numbered filter that matched. For
example, if filters, RXF2 and RXF4, match, the FILHITn bits will be loaded with the value for RXF2.
This essentially prioritizes the acceptance filters with a lower numbered filter having higher priority.
Messages are compared to filters in ascending order of filter number. This also ensures that the message
will only be received into one buffer. This implies that RXB0 has a higher priority than RXB1.

The MCP2515 filters cannot be disabled, so all mask registers can be taken into account during the
acceptance of a message. For example, if MCP2515 filters are defined with the RXM0, RXF0, RXF1 registers,
leaving RXM1 equal to 0 provides the transfer to RXB1 of all messages discarded by RXF0 and RXF1.

For dealing with all situations, the ACAN2515::begin method accepts three prototypes.

No filter.

ACAN2515Settings settings (QUARTZ_FREQUENCY , 125 * 1000) ;
const uint32_t errorCode = can.begin (settings , [] { can.isr () ; }) ;

No filter is provided, RXM0 and RXM1 are set to 0, enabling the acceptance of all messages by RXB0.

One filter. For example:

ACAN2515Settings settings (QUARTZ_FREQUENCY , 125 * 1000) ;
const ACAN2515Mask rxm0 = extended2515Mask (0x1FFFFFFF) ;
const ACAN2515AcceptanceFilter filter [] = {

{extended2515Filter (0x12345678), receive0} // RXF0

17

9.2 Defining filters 9 ACCEPTANCE FILTERS

} ;
const uint32_t errorCode = can.begin (settings ,

[] { can.isr () ; },
rxm0, // Value set to RXM0 register
filter, // The filter array
1) ; // Filter array size

Here, one type of message is accepted, extended (data or remote) frames with an identifier equal to
0x12345678. This defines explicitly RXM0 and RXF0; for disabling acceptance by RXF1, it is set with RXF0
value; RXM1 is set with RXM0 value, and the RXF2 to RXF5 registers are set with the RXF0 value. No
message will be accepted by RXB1 filters.

The definition of a filter is associated with a call back function – here receive0. This function is called
indirectly when the dispatchReceivedMessage method is called – see section 10 page 21.

Two filters. For example:

ACAN2515Settings settings (QUARTZ_FREQUENCY , 125 * 1000) ;
const ACAN2515Mask rxm0 = extended2515Mask (0x1FFFFFFF) ;
const ACAN2515AcceptanceFilter filters [] = {

{extended2515Filter (0x12345678), receive0}, // RXF0
{extended2515Filter (0x18765432), receive1} // RXF1

} ;
const uint32_t errorCode = can.begin (settings ,

[] { can.isr () ; },
rxm0, // Value set to RXM0 register
filters, // The filter array
2) ; // Filter array size

Here, two types of message are accepted, extended (data or remote) frames with an identifier equal to
0x12345678 or 0x18765432. This defines explicitly RXM0, RXF0 and RXF1; RXM1 is set with RXM0 value,
and the RXF2 to RXF5 registers are set with the RXF1 value. No message will be accepted by RXB1 filters.

Three to five filters. For example, with four filters:

ACAN2515Settings settings (QUARTZ_FREQUENCY , 125 * 1000) ;
const ACAN2515Mask rxm0 = extended2515Mask (0x1FFFFFFF) ;
const ACAN2515Mask rxm1 = standard2515Mask (0x7FF, 0, 0) ;
const ACAN2515AcceptanceFilter filters [] = {

{extended2515Filter (0x12345678), receive0}, // RXF0
{extended2515Filter (0x18765432), receive1}, // RXF1
{standard2515Filter (0x567, 0, 0), receive2},// RXF2
{standard2515Filter (0x123, 0, 0), receive3} // RXF3

} ;
const uint32_t errorCode = can.begin (settings ,

[] { can.isr () ; },
rxm0, // Value set to RXM0 register
rxm1, // Value set to RXM1 register
filters, // The filter array
4) ; // Filter array size

18

9.2 Defining filters 9 ACCEPTANCE FILTERS

Four types of message are accepted, extended (data or remote) frames with an identifier equal to
0x12345678 or 0x18765432, and standard (data or remote) frames with an identifier equal to 0x567
or 0x123. The RXF4 and RXF5 registers are set with the RXF3 value.

Six filters.

