
ACAN library
for Teensy 3.1 / 3.2, 3.5, 3.6

Version 2.0.4
Pierre Molinaro

March 22, 2024

Contents

1 Versions 3

2 Features 3

3 Data flow 4

4 A simple example: LoopBackDemo 5

5 The CANMessage class 7

6 Driver instances 8

7 Alternate pins 9

8 Sending data frames 9
8.1 tryToSend for sending data frames . 9
8.2 Driver transmit buffer size . 10
8.3 The transmitBufferSize method . 11
8.4 The transmitBufferCount method . 11
8.5 The transmitBufferPeakCount method . 11

9 Sending remote frames 11

10 Retrieving received messages using the receive method 12
10.1 Driver receive buffer size . 13
10.2 The receiveBufferSize method . 13
10.3 The receiveBufferCount method . 13

1

CONTENTS CONTENTS

10.4 The receiveBufferPeakCount method . 13

11 Configuration 14

12 Primary filters 14
12.1 Primary filter example . 14
12.2 Primary filter as pass-all filter . 16
12.3 Primary filter for matching several identifiers . 16
12.4 Primary filter conformance . 17
12.5 The receive method revisited . 18

13 Secondary filters 18
13.1 Secondary filters, without primary filter . 18
13.2 Primary and secondary filters . 20
13.3 Secondary filter as pass-all filter . 21
13.4 Secondary filter conformance . 22
13.5 The receive method revisited . 22

14 The dispatchReceivedMessage method 23

15 The ACAN::begin method reference 24
15.1 The ACAN::begin method prototype . 24
15.2 The error code . 25

15.2.1 CAN Bit setting too far from wished rate . 26
15.2.2 CAN Bit inconsistent configuration error . 27
15.2.3 Too much primary filters error . 27

15.3 Primary filters conformance error . 27
15.3.1 Too much secondary filters error . 27
15.3.2 Secondary filter conformance error . 27
15.3.3 No alternate Tx pin error . 27
15.3.4 No alternate Rx pin error . 27

16 ACANSettings class reference 28
16.1 The ACANSettings constructor: computation of the CAN bit settings 28
16.2 The CANBitSettingConsistency method . 31
16.3 The actualBitRate method . 32
16.4 The exactBitRate method . 33
16.5 The ppmFromWishedBitRate method . 33
16.6 The samplePointFromBitStart method . 33
16.7 Properties of the ACANSettings class . 34

16.7.1 The mListenOnlyMode property . 34
16.7.2 The mSelfReceptionMode property . 35
16.7.3 The mLoopBackMode property . 35
16.7.4 The mMessageIRQPriority property . 35
16.7.5 The mTxPinIsOpenCollector property . 35

2

2 FEATURES

16.7.6 The mRxPinHasInternalPullUp property . 35

17 CAN controller state 35
17.1 The controllerState method . 35
17.2 The receiveErrorCounter method . 36
17.3 The transmitErrorCounter method . 36

1 Versions

Version Date Comment
2.0.4 March 22, 2024 File CANMessage.h renamed to ACAN_CANMessage.h.
2.0.3 October 1, 2021 Added data_s64, data_s32, data_s16 and data_s8 to

CANMessage class union members, see section 5 page 7 (thanks to
tomtom0707).

2.0.2 April 27, 2020 Added dataFloat to CANMessage (thanks to Koryphon)
Added several forgotten volatile

2.0.1 March 6, 2020 Fixed broken sequentiality (thanks to wangnick).
2.0.0 February 21, 2019 Updated documentation on error codes

Renamed error codes
1.0.6 October 23, 2018 Compatibility with ACAN2515 version 1.0.1
1.0.5 October 12, 2018 Corrected interrupt masking, some messages to send were lost in

previous releases
1.0.4 October 12, 2018 Adding include guard in CANmessage.h header file, for compatibility

with ACAN2515 library
1.0.1 December 11, 2017 Added mTxPinIsOpenCollector (see section 16.7.5 page 35) and

mRxPinHasInternalPullUp settings (section 16.7.6 page 35)
1.0.0 October 9, 2017 Initial release

2 Features

The ACAN library is a CAN (”Controller Area Network”) driver for Teensy 3.1 / 3.2, 3.5, 3.6. It has been designed
to make it easy to start and to be easily configurable:

• default configuration sends and receives any frame – no default filter to provide;

• efficient built-in CAN bit settings computation from user bit rate;

• user can fully define its own CAN bit setting values;

• reception filters are easily defined – up to 14 primary filters and 18 secondary filters;

• reception filters accept call back functions;

• driver transmit buffer size is customisable;

3

3 DATA FLOW

• driver receive buffer size is customisable;

• overflow of the driver receive buffer is detectable;

• loop back, self reception, listing only FlexCAN controller modes are selectable;

• Tx pin can be configured as open collector;

• internal pullup can be enabled for Rx pin.

3 Data flow

The figure 1 illustrates message flow for sending and receiving CAN messages.

User code

ACAN driver

available

receive

dispatchReceivedMessagetryToSend

FlexCAN controller

remote frame

data frame

Driver reception Buffer
(FIFO)

Driver transmit Buffer
(FIFO)

CAN Protocol Engine

CAN Tx CAN Rx

Data frame
transmit buffer

Remote frame
transmit buffer(s)

Reception filters

Reception FIFO

Figure 1 – Message flow in ACAN driver and FlexCAN controller

FlexCAN controller is hardware, a module of the micro-controller. It implements 16 MBs (Mailboxes or Message
Buffers), used for the data frame transmit buffer, remote frame transmit buffer(s), reception FIFO and reception
filters. The actual partition depends from the selected configuration – see table 1 and section 11 page 14.