ACAN2515Settings settings (QUARTZ_FREQUENCY , 125 * 1000) ;
const ACAN2515Mask rxm0 = extended2515Mask (0x1FFFFFFF) ;
const ACAN2515Mask rxm1 = standard2515Mask (0x7FF, 0, 0) ;
const ACAN2515AcceptanceFilter filters [] = {

{extended2515Filter (0x12345678), receive0}, // RXF0
{extended2515Filter (0x18765432), receive1}, // RXF1
{standard2515Filter (0x567, 0, 0), receive2},// RXF2
{standard2515Filter (0x123, 0, 0), receive3},// RXF3
{standard2515Filter (0x777, 0, 0), receive4},// RXF4
{standard2515Filter (0x3AB, 0, 0), receive5} // RXF5

} ;
const uint32_t errorCode = can.begin (settings ,

[] { can.isr () ; },
rxm0, // Value set to RXM0 register
rxm1, // Value set to RXM1 register
filters, // The filter array
6) ; // Filter array size

Six types of message are accepted, all filter registers are explicitly defined.

9.2.1 Extended frames acceptance

The extended2515Mask and extended2515Filter functions helps you to define extended frame filters.
Extended frame filters test extended identifier value.

The acceptance criterion is7:

acceptance_mask & (received_identifier nXOR acceptance_filter) == 0

where & is the bit-wise and operator, and nXOR is the not xor bit-wise operator.

Accepting all extended frames.

const ACAN2515Mask rxm0 = extended2515Mask (0) ;

No extended frame identifier bit is tested, all extended frames are accepted.

Accepting individual extended frames.

const ACAN2515Mask rxm0 = extended2515Mask (0x1FFFFFFF) ;

All extended frame identifier bits are tested, only extended frames whose identifiers match the filters are
accepted.

7See DS20001801H, section 4.5 Message Acceptance Filters and Masks, page 33.

19

9.2 Defining filters 9 ACCEPTANCE FILTERS

Accepting several identifiers. The bits at 0 of the mask correspond to bits that are not tested for
acceptance. For example:

const ACAN2515Mask rxm0 = extended2515Mask (0x1FFFFF0F) ;

If you define an acceptance filter by extended2515Filter (0x12345608), any extended frame with an
identifier equal to 0x123456x8 is accepted.

9.2.2 Standard frames acceptance

The standard2515Mask and standard2515Filter functions helps you to define extended frame filters.
Standard frame filters test standard identifier value, first and second data byte.

The acceptance criterion is8:

acceptance_mask & ((received_identifier, data_byte0, data_byte1) nXOR acceptance_filter) == 0

where & is the bit-wise and operator, and nXOR is the not xor bit-wise operator.

Accepting all standard frames, without testing data bytes.

const ACAN2515Mask rxm0 = standard2515Mask (0, 0, 0) ;

Accepting individual standard frames, without testing data bytes.

const ACAN2515Mask rxm0 = standard2515Mask (0x7FF, 0, 0) ;

All standard frame identifier bits are tested, only standard frames whose identifiers match the filters are
accepted.

Accepting several identifiers, without testing data bytes. The bits at 0 of the mask correspond
to bits that are not tested for acceptance. For example:

const ACAN2515Mask rxm0 = standard2515Mask (0x70F, 0, 0) ;

If you define an acceptance filter by standard2515Filter (0x40A, 0, 0), any standard frame with an
identifier equal to 0x4xA is accepted.

Filtering from first data byte. The second argument of standard2515Mask specify first data byte
filtering. For example:

const ACAN2515Mask rxm0 = standard2515Mask (0x70F, 0xFF, 0) ;

If you define an acceptance filter by standard2515Filter (0x40A, 0x54, 0), any standard frame with
an identifier equal to 0x4xA and first byte equal to 0x54 is accepted.

Empty standard frame. An empty standard frame (without any data byte) is accepted, the filtering
condition on the first data byte is ignored (see loopbackFilterDataByte sample sketch).

8See DS20001801H, section 4.5 Message Acceptance Filters and Masks, page 33.

20

10 THE DISPATCHRECEIVEDMESSAGE METHOD

10 The dispatchReceivedMessage method

Sample sketch: the loopbackUsingFilters shows how using the dispatchReceivedMessage method.

Instead of calling the receive method, call the dispatchReceivedMessage method in your loop func-
tion. It calls the call back function associated with the matching filter.

If you have not defined any filter, do not use this function, call the receive method.

void loop () {
can.dispatchReceivedMessage () ; // Do not use can.receive any more
...

}

The dispatchReceivedMessage method handles one message at a time. More precisely:

• if it returns false, the driver receive buffer was empty;

• if it returns true, the driver receive buffer was not empty, one message has been removed and
dispatched.

So, the return value can used for emptying and dispatching all received messages:

void loop () {
while (can.dispatchReceivedMessage ()) {
}
...

}

If a filter definition does not name a call back function, the corresponding messages are lost.

The dispatchReceivedMessage method has an optional argument – NULL by default: a function name.
This function is called for every message that pass the receive filters, with an argument equal to the
matching filter index:

void filterMatchFunction (const uint32_t inFilterIndex) {
...

}

void loop () {
can.dispatchReceivedMessage (filterMatchFunction) ;
...

}

You can use this function for maintaining statistics about receiver filter matches.

21

11 THE ACAN2515::BEGIN METHOD REFERENCE

11 The ACAN2515::begin method reference

11.1 The ACAN2515::begin method prototypes

There are three begin method prototypes:

uint32_t ACAN2515::begin (const ACAN2515Settings & inSettings ,
void (* inInterruptServiceRoutine) (void)) ;

uint32_t ACAN2515::begin (const ACAN2515Settings & inSettings ,
void (* inInterruptServiceRoutine) (void),
const ACAN2515Mask inRXM0,
const ACAN2515AcceptanceFilter inAcceptanceFilters [],
const uint32_t inAcceptanceFilterCount) ;

uint32_t ACAN2515::begin (const ACAN2515Settings & inSettings ,
void (* inInterruptServiceRoutine) (void),
const ACAN2515Mask inRXM0,
const ACAN2515Mask inRXM1,
const ACAN2515AcceptanceFilter inAcceptanceFilters [],
const uint32_t inAcceptanceFilterCount) ;

11.2 Defining explicitly the interrupt service routine

In this document, the interrupt service routine is defined by a lambda expression:

const uint32_t errorCode = can.begin (settings , [] { can.isr () ; }) ;

Instead of a lambda expression, you are free to define the interrupt service routine as a function:

void canISR () {
can.isr () ;

}

And you pass canISR as argument to the begin method:

const uint32_t errorCode = can.begin (settings , canISR) ;

11.3 The error code

The ACAN2515::begin method returns an error code. The value 0 denotes no error. Otherwise, you
consider every bit as an error flag, as described in table 1. An error code could report several errors.
The ACAN2515 class defines static constants for naming errors.

22

11.3 The error code 11 THE ACAN2515::BEGIN METHOD REFERENCE

Bit Static constant Name Link
0 kNoMCP2515 section 11.3.1 page 23
1 kTooFarFromDesiredBitRate section 11.3.2 page 23
2 kInconsistentBitRateSettings section 11.3.3 page 23
3 kINTPinIsNotAnInterrupt section 11.3.4 page 23
4 kISRIsNull section 11.3.5 page 24
5 kRequestedModeTimeOut section 11.3.6 page 24
6 kAcceptanceFilterArrayIsNULL section 11.3.7 page 24
7 kOneFilterMaskRequiresOneOrTwoAcceptanceFilters section 11.3.8 page 24
8 kTwoFilterMasksRequireThreeToSixAcceptanceFilters section 11.3.9 page 24

Table 1 – The ACAN2515::begin method error code bits

11.3.1 kNoMCP2515

The ACAN2515::begin method checks accessibility by writing and reading back the CNF1_REGISTER first
with the 0x55 value, then with the 0xAA value. This error is raised when the read value is different from
the written one. It means that the MCP2515 cannot be accessed via SPI.

11.3.2 kTooFarFromDesiredBitRate

This error occurs when the mBitRateClosedToDesiredRate property of the settings object is false.
This means that the ACAN2515Settings constructor cannot compute a CAN bit configuration close
enough to the desired bit rate. For example:

void setup () {
ACAN2515Settings settings (QUARTZ_FREQUENCY , 1) ; // 1 bit/s !!!
// Here, settings.mBitRateClosedToDesiredRate is false
const uint32_t errorCode = can.begin (settings , [] { can.isr () ; }) ;
// Here, errorCode contains ACAN2515::kCANBitConfigurationTooFarFromDesiredBitRate

}

11.3.3 kInconsistentBitRateSettings

The ACAN2515Settings constructor allways returns consistent bit rate settings – even if the settings
provide a bit rate too far away the desired bit rate. So this error occurs only when you have changed the
CAN bit properties (mBitRatePrescaler, mPropagationSegment, mPhaseSegment1, mPhaseSegment2,
mSJW), and one or more resulting values are inconsistent. See section 12.2 page 28.

11.3.4 kINTPinIsNotAnInterrupt

The pin you provide for handling the MCP2515 interrupt has no interrupt capability.

23

12 ACAN2515SETTINGS CLASS REFERENCE

11.3.5 kISRIsNull

The interrupt service routine argument is NULL, you should provide a valid function.