Sending messages. The FlexCAN hardware makes sending data frames different from sending remote frames.
For both, user code calls the tryToSend method – see section 8 page 9 for sending data frames, and sec-
tion 9 page 11 for sending remote frames. The data frames are stored in the Driver Transmit Buffer, before to

4

4 A SIMPLE EXAMPLE: LOOPBACKDEMO

Sending Sending
settings.mConfiguration Reception remote frames data frames
k8_0_Filters 8 (MB0 ... MB7) 7 (MB8 ... MB14) 1 (MB15)
k10_6_Filters 10 (MB0 ... MB9) 5 (MB10 ... MB14) 1 (MB15)
k12_12_Filters 12 (MB0 ... MB11) 3 (MB12 ... MB14) 1 (MB15)
k14_18_Filters 14 (MB0 ... MB13) 1 (MB14) 1 (MB15)

Table 1 – FlexCAN MBs assignments, following settings.mConfiguration value

be moved by the message interrupt service routine into the data frame transmit buffer. The size of the Driver
Transmit Buffer is 16 by default – see section 8.2 page 10 for changing the default value.

Receiving messages. The FlexCAN CAN Protocol Engine transmits all correct frames to the reception filters. By
default, they are configured as pass-all, see section 12 page 14 and section 13 page 18 for configuring them.
Messages that pass the filters are stored in the Reception FIFO. Its depth is not configurable – it is always
6-message. The message interrupt service routine transfers the messages from Reception FIFO to the Driver
Receive Buffer. The size of the Driver Receive Buffer is 32 by default – see section 10.1 page 13 for changing
the default value. Three user methods are available:

• the available method returns false if the Driver Receive Buffer is empty, and true otherwise;

• thereceivemethod retrieves messages from the Driver Receive Buffer – see section 10 page 12, section
12.5 page 18 and section 13.5 page 22;

• the dispatchReceivedMessage method if you have defined primary and / or secondary filters that
name a call-back function – see section 14 page 23.

Sequentiality. The ACAN driver and the configuration of the FlexCAN controller ensures sequentiality of data
messages. This means that if an user program calls tryToSend first for a message M1 and then for a mes-
sage M2, the message M1 will be always retrieved by receive or dispatchReceivedMessage before the
message M2.

4 A simple example: LoopBackDemo

The following code is a sample code for introducing the ACAN library. It runs on Teensy 3.1 / 3.2, Teensy 3.5
and Teensy 3.6. It demonstrates how to configure the driver, to send a CAN message, and to receive a CAN
message.

Note it runs without any external hardware, it uses the loop back mode and the self reception mode.

1 #include <ACAN.h>

2

3 void setup () {

4 Serial.begin (9600) ;

5 Serial.println ("Hello") ;

6 ACANSettings settings (125 * 1000) ; // 125 kbit/s

7 settings.mLoopBackMode = true ;

5

4 A SIMPLE EXAMPLE: LOOPBACKDEMO

8 settings.mSelfReceptionMode = true ;

9 const uint32_t errorCode = ACAN::can0.begin (settings) ;

10 if (0 == errorCode) {

11 Serial.println ("ACAN::can0␣ok") ;

12 }else{

13 Serial.print ("Error␣ACAN::can0:␣0x") ;

14 Serial.println (errorCode, HEX) ;

15 }

16 }

17

18 static uint32_t gSendDate = 0 ;

19 static uint32_t gSentCount = 0 ;

20 static uint32_t gReceivedCount = 0 ;

21

22 void loop () {

23 CANMessage message ;

24 if (gSendDate < millis ()) {

25 message.id = 0x542 ;

26 const bool ok = ACAN::can0.tryToSend (message) ;

27 if (ok) {

28 gSendDate += 2000 ;

29 gSentCount += 1 ;

30 Serial.print ("Sent:␣") ;

31 Serial.println (gSentCount) ;

32 }

33 }

34 if (ACAN::can0.receive (message)) {

35 gReceivedCount += 1 ;

36 Serial.print ("Received:␣") ;

37 Serial.println (gReceivedCount) ;

38 }

39 }

Line 1. This line includes the ACAN library.

Line 6. Configuration is a four-step operation. This line is the first step. It instanciates the settings object of
the ACANSettings class. The constructor has one parameter: the wished CAN bit rate. It returns a settings
object fully initialized with CAN bit settings for the wished bit rate, and default values for other configuration
properties.

Lines 7 and 8. This is the second step. You can override the values of the properties of settings object. Here,
the mLoopBackMode and mSelfReceptionMode properties are set to true– they are false by default. The-
ses two properties fully enables loop back, that is you can run this demo sketch even it you have no connection
to a physical CAN network. The section 16.7 page 34 lists all properties you can override.

Line 9. This is the third step, configuration of the ACAN::can0 driver with settings values. You cannot
change the ACAN::can0 name – see section 6 page 8. The driver is configured for being able to send any
(standard / extended, data / remote) frame, and to receive all (standard / extended, data / remote) frames. If

6

5 THE CANMESSAGE CLASS

you want to define reception filters, see section 12 page 14 and section 13 page 18.

Lines 10 to 15. Last step: the configuration of the ACAN::can0 driver returns an error code, stored in the
errorCode constant. It has the value 0 if all is ok – see section 15.2 page 25.

Line 18. The gSendDate global variable is used for sending a CAN message every 2 s.

Line 19. The gSentCount global variable counts the number of sent messages.

Line 20. The gReceivedCount global variable counts the number of received messages.

Line 23. The message object is fully initialized by the default constructor, it represents a standard data frame,
with an identifier equal to 0, and without any data – see section 5 page 7.

Line 24. It tests if it is time to send a message.