11.3.6 kRequestedModeTimeOut

During configuration by the ACAN2515::begin method, the MCP2515 is in the configuration mode. At
this end of this process, the mode specified by the inSettings.mRequestedMode value is requested. The
switch to this mode is not immediate, a register is repetitively read for checking the switch is done. This
error is raised if the switch is not completed within a delay between 1 ms and 2 ms.

11.3.7 kAcceptanceFilterArrayIsNULL

The ACAN2515::begin method you have called names the inAcceptanceFilters argument, but it is
NULL.

11.3.8 kOneFilterMaskRequiresOneOrTwoAcceptanceFilters

The ACAN2515::begin method you have called names the inRXM0 argument (but not inRXM1), you should
provide the value 1 or 2 to the inAcceptanceFilterCount argument.

11.3.9 kTwoFilterMasksRequireThreeToSixAcceptanceFilters

The ACAN2515::begin method you have called names the inRXM0 and the the inRXM1 arguments, you
should provide the value 3 to 6 to the inAcceptanceFilterCount argument.

12 ACAN2515Settings class reference

Note. The ACAN2515Settings class is not Arduino specific. You can compile it on your desktop com-
puter with your favorite C++ compiler. In the https://github.com/pierremolinaro/acan2515-dev
GitHub repository, a command line tool is defined for exploring all CAN bit rates from 1 bit/s and 20
Mbit/s for a 16 MHz quartz: 63810 bit rates are valid, and 29 are exact. It also checks that computed
CAN bit decompositions are all consistent, even if they are too far from the desired baud rate.

12.1 The ACAN2515Settings constructor: computation of the CAN bit set-
tings

The constructor of the ACAN2515Settings has two mandatory arguments: the quartz frequency, and the
desired bit rate. It tries to compute the CAN bit settings for this bit rate. If it succeeds, the constructed
object has its mBitRateClosedToDesiredRate property set to true, otherwise it is set to false. For
example:

const uint32_t QUARTZ_FREQUENCY = 16 * 1000 * 1000 ; // 16 MHz
void setup () {

24

https://github.com/pierremolinaro/acan2515-dev

12.1 The ACAN2515Settings constructor: computation of the CAN bit settings12 ACAN2515SETTINGS CLASS REFERENCE

ACAN2515Settings settings (QUARTZ_FREQUENCY , 1 * 1000 * 1000) ; // 1 Mbit/s
// Here, settings.mBitRateClosedToDesiredRate is true
...

}

Of course, with a 16 MHz quartz, CAN bit computation allways succeeds for classical bit rates: 1 Mbit/s,
500 kbit/s, 250 kbit/s, 125 kbit/s. But CAN bit computation can also succeed for some unusual bit rates,
as 727 kbit/s. You can check the result by computing actual bit rate, and the distance from the desired
bit rate:

const uint32_t QUARTZ_FREQUENCY = 16 * 1000 * 1000 ; // 16 MHz
void setup () {

...
ACAN2515Settings settings (QUARTZ_FREQUENCY , 727 * 1000) ; // 727 kbit/s
Serial.print ("mBitRateClosedToDesiredRate:␣") ;
Serial.println (settings.mBitRateClosedToDesiredRate) ; // 1 (--> is true)
Serial.print ("actual␣bit␣rate:␣") ;
Serial.println (settings.actualBitRate ()) ; // 727272 bit/s
Serial.print ("distance:␣") ;
Serial.println (settings.ppmFromDesiredBitRate ()) ; // 375 ppm
...

}

The actual bit rate is 727,272 bit/s, and its distance from desired bit rate is 375 ppm. ”ppm” stands for
”part-per-million”, and 1 ppm = 10−6. In other words, 10, 000 ppm = 1%.

By default, a desired bit rate is accepted if the distance from the computed actual bit rate is lower
or equal to 1, 000 ppm = 0.1 %. You can change this default value by adding your own value as third
argument of ACAN2515Settings constructor:

const uint32_t QUARTZ_FREQUENCY = 16 * 1000 * 1000 ; // 16 MHz
void setup () {

...
ACAN2515Settings settings (QUARTZ_FREQUENCY , 727 * 1000, 100) ;
Serial.print ("mBitRateClosedToDesiredRate:␣") ;
Serial.println (settings.mBitRateClosedToDesiredRate) ; // 0 (--> is false)
Serial.print ("actual␣bit␣rate:␣") ;
Serial.println (settings.actualBitRate ()) ; // 727272 bit/s
Serial.print ("distance:␣") ;
Serial.println (settings.ppmFromDesiredBitRate ()) ; // 375 ppm
...

}

The third argument does not change the CAN bit computation, it only changes the acceptance test for
setting the mBitRateClosedToDesiredRate property. For example, you can specify that you want the
computed actual bit to be exactly the desired bit rate:

const uint32_t QUARTZ_FREQUENCY = 16 * 1000 * 1000 ; // 16 MHz
void setup () {

...

25

12.1 The ACAN2515Settings constructor: computation of the CAN bit settings12 ACAN2515SETTINGS CLASS REFERENCE

ACAN2515Settings settings (QUARTZ_FREQUENCY , 500 * 1000, 0) ; // Max distance is 0 ppm
Serial.print ("mBitRateClosedToDesiredRate:␣") ;
Serial.println (settings.mBitRateClosedToDesiredRate) ; // 1 (--> is true)
Serial.print ("actual␣bit␣rate:␣") ;
Serial.println (settings.actualBitRate ()) ; // 500,000 bit/s
Serial.print ("distance:␣") ;
Serial.println (settings.ppmFromDesiredBitRate ()) ; // 0 ppm
...

}

In any way, the bit rate computation allways gives a consistent result, resulting an actual bit rate closest
from the desired bit rate. For example:

const uint32_t QUARTZ_FREQUENCY = 16 * 1000 * 1000 ; // 16 MHz
void setup () {

...
ACAN2515Settings settings (QUARTZ_FREQUENCY , 440 * 1000) ; // 440 kbit/s
Serial.print ("mBitRateClosedToDesiredRate:␣") ;
Serial.println (settings.mBitRateClosedToDesiredRate) ; // 0 (--> is false)
Serial.print ("actual␣bit␣rate:␣") ;
Serial.println (settings.actualBitRate ()) ; // 444,444 bit/s
Serial.print ("distance:␣") ;
Serial.println (settings.ppmFromDesiredBitRate ()) ; // 10,100 ppm
...

}

You can get the details of the CAN bit decomposition. For example:

const uint32_t QUARTZ_FREQUENCY = 16 * 1000 * 1000 ; // 16 MHz
void setup () {

...
ACAN2515Settings settings (QUARTZ_FREQUENCY , 440 * 1000) ; // 440 kbit/s
Serial.print ("mBitRateClosedToDesiredRate:␣") ;
Serial.println (settings.mBitRateClosedToDesiredRate) ; // 0 (--> is false)
Serial.print ("actual␣bit␣rate:␣") ;
Serial.println (settings.actualBitRate ()) ; // 444,444 bit/s
Serial.print ("distance:␣") ;
Serial.println (settings.ppmFromDesiredBitRate ()) ; // 10,100 ppm
Serial.print ("Bit␣rate␣prescaler:␣") ;
Serial.println (settings.mBitRatePrescaler) ; // BRP = 1
Serial.print ("Propagation␣segment:␣") ;
Serial.println (settings.mPropagationSegment) ; // PropSeg = 6
Serial.print ("Phase␣segment␣1:␣") ;
Serial.println (settings.mPhaseSegment1) ; // PS1 = 5
Serial.print ("Phase␣segment␣2:␣") ;
Serial.println (settings.mPhaseSegment2) ; // PS2 = 6
Serial.print ("Resynchronization␣Jump␣Width:␣") ;
Serial.println (settings.mSJW) ; // SJW = 4

26

12.1 The ACAN2515Settings constructor: computation of the CAN bit settings12 ACAN2515SETTINGS CLASS REFERENCE

Serial.print ("Triple␣Sampling:␣") ;
Serial.println (settings.mTripleSampling) ; // 0, meaning single sampling
Serial.print ("Sample␣Point:␣") ;
Serial.println (settings.samplePointFromBitStart ()) ; // 68, meaning 68%
Serial.print ("Consistency:␣") ;
Serial.println (settings.CANBitSettingConsistency ()) ; // 0, meaning Ok
...

}

The samplePointFromBitStart method returns sample point, expressed in per-cent of the bit duration
from the beginning of the bit.

Note the computation may calculate a bit decomposition too far from the desired bit rate, but it is
allways consistent. You can check this by calling the CANBitSettingConsistency method.