Line 25. Set the message identifier. In a real code, we set here message data, and for an extended frame the
ext boolean property.

Line 26. We try to send the data message. Actually, we try to transfer it into the Driver transmit buffer. The
transfer succeeds if the buffer is not full. The tryToSend method returns false if the buffer is full, and true

otherwise. Note the returned value only tells if the transfer into the Driver transmit buffer is successful or not:
we have no way to know if the frame is actually sent on the the CAN network.

Lines 27 to 32. We act the successfull transfer by setting gSendDate to the next send date and incrementing
the gSentCount variable. Note if the transfer did fail, the send date is not changed, so the tryToSendmethod
will be called on the execution of the loop function.

Line 34. As the FlexCAN controller is configured in loop back mode (see lines 7 and 8), all sent messages are
received. The receive method returns false if no message is available from the driver reception buffer. It
returns true if a message has been successfully removed from the driver reception buffer. This message is
assigned to the message object.

Lines 35 to 37. It a message has been received, the gReceivedCount is incremented and displayed.

5 The CANMessage class

Note. The CANMessage class is declared in the CANMessage.h header file. The class declaration is protected
by an include guard that causes the macro GENERIC_CAN_MESSAGE_DEFINED to be defined. The ACAN2515
driver contains an identical CANMessage.h file header, enabling using both ACAN driver and ACAN2515 driver
in a sketch.

A CAN message is an object that contains all CAN frame user informations. All properties are initialized by
default, and represent a standard data frame, with an identifier equal to 0, and without any data.

class CANMessage {

public : uint32_t id = 0 ; // Frame identifier

public : bool ext = false ; // false -> standard frame, true -> extended frame

public : bool rtr = false ; // false -> data frame, true -> remote frame

public : uint8_t idx = 0 ; // This field is used by the driver

public : uint8_t len = 0 ; // Length of data (0 ... 8)

7

6 DRIVER INSTANCES

public : union {

uint64_t data64 ; // Caution: subject to endianness

int64_t data_s64 ; // Caution: subject to endianness

uint32_t data32 [2] ; // Caution: subject to endianness

int32_t data_s32 [2] ; // Caution: subject to endianness

float dataFloat [2] ; // Caution: subject to endianness

uint16_t data16 [4] ; // Caution: subject to endianness

int16_t data_s16 [4] ; // Caution: subject to endianness

int8_t data_s8 [8] ;

uint8_t data [8] = {0, 0, 0, 0, 0, 0, 0, 0} ;

} ;

} ;

Note the message datas are defined by an union. So message datas can be seen as height bytes, four 16-bit
unsigned integers, two 32-bit, one 64-bit or two 32-bit floats. Be aware that multi-byte integers and floats
are subject to endianness (Cortex M4 processors of Teensy 3.x are little-endian).

The idx property is not used in CAN frames, but:

• for a received message, it contains the acceptance filter index (see section 12.5 page 18 and section
13.5 page 22);

• it is not used on sending messages.

6 Driver instances

Driver instances are global variables. You cannot choose their names, they are defined by the library.

Teensy Driver name
Teensy 3.1 / 3.2 ACAN::can0

Teensy 3.5 ACAN::can0

Teensy 3.6 ACAN::can0, ACAN::can1

Table 2 – Driver global variables

Code snippets in this document uses ACAN::can0. They also apply to ACAN::can1 of Teensy 3.6.

Note. Drivers variables are ACAN class static properties. This choice may seem strange. However, a common
error is to declare its own driver variable:

ACAN myCAN ; // Don't do that, it is an error !!!

Declaring drivers variables as ACAN class static properties1 enables the compiler to raise an error if you try to
declare your own driver variable.

1The ACAN constructor is declared private.

8

8 SENDING DATA FRAMES

7 Alternate pins

For using alternate pins, just setmUseAlternateTxPin and / ormUseAlternateRxPinproperties ofsettings
object:

ACANSettings settings (125 * 1000) ;

settings.mUseAlternateRxPin = true ;

settings.mUseAlternateTxPin = true ;

const uint32_t errorCode = ACAN::can0.begin (settings) ;

By default, theses properties are set tofalse. The table 3 lists default and alternate pins. Note thatACAN::can1
does not support alternate pins. Trying to set alternate pin for ACAN::can1 raises error bits in the value re-
turned by begin (see section 15 page 24).

Driver Default Alternate Default Alternate
Teensy name Tx pin Tx pin Rx pin Rx pin
Teensy 3.1 / 3.2 ACAN::can0 3 32 4 25
Teensy 3.5 ACAN::can0 3 29 4 30
Teensy 3.6 ACAN::can0 3 29 4 30
Teensy 3.6 ACAN::can1 33 No alternate Tx pin 34 No alternate Rx pin

Table 3 – Alternate CAN Tx and Rx pins

8 Sending data frames

Note. This section applies only to data frames. For sending remote frames, see section 9 page 11.

8.1 tryToSend for sending data frames

Call the method tryToSend for sending data frames; it returns:

• true if the message has been successfully transmitted to driver transmit buffer; note that does not
mean that the CAN frame has been actually sent;

• false if the message has not been successfully transmitted to driver transmit buffer, it was full.

So it is wise to systematically test the returned value. One way to achieve this is to loop while there is no room
in driver transmit buffer:

while (!ACAN::can0.tryToSend (message)) {

yield () ;

}

A better way is to use a global variable to note if message has been successfully transmitted to driver transmit
buffer. For example, for sending a message every 2 seconds:

9

8.2 Driver transmit buffer size 8 SENDING DATA FRAMES

static uint32_t gSendDate = 0 ;

void loop () {

CANMessage message ;

if (gSendDate < millis ()) {

// Initialize message properties

const bool ok = ACAN::can0.tryToSend (message) ;

if (ok) {

gSendDate += 2000 ;

}

}

}

An other hint to use a global boolean variable as a flag that remains true while the frame has not been sent.

static bool gSendMessage = false ;

void loop () {

...

if (frame_should_be_sent) {

gSendMessage = true ;

}

...

if (gSendMessage) {

CANMessage message ;

// Initialize message properties

const bool ok = ACAN::can0.tryToSend (message) ;

if (ok) {

gSendMessage = false ;

}

}

...

}

8.2 Driver transmit buffer size

By default, driver transmit buffer size is 16. You can change this default value by setting themTransmitBufferSize
property of settings variable:

ACANSettings settings (125 * 1000) ;

settings.mTransmitBufferSize = 30 ;

const uint32_t errorCode = ACAN::can0.begin (settings) ;

...

As the size of CANMessage class is 16 bytes, the actual size of the driver transmit buffer is the value of
settings.mTransmitBufferSize * 16.

10

8.3 The transmitBufferSize method 9 SENDING REMOTE FRAMES

8.3 The transmitBufferSize method

It returns the size of the driver transmit buffer, that is the value of settings.mTransmitBufferSize.

const uint32_t s = ACAN::can0.transmitBufferSize () ;

8.4 The transmitBufferCount method

The transmitBufferCount method returns the current number of messages in the transmit buffer.

const uint32_t n = ACAN::can0.transmitBufferCount () ;

8.5 The transmitBufferPeakCount method

The transmitBufferPeakCount method returns the peak value of message count in the transmit buffer.

const uint32_t max = ACAN::can0.transmitBufferPeakCount () ;

Il the transmit buffer is full when tryToSend is called, the return value is false. In such case, the following
calls of transmitBufferPeakCount will return transmitBufferSize ()+1.

So, when transmitBufferPeakCount returns a value lower or equal to transmitBufferSize (), it means
that calls to tryToSend have always returned true.

9 Sending remote frames

Note. This section applies only to remote frames. For sending data frames, see section 8 page 9.

The hardware design of the FlexCAN module makes sending remote frames different from data frames.

However, for sending remote frames, you also invoke the tryToSend method. This method understands if a
remote frame should be sent, the rtr property of its argument is set (it is cleared by default, denoting a data
frame).

CanMessage message ;

message.rtr = true ; // Remote frame

...

const bool sent = ACAN::can0.tryToSend (message) ;

...

The FlexCAN module embedded in Teensy 3.x microcontrollers implements 16 mailboxes, for sending and
receiving CAN frames. Following the settings.mConfiguration, it allocates 7, 5, 3 or 1 MBs for send-
ing remote frames, as indicating by the table 4 page 14. By default, settings.mConfiguration is set to
k12_12_Filters, as remote frames are rarely needed.

11

10 RETRIEVING RECEIVED MESSAGES USING THE RECEIVE METHOD

10 Retrieving received messages using the receive method

There are two ways for retrieving received messages :

• using the receive method, as explained in this section;

• using the dispatchReceivedMessage method (see section 14 page 23).

This is a basic example:

void setup () {

ACANSettings settings (125 * 1000) ;

...

const uint32_t errorCode = ACAN::can0.begin (settings) ; // No receive filter

...

}

void loop () {

CANMessage message ;

if (ACAN::can0.receive (message)) {

// Handle received message

}

}

The receive method:

• returns false if the driver receive buffer is empty, message argument is not modified;

• returns true if a message has been has been removed from the driver receive buffer, and the message
argument is assigned.

You need to manually dispatch the received messages. If you did not provide any receive filter, you should
check the rtr bit (remote or data frame?), the ext bit (standard or extended frame), and the id (identifier
value). The following snippet dispatches three messages:

void setup () {

ACANSettings settings (125 * 1000) ;

...

const uint32_t errorCode = ACAN::can0.begin (settings) ; // No receive filter

...

}

void loop () {

CANMessage message ;

if (ACAN::can0.receive (message)) {

if (!message.rtr && message.ext && (message.id == 0x123456)) {

handle_myMessage_0 (message) ; // Extended data frame, id is 0x123456

}else if (!message.rtr && !message.ext && (message.id == 0x234)) {

handle_myMessage_1 (message) ; // Standard data frame, id is 0x234

12

10.1 Driver receive buffer size 10 RETRIEVING RECEIVED MESSAGES USING THE RECEIVE METHOD

}else if (message.rtr && !message.ext && (message.id == 0x542)) {

handle_myMessage_2 (message) ; // Standard remote frame, id is 0x542

}

}

...

}

The handle_myMessage_0 function has the following header:

void handle_myMessage_0 (const CANMessage & inMessage) {

...

}

So are the header of the handle_myMessage_1 and the handle_myMessage_2 functions.

10.1 Driver receive buffer size

By default, the driver receive buffer size is 32. You can change this default value by setting themReceiveBufferSize
property of settings variable:

ACANSettings settings (125 * 1000) ;

settings.mReceiveBufferSize = 100 ;

const uint32_t errorCode = ACAN::can0.begin (settings) ;

...

As the size ofCANMessage class is 16 bytes, the actual size of the driver receive buffer is the value ofsettings.mReceiveBufferSize
* 16.