You can change the property values for adapting to the particularities of your CAN network propagation
time. By example, you can increment the mPhaseSegment1 value, and decrement the mPhaseSegment2
value in order to sample the CAN Rx pin later.

const uint32_t QUARTZ_FREQUENCY = 16 * 1000 * 1000 ; // 16 MHz
void setup () {

...
ACAN2515Settings settings (QUARTZ_FREQUENCY , 500 * 1000) ; // 500 kbit/s
Serial.print ("mBitRateClosedToDesiredRate:␣") ;
Serial.println (settings.mBitRateClosedToDesiredRate) ; // 1 (--> is true)
settings.mPhaseSegment1 ++ ; // 5 -> 6: safe, 1 <= PS1 <= 8
settings.mPhaseSegment2 -- ; // 5 -> 4: safe, 2 <= PS2 <= 8 and SJW <= PS2
Serial.print ("Sample␣Point:␣") ;
Serial.println (settings.samplePointFromBitStart ()) ; // 75, meaning 75%
Serial.print ("actual␣bit␣rate:␣") ;
Serial.println (settings.actualBitRate ()) ; // 500000: ok, bit rate did not change
Serial.print ("Consistency:␣") ;
Serial.println (settings.CANBitSettingConsistency ()) ; // 0, meaning Ok
...

}

Be aware to allways respect CAN bit timing consistency! The constraints are:

27

12.2 The CANBitSettingConsistency method 12 ACAN2515SETTINGS CLASS REFERENCE

1 ⩽ mBitRatePrescaler ⩽ 64

1 ⩽ mSJW ⩽ 4

1 ⩽ mPropagationSegment ⩽ 8

Single sampling: 1 ⩽ mPhaseSegment1 ⩽ 8

Triple sampling: 2 ⩽ mPhaseSegment1 ⩽ 8

2 ⩽ mPhaseSegment2 ⩽ 8

mSJW < mPhaseSegment2

mPhaseSegment2 ⩽ mPropagationSegment+ mPhaseSegment1

Resulting actual bit rate is given by:

Actual bit rate =
QuartzFrequency / 2

mBitRatePrescaler · (1 + mPropagationSegment+ mPhaseSegment1+ mPhaseSegment2)

And sampling points (in per-cent unit) are given by:

Sampling point (single sampling) = 100 · 1 + mPropagationSegment+ mPhaseSegment1
1 + mPropagationSegment+ mPhaseSegment1+ mPhaseSegment2

Sampling first point (triple sampling) = 100 · mPropagationSegment+ mPhaseSegment1
1 + mPropagationSegment+ mPhaseSegment1+ mPhaseSegment2

12.2 The CANBitSettingConsistency method

This method checks the CAN bit decomposition (given by mBitRatePrescaler, mPropagationSegment,
mPhaseSegment1, mPhaseSegment2, mSJW property values) is consistent.

const uint32_t QUARTZ_FREQUENCY = 16 * 1000 * 1000 ; // 16 MHz
void setup () {

...
ACAN2515Settings settings (QUARTZ_FREQUENCY , 500 * 1000) ; // 500 kbit/s
Serial.print ("mBitRateClosedToDesiredRate:␣") ;
Serial.println (settings.mBitRateClosedToDesiredRate) ; // 1 (--> is true)
settings.mPhaseSegment1 = 0 ; // Error, mPhaseSegment1 should be >= 1 (and <= 8)
Serial.print ("Consistency:␣0x") ;
Serial.println (settings.CANBitSettingConsistency (), HEX) ; // 0x10, meaning error
...

}

The CANBitSettingConsistency method returns 0 if CAN bit decomposition is consistent. Otherwise,
the returned value is a bit field that can report several errors – see table 2.

28

12.3 The actualBitRate method 12 ACAN2515SETTINGS CLASS REFERENCE

The ACAN2515Settings class defines static constant properties that can be used as mask error. For
example:

public: static const uint32_t kBitRatePrescalerIsZero = 1 << 0 ;

Bit Error Name Error
0 kBitRatePrescalerIsZero mBitRatePrescaler == 0
1 kBitRatePrescalerIsGreaterThan64 mBitRatePrescaler > 64
2 kPropagationSegmentIsZero mPropagationSegment == 0
3 kPropagationSegmentIsGreaterThan8 mPropagationSegment > 8
4 kPhaseSegment1IsZero mPhaseSegment1 == 0
5 kPhaseSegment1IsGreaterThan8 mPhaseSegment1 > 8
6 kPhaseSegment2IsLowerThan2 mPhaseSegment2 < 2
7 kPhaseSegment2IsGreaterThan8 mPhaseSegment2 > 8
8 kPhaseSegment1Is1AndTripleSampling (mPhaseSegment1 == 1) && mTripleSampling
9 kSJWIsZero mSJW == 0
10 kSJWIsGreaterThan4 mSJW > 4
11 kSJWIsGreaterThanOrEqualToPhaseSegment2 mSJW >= mPhaseSegment2
12 kPhaseSegment2IsGreaterThanPSPlusPS1 mPhaseSegment2 > (mPropagationSegment + mPhaseSegment1)