10.2 The receiveBufferSize method

ThereceiveBufferSizemethod returns the size of the driver receive buffer, that is the value ofsettings.mReceiveBufferSize.

const uint32_t s = ACAN::can0.receiveBufferSize () ;

10.3 The receiveBufferCount method

The receiveBufferCount method returns the current number of messages in the driver receive buffer.

const uint32_t n = ACAN::can0.receiveBufferCount () ;

10.4 The receiveBufferPeakCount method

The receiveBufferPeakCountmethod returns the peak value of message count in the driver receive buffer.

const uint32_t max = ACAN::can0.receiveBufferPeakCount () ;

13

12 PRIMARY FILTERS

Note the driver receive buffer may overflow, if messages are not retrieved (by calls of the receive method or
the dispatchReceivedMessagemethod). If an overflow occurs, further calls of the ACAN::can0.receive-
BufferPeakCount () method return ACAN::can0.receiveBufferSize ()+1.

11 Configuration

The mConfiguration property of the settings variable defines the FlexCAN module configuration – see
table 4. By default, its value is ACANSettings::k12_12_Filters.

You can easily override the default configuration:

void setup () {

ACANSettings settings (125 * 1000) ;

settings.mConfiguration = ACANSettings::k14_18_Filters ;

const uint32_t errorCode = ACAN::can0.begin (settings) ; // No receive filter

...

}

settings.mConfiguration Primary filters Secondary filters MB for sending remote frames
section 12 page 14 section 13 page 18 section 9 page 11

k8_0_Filters 8 0 7
k10_6_Filters 10 6 5
k12_12_Filters 12 12 3
k14_18_Filters 14 18 1

Table 4 – FlexCAN configuration, following settings.mConfiguration value

12 Primary filters

A first step is to define receive filters2. The receive filters are set to the FlexCAN module, so filtering is performed
by hardware, without any CPU charge. The messages that pass the filters are transfered into the FlexCAN
RxFIFO by the FlexCAN module, and transfered info the driver receive buffer by the driver. So the receive

method only gets messages that have passed the filters.

The driver lets you to define two kinds of filters: primary filters and secondary filters3. Making the difference is
required by FlexCAN hardware design: primary filters are more powerfull than secondary filters.

12.1 Primary filter example

For defining primary filters4, you write:
2The second step is to use the dispatchReceivedMessage method instead of the receive method, see section 14 page 23.
3The primary filters and secondary filters terms are used in this document for simplicity. FlexCAN documentation names them respec-

tively Rx FIFO filter Table Elements Affected by Rx Individual Masks and Rx FIFO filter Table Elements Affected by Rx FIFO Global Mask.
4For secondary filters, see section 13 page 18.

14

12.1 Primary filter example 12 PRIMARY FILTERS

void setup () {

ACANSettings settings (125 * 1000) ;

...

const ACANPrimaryFilter primaryFilters [] = {

ACANPrimaryFilter (kData, kExtended, 0x123456), // Filter #0

ACANPrimaryFilter (kData, kStandard, 0x234), // Filter #1

ACANPrimaryFilter (kRemote, kStandard, 0x542) // Filter #2

} ;

const uint32_t errorCode = ACAN::can0.begin (settings,

primaryFilters, // The filter array

3) ; // Filter array size

...

}

void loop () {

CANMessage message ;

if (ACAN::can0.receive (message)) { // Only frames that pass a filter are retrieved

if (!message.rtr && message.ext && (message.id == 0x123456)) {

handle_myMessage_0 (message) ; // Extended data frame, id is 0x123456

}else if (!message.rtr && !message.ext && (message.id == 0x234)) {

handle_myMessage_1 (message) ; // Standard data frame, id is 0x234

}else if (message.rtr && !message.ext && (message.id == 0x542)) {

handle_myMessage_2 (message) ; // Standard remote frame, id is 0x542

}

}

...

}

Each element of the primaryFilters constant array defines an acceptance filter. Should be specified5:

• the required kind: data frames (kData) or remote frames (kRemote);

• the required format: standard frames (kStandard) or extended frames (kExtended);

• the required identifier value.

Maximum number of primary filters. The number of primary filters is limited: 12 by default, as the default value
of settings.mConfiguration is ACANSettings::k12_12_Filters. See section 11 page 14 for getting
the number of primary filters for each configuration, and for setting your own configuration.

Test order. The FlexCAN hardware examines the filters in the increasing order of their indexes in theprimaryFilters
constant array. As soon as a match occurs, the message is transfered to Rx FIFO buffer and the examination
process is completed. If no match occurs, the message is lost.

A consequence is if a filter appears twice, the second occurrence will never match. In the next example, the
Filter #3 will never match, as it is identical to filter #1.

void setup () {

5There is a fourth optional argument, that is NULL by default – see section 14 page 23.

15

12.2 Primary filter as pass-all filter 12 PRIMARY FILTERS

...

const ACANPrimaryFilter primaryFilters [] = {

ACANPrimaryFilter (kData, kExtended, 0x123456), // Filter #0

ACANPrimaryFilter (kData, kStandard, 0x234), // Filter #1

ACANPrimaryFilter (kRemote, kStandard, 0x542), // Filter #2

ACANPrimaryFilter (kData, kStandard, 0x234) // Filter #3

} ;

...

}

12.2 Primary filter as pass-all filter

You can specify a primary filter that matches any frame:

ACANPrimaryFilter ()

You can use it for accepting all frames that did not match previous filters:

void setup () {

...

const ACANPrimaryFilter primaryFilters [] = {

ACANPrimaryFilter (kData, kExtended, 0x123456), // Filter #0

ACANPrimaryFilter (kData, kStandard, 0x234), // Filter #1

ACANPrimaryFilter (kRemote, kStandard, 0x542), // Filter #2

ACANPrimaryFilter () // Filter #3

} ; // Filter #3 catches any message that did not match filters #0, #1 and #2

...

}

Be aware if the pass-all filter is not the last one, following ones will never match.

void setup () {

...

const ACANPrimaryFilter primaryFilters [] = {

ACANPrimaryFilter (kData, kExtended, 0x123456), // Filter #0

ACANPrimaryFilter (kData, kStandard, 0x234), // Filter #1

ACANPrimaryFilter (), // Filter #2

ACANPrimaryFilter (kRemote, kStandard, 0x542) // Filter #3

} ; // Filter #3 will never match

...

}

12.3 Primary filter for matching several identifiers

A primary filter can be configured for matching several identifiers6. You provide two values: a filter_mask

and a filter_acceptance. A message with an identifier is accepted if:
6A secondary filter cannot be configured for matching several identifiers.

16

12.4 Primary filter conformance 12 PRIMARY FILTERS

filter_mask & identifier = filter_acceptance

The & operator is the bit-wise and operator.

Let’s take an example: the filter should match standard data frames with identifiers equal to 0x540, 0x541,
0x542 and 0x543. The four identifiers differs by the two lower bits. As a standard identifiers are 11-bits wide,
the filter_mask is 0x7FC. The filter acceptance is 0x540. The filter is declared by:

...

ACANPrimaryFilter (kData, // Accept only data frames

kStandard, // Accept only standard frames

0x7FC, // Filter mask

0x540) // Filter acceptance

...

}

For a standard frame (11-bit identifier), both filter_mask and a filter_acceptance should be lower or
equal to 0x7FF.

For a extended frame (29-bit identifier), both filter_mask and a filter_acceptance should be lower or
equal to 0x1FFF_FFFF.

Be aware that the filter_mask and a filter_acceptance must also conform to the following constraint:
if a bit is clear in the filter_mask, the corresponding bit of the filter_acceptance should also be clear. In
other words, filter_mask and a filter_acceptance should check:

filter_mask & filter_acceptance = filter_acceptance

For example, the filter mask 0x7FC and the filter acceptance 0x541 do not conform because the bit 0 of
filter_mask is clear and the bit 0 of the filter acceptance is set.

A non conform filter may never match.

12.4 Primary filter conformance

The pass-all primary filter (section 12.2 page 16) always conforms.

For a primary filter for matching several identifiers, see section 12.3 page 16.

For a primary filter for one single identifier:

• for a standard frame (11-bit identifier), the given identifier value should be lower or equal to 0x7FF;

• for a extended frame (29-bit identifier), the given identifier value should be lower or equal to0x1FFF_FFFF.

If one or more primary filters do not conform, the execution of the begin method returns an error – see table
5 page 26.

17

12.5 The receive method revisited 13 SECONDARY FILTERS

12.5 The receive method revisited

The receive method retrieves a received message. When you define primary filters, the value of the idx

property of the message is the matching filter index. For example:

void setup () {

ACANSettings settings (125 * 1000) ;

...

const ACANPrimaryFilter primaryFilters [] = {

ACANPrimaryFilter (kData, kExtended, 0x123456), // Filter #0

ACANPrimaryFilter (kData, kStandard, 0x234), // Filter #1

ACANPrimaryFilter (kRemote, kStandard, 0x542) // Filter #2

} ;

const uint32_t errorCode = ACAN::can0.begin (settings, primaryFilters, 3) ;

...

}

void loop () {

CANMessage message ;

if (ACAN::can0.receive (message)) { // Only frames that pass a filter are retrieved

switch (message.idx) {

case 0:

handle_myMessage_0 (message) ; // Extended data frame, id is 0x123456

break ;

case 1:

handle_myMessage_1 (message) ; // Standard data frame, id is 0x234

break ;

case 2:

handle_myMessage_2 (message) ; // Standard remote frame, id is 0x542

break ;

default:

break ;

}

}

...

}

An improvement is to use the dispatchReceivedMessage method – see section 14 page 23.

13 Secondary filters

Depending from the configuration, you can define several secondary filters – see table 4 page 14.

13.1 Secondary filters, without primary filter

This is an example without primary filter, and with secondary filters:

18

13.1 Secondary filters, without primary filter 13 SECONDARY FILTERS

void setup () {

ACANSettings settings (125 * 1000) ;

...

const ACANSecondaryFilter secondaryFilters [] = {

ACANSecondaryFilter (kData, kExtended, 0x123456), // Filter #0

ACANSecondaryFilter (kData, kStandard, 0x234), // Filter #1

ACANSecondaryFilter (kRemote, kStandard, 0x542) // Filter #2

} ;

const uint32_t errorCode = ACAN::can0.begin (settings,

NULL, 0, // No primary filter

secondaryFilters, // The filter array

3) ; // Filter array size

...

void loop () {

CANMessage message ;

if (ACAN::can0.receive (message)) { // Only frames that pass a filter are retrieved

if (!message.rtr && message.ext && (message.id == 0x123456)) {

handle_myMessage_0 (message) ; // Extended data frame, id is 0x123456

}else if (!message.rtr && !message.ext && (message.id == 0x234)) {

handle_myMessage_1 (message) ; // Standard data frame, id is 0x234

}else if (message.rtr && !message.ext && (message.id == 0x542)) {

handle_myMessage_2 (message) ; // Standard remote frame, id is 0x542

}

}

...

}

}

Each element of the secondaryFilters constant array defines an acceptance filter. Should be specified7:

• the required kind: data frames (kData) or remote frames (kRemote);

• the required format: standard frames (kStandard) or extended frames (kExtended);

• the required identifier value.

Maximum number of secondary filters. The number of secondary filters is limited: 12 by default, as the de-
fault value of settings.mConfiguration is ACANSettings::k12_12_Filters. See section 11 page 14
for getting the number of secondary filters for each configuration, and for changing default value.