Table 2 – The ACAN2515Settings::CANBitSettingConsistency method error codes

12.3 The actualBitRate method

The actualBitRate method returns the actual bit computed from mBitRatePrescaler, mPropagationSegment,
mPhaseSegment1, mPhaseSegment2, mSJW property values.

const uint32_t QUARTZ_FREQUENCY = 16 * 1000 * 1000 ; // 16 MHz
void setup () {

...
ACAN2515Settings settings (QUARTZ_FREQUENCY , 440 * 1000) ; // 440 kbit/s
Serial.print ("mBitRateClosedToDesiredRate:␣") ;
Serial.println (settings.mBitRateClosedToDesiredRate) ; // 0 (--> is false)
Serial.print ("actual␣bit␣rate:␣") ;
Serial.println (settings.actualBitRate ()) ; // 444,444 bit/s
...

}

Note. If CAN bit settings are not consistent (see section 12.2 page 28), the returned value is irrelevant.

12.4 The exactBitRate method

The exactBitRate method returns true if the actual bit rate is equal to the desired bit rate, and false
otherwise.

29

12.5 The ppmFromDesiredBitRate method 12 ACAN2515SETTINGS CLASS REFERENCE

const uint32_t QUARTZ_FREQUENCY = 16 * 1000 * 1000 ; // 16 MHz
void setup () {

...
ACAN2515Settings settings (QUARTZ_FREQUENCY , 727 * 1000) ; // 727 kbit/s
Serial.print ("mBitRateClosedToDesiredRate:␣") ;
Serial.println (settings.mBitRateClosedToDesiredRate) ; // 1 (--> is true)
Serial.print ("actual␣bit␣rate:␣") ;
Serial.println (settings.actualBitRate ()) ; // 727272 bit/s
Serial.print ("distance:␣") ;
Serial.println (settings.ppmFromDesiredBitRate ()) ; // 375 ppm
Serial.print ("Exact:␣") ;
Serial.println (settings.exactBitRate ()) ; // 0 (---> false)
...

}

Note. If CAN bit settings are not consistent (see section 12.2 page 28), the returned value is irrelevant.

12.5 The ppmFromDesiredBitRate method

The ppmFromDesiredBitRate method returns the distance from the actual bit rate to the desired bit
rate, expressed in part-per-million (ppm): 1 ppm = 10−6. In other words, 10, 000 ppm = 1%.

const uint32_t QUARTZ_FREQUENCY = 16 * 1000 * 1000 ; // 16 MHz
void setup () {

...
ACAN2515Settings settings (QUARTZ_FREQUENCY , 727 * 1000) ; // 727 kbit/s
Serial.print ("mBitRateClosedToDesiredRate:␣") ;
Serial.println (settings.mBitRateClosedToDesiredRate) ; // 1 (--> is true)
Serial.print ("actual␣bit␣rate:␣") ;
Serial.println (settings.actualBitRate ()) ; // 727272 bit/s
Serial.print ("distance:␣") ;
Serial.println (settings.ppmFromDesiredBitRate ()) ; // 375 ppm
...

}

Note. If CAN bit settings are not consistent (see section 12.2 page 28), the returned value is irrelevant.

12.6 The samplePointFromBitStart method

The samplePointFromBitStart method returns the distance of sample point from the start of the CAN
bit, expressed in part-per-cent (ppc): 1 ppc = 1% = 10−2. If triple sampling is selected, the returned
value is the distance of the first sample point from the start of the CAN bit. It is a good practice to get
sample point from 65% to 80%.

const uint32_t QUARTZ_FREQUENCY = 16 * 1000 * 1000 ; // 16 MHz

30

12.7 Properties of the ACAN2515Settings class 12 ACAN2515SETTINGS CLASS REFERENCE

void setup () {
...
ACAN2515Settings settings (QUARTZ_FREQUENCY , 500 * 1000) ; // 500 kbit/s
Serial.print ("mBitRateClosedToDesiredRate:␣") ;
Serial.println (settings.mBitRateClosedToDesiredRate) ; // 1 (--> is true)
Serial.print ("Sample␣point:␣") ;
Serial.println (settings.samplePointFromBitStart ()) ; // 68 --> 68%
...

}

Note. If CAN bit settings are not consistent (see section 12.2 page 28), the returned value is irrelevant.

12.7 Properties of the ACAN2515Settings class

All properties of the ACAN2515Settings class are declared public and are initialized (table 3). The
default values of properties from mDesiredBitRate until mTripleSampling corresponds to a CAN bit
rate of QUARTZ_FREQUENCY / 64, that is 250,000 bit/s for a 16 MHz quartz.