Test order. The FlexCAN hardware examines the filters in the increasing order of their indexes in thesecondaryFilters
constant array. As soon as a match occurs, the message is transfered to Rx FIFO buffer and the examination
process is completed. If no match occurs, the message is lost.

A consequence is if a filter appears twice, the second occurrence will never match.
7There is a fourth optional argument, that is NULL by default – see section 14 page 23.

19

13.2 Primary and secondary filters 13 SECONDARY FILTERS

13.2 Primary and secondary filters

This is an example with one primary filter, and two secondary filters:

void setup () {

ACANSettings settings (125 * 1000) ;

...

const ACANPrimaryFilter primaryFilters [] = {

ACANPrimaryFilter (kData, kExtended, 0x123456), // Filter #0

} ;

const ACANSecondaryFilter secondaryFilters [] = {

ACANSecondaryFilter (kData, kStandard, 0x234), // Filter #1

ACANSecondaryFilter (kRemote, kStandard, 0x542) // Filter #2

} ;

const uint32_t errorCode = ACAN::can0.begin (settings,

primaryFilters,

1, // Primary filter array size

secondaryFilters,

2) ; // Secondary filter array size

...

void loop () {

CANMessage message ;

if (ACAN::can0.receive (message)) { // Only frames that pass a filter are retrieved

if (!message.rtr && message.ext && (message.id == 0x123456)) {

handle_myMessage_0 (message) ; // Extended data frame, id is 0x123456

}else if (!message.rtr && !message.ext && (message.id == 0x234)) {

handle_myMessage_1 (message) ; // Standard data frame, id is 0x234

}else if (message.rtr && !message.ext && (message.id == 0x542)) {

handle_myMessage_2 (message) ; // Standard remote frame, id is 0x542

}

}

...

}

Test order. The FlexCAN hardware performs sequentially:

• testing the primary filters in the increasing order of their indexes in theprimaryFilters constant array;

• as soon as a match with a primary filter occurs, the message is transfered to Rx FIFO buffer and the
examination process is completed;

• if no match occurs, testing the secondary filters in the increasing order of their indexes in thesecondaryFilters
constant array;

• as soon as a match with a secondary filter occurs, the message is transfered to Rx FIFO buffer and the
examination process is completed;

• if no match occurs, the message is lost.

20

13.3 Secondary filter as pass-all filter 13 SECONDARY FILTERS

A consequence is if a filter appears twice, the second occurrence will never match. If a secondary filter matches
the same message that a primary filter, the secondary filter will never match.

13.3 Secondary filter as pass-all filter

You can specify a secondary filter that matches any frame:

ACANSecondaryFilter ()

You can use it for accepting all frames that did not match previous filters:

void setup () {

...

const ACANSecondaryFilter secondaryFilters [] = {

ACANSecondaryFilter (kData, kExtended, 0x123456), // Filter #0

ACANSecondaryFilter (kData, kStandard, 0x234), // Filter #1

ACANSecondaryFilter (kRemote, kStandard, 0x542), // Filter #2

ACANSecondaryFilter () // Filter #3

} ; // Filter #3 catches any message that did not match filters #0, #1 and #2

...

}

Be aware if the pass-all filter is not the last one, following ones will never match.

void setup () {

...

const ACANSecondaryFilter primaryFilters [] = {

ACANSecondaryFilter (kData, kExtended, 0x123456), // Filter #0

ACANSecondaryFilter (kData, kStandard, 0x234), // Filter #1

ACANSecondaryFilter (), // Filter #2

ACANSecondaryFilter (kRemote, kStandard, 0x542) // Filter #3

} ; // Filter #3 will never match

...

}

If you use a primary pass-all filter, secondary filters will never match:

void setup () {

...

const ACANPrimaryFilter primaryFilters [] = {

ACANPrimaryFilter (kData, kExtended, 0x123456) // Filter #0

ACANPrimaryFilter (), // Filter #1 - pass-all

} ;

const ACANSecondaryFilter secondaryFilters [] = {

ACANSecondaryFilter (kData, kStandard, 0x234), // Filter never matches

ACANSecondaryFilter (kRemote, kStandard, 0x542) // Filter never matches

} ;

...

21

13.4 Secondary filter conformance 13 SECONDARY FILTERS

13.4 Secondary filter conformance

The pass-all secondary filter (section 13.3 page 21) always conforms.

For a standard frame (11-bit identifier), a secondary filter definition is conform if the given identifier value is
lower or equal to 0x7FF.

For a extended frame (29-bit identifier), a secondary filter definition is conform if the given identifier value is
lower or equal to 0x1FFF_FFFF.

13.5 The receive method revisited

The receivemethod retrieves a received message. When you define primary and secondary filters, the value
of the idx property of the message is the matching filter index. Filters are numbering from 0, starting by
the first element of the first primary filter array until the last one, and continuing from the first element of
the secondary filter array, until its last element. So the the idx property of the message can be used for
dispatching the received message:

void setup () {

ACANSettings settings (125 * 1000) ;

...

const ACANPrimaryFilter primaryFilters [] = {

ACANPrimaryFilter (kData, kExtended, 0x123456), // Filter #0

} ;

const ACANSecondaryFilter secondaryFilters [] = {

ACANSecondaryFilter (kData, kStandard, 0x234), // Filter #1

ACANSecondaryFilter (kRemote, kStandard, 0x542) // Filter #2

} ;

const uint32_t errorCode = ACAN::can0.begin (settings,

primaryFilters, 1,

secondaryFilters, 2) ;

...