Property Type Initial value Comment
mQuartzFrequency uint32_t QUARTZ_FREQUENCY
mDesiredBitRate uint32_t QUARTZ_FREQUENCY / 64
mBitRatePrescaler uint8_t 2 See section 12.1 page 24
mPropagationSegment uint8_t 5 See section 12.1 page 24
mPhaseSegment1 uint8_t 5 See section 12.1 page 24
mPhaseSegment2 uint8_t 5 See section 12.1 page 24
mSJW uint8_t 4 See section 12.1 page 24
mTripleSampling bool false See section 12.1 page 24
mBitRateClosedToDesiredRate bool true See section 12.1 page 24
mOneShotModeEnabled bool false See section 12.7.1 page 31
mTXBPriority uint8_t 0 See section 12.7.2 page 32
mRequestedMode ACAN2515RequestedMode NormalMode See section 12.7.3 page 32
mCLKOUT_SOF_pin ACAN2515CLKOUT_SOF CLOCK See section 12.7.4 page 32
mRolloverEnable bool true See section 12.7.5 page 32
mReceiveBufferSize uint16_t 32 See section 8.1 page 15
mTransmitBuffer0Size uint16_t 16 See section 7.2 page 13
mTransmitBuffer1Size uint16_t 0 See section 7.2 page 13
mTransmitBuffer2Size uint16_t 0 See section 7.2 page 13

Table 3 – Properties of the ACAN2515Settings class

12.7.1 The mOneShotModeEnabled property

This boolean property corresponds to the OSM bit of the CANCTRL control register. It is false by default.

31

13 CAN CONTROLLER STATE

12.7.2 The mTXBPriority property

This property defines the transmit priority associated the TXBi registers:

• bits 1-0: priority of TXB0;

• bits 3-2: priority of TXB1;

• bits 5-4: priority of TXB2;

• bits 7-6: unused.

By default, its value is 0, all three TXBi registers get the same 0 priority.

12.7.3 The mRequestedMode property

This property defines the mode requested at this end of the configuration: NormalMode (default value),
ListenOnlyMode, LoopBackMode.

12.7.4 The mCLKOUT property

This property defines signal output on the CLKOUT/SOF pin; possible values are: CLOCK (default value),
CLOCK2, CLOCK4, CLOCK8, SOF, HiZ.

12.7.5 The mRolloverEnable property

This boolean property corresponds to the BUKT bit of the RXB0CTRL control register. If true (value by
default), RXB0 message will roll over and be written to RXB1 if RXB0 is full; if false, rollover is disabled.

13 CAN controller state

Two methods return the receive error counter and the transmit error counter.

13.1 The receiveErrorCounter method

public: uint8_t receiveErrorCounter (void) ;

13.2 The transmitErrorCounter method

public: uint8_t transmitErrorCounter (void) ;

32

	Versions
	Features
	Data flow
	A simple example: LoopBackDemo
	The CANMessage class
	Connecting a MCP2515 to your microcontroller
	Using alternate pins on Teensy 3.x
	Using alternate pins on an Adafruit Feather M0

	Sending frames
	The tryToSend method
	Driver transmit buffer sizes
	The transmitBufferSize method
	The transmitBufferCount method
	The transmitBufferPeakCount method

	Retrieving received messages using the receive method
	Driver receive buffer size
	The receiveBufferSize method
	The receiveBufferCount method
	The receiveBufferPeakCount method

	Acceptance filters
	Default behaviour
	Defining filters
	Extended frames acceptance
	Standard frames acceptance

	The dispatchReceivedMessage method
	The ACAN2515::begin method reference
	The ACAN2515::begin method prototypes
	Defining explicitly the interrupt service routine
	The error code
	kNoMCP2515
	kTooFarFromDesiredBitRate
	kInconsistentBitRateSettings
	kINTPinIsNotAnInterrupt
	kISRIsNull
	kRequestedModeTimeOut
	kAcceptanceFilterArrayIsNULL
	kOneFilterMaskRequiresOneOrTwoAcceptanceFilters
	kTwoFilterMasksRequireThreeToSixAcceptanceFilters

	ACAN2515Settings class reference
	The ACAN2515Settings constructor: computation of the CAN bit settings
	The CANBitSettingConsistency method
	The actualBitRate method
	The exactBitRate method
	The ppmFromDesiredBitRate method
	The samplePointFromBitStart method
	Properties of the ACAN2515Settings class
	The mOneShotModeEnabled property
	The mTXBPriority property
	The mRequestedMode property
	The mCLKOUT property
	The mRolloverEnable property

	CAN controller state
	The receiveErrorCounter method
	The transmitErrorCounter method