}

void loop () {

CANMessage message ;

if (ACAN::can0.receive (message)) { // Only frames that pass a filter are retrieved

switch (message.idx) {

case 0:

handle_myMessage_0 (message) ; // Extended data frame, id is 0x123456

break ;

case 1:

handle_myMessage_1 (message) ; // Standard data frame, id is 0x234

break ;

case 2:

handle_myMessage_2 (message) ; // Standard remote frame, id is 0x542

break ;

22

14 THE DISPATCHRECEIVEDMESSAGE METHOD

default:

break ;

}

}

...

}

An improvement is to use the dispatchReceivedMessage method – see section 14 page 23.

14 The dispatchReceivedMessage method

The last improvement is to call the dispatchReceivedMessage method – do not call the receive method
any more. You can use it if you have defined primary and / or secondary filters that name a call-back function.

The primary and secondary filter constructors have as a last argument a call back function pointer. It defaults
to NULL, so until now the code snippets do not use it.

For enabling the use of the dispatchReceivedMessage method, you add to each filter definition as last ar-
gument the function that will handle the message. In the loop function, call the dispatchReceivedMessage
method: it dispatches the messages to the call back functions.

void setup () {

ACANSettings settings (125 * 1000) ;

...

const ACANPrimaryFilter primaryFilters [] = {

ACANPrimaryFilter (kData, kExtended, 0x123456, handle_myMessage_0)

} ;

const ACANSecondaryFilter secondaryFilters [] = {

ACANSecondaryFilter (kData, kStandard, 0x234, handle_myMessage_1),

ACANSecondaryFilter (kRemote, kStandard, 0x542, handle_myMessage_2)

} ;

const uint32_t errorCode = ACAN::can0.begin (settings,

primaryFilters, 1,

secondaryFilters, 2) ;

...

}

void loop () {

ACAN::can0.dispatchReceivedMessage () ; // Do not use ACAN::can0.receive any more

...

}

The dispatchReceivedMessage method handles one message at a time. More precisely:

• if it returns false, the driver receive buffer was empty;

• if it returns true, the driver receive buffer was not empty, one message has been removed and dis-
patched.

23

15 THE ACAN::BEGIN METHOD REFERENCE

So, the return value can used for emptying and dispatching all received messages:

void loop () {

while (ACAN::can0.dispatchReceivedMessage ()) {

}

...

}

If a filter definition does not name a call back function, the corresponding messages are lost. In the code below,
filter #1 does not name a call back function, standard data frames with identifier 0x234 are lost.

void setup () {

...

const ACANPrimaryFilter primaryFilters [] = {

ACANPrimaryFilter (kData, kExtended, 0x123456, handle_myMessage_0)

} ;

const ACANSecondaryFilter secondaryFilters [] = {

ACANSecondaryFilter (kData, kStandard, 0x234), // Filter #1

ACANSecondaryFilter (kRemote, kStandard, 0x542, handle_myMessage_2)

} ;

...

}

The dispatchReceivedMessagemethod has an optional argument – NULL by default: a function name. This
function is called for every message that pass the receive filters, with an argument equal to the matching filter
index:

void filterMatchFunction (const uint32_t inFilterIndex) {

...

}

void loop () {

ACAN::can0.dispatchReceivedMessage (filterMatchFunction) ;

...

}

You can use this function for maintaining statistics about receiver filter matches.

15 The ACAN::begin method reference

15.1 The ACAN::begin method prototype

The begin method prototype is:

uint32_t ACAN::begin (const ACANSettings & inSettings,

const ACANPrimaryFilter inPrimaryFilters [] = NULL,

const uint32_t inPrimaryFilterCount = 0,

const ACANSecondaryFilter inSecondaryFilters [] = NULL,

24

15.2 The error code 15 THE ACAN::BEGIN METHOD REFERENCE

const uint32_t inSecondaryFilterCount = 0) ;

The four last arguments have default values.

Omitting the last argument makes no secondary filter is defined:

const uint32_t errorCode = ACAN::can0.begin (settings,

primaryFilters, primaryFilterCount,

secondaryFilters) ;

Omitting the last two arguments makes no secondary filter is defined:

const uint32_t errorCode = ACAN::can0.begin (settings, primaryFilters, primaryFilterCount) ;

Omitting the last three or the last four arguments makes no primary and no secondary filter is defined – so
any (data / remote, standard / extended) frame is received:

const uint32_t errorCode = ACAN::can0.begin (settings, primaryFilters) ;

const uint32_t errorCode = ACAN::can0.begin (settings) ;

15.2 The error code

The begin method returns an error code. The value 0 denotes no error. Otherwise, you consider every bit as
an error flag, as described in table 5. An error code could report several errors. Bits from 0 to 11 are actually
defined by the ACANSettings class and are also returned by the CANBitSettingConsistency method (see
section 16.2 page 31). Bits from 12 are defined by the ACAN class.

The ACANSettings class defines static constant properties that can be used as mask error:

public: static const uint32_t kBitRatePrescalerIsZero = 1 << 0 ;

public: static const uint32_t kBitRatePrescalerIsGreaterThan256 = 1 << 1 ;

public: static const uint32_t kPropagationSegmentIsZero = 1 << 2 ;

public: static const uint32_t kPropagationSegmentIsGreaterThan8 = 1 << 3 ;

public: static const uint32_t kPhaseSegment1IsZero = 1 << 4 ;

public: static const uint32_t kPhaseSegment1IsGreaterThan8 = 1 << 5 ;

public: static const uint32_t kPhaseSegment2IsZero = 1 << 6 ;

public: static const uint32_t kPhaseSegment2IsGreaterThan8 = 1 << 7 ;

public: static const uint32_t kRJWIsZero = 1 << 8 ;

public: static const uint32_t kRJWIsGreaterThan4 = 1 << 9 ;

public: static const uint32_t kRJWIsGreaterThanPhaseSegment2 = 1 << 10 ;

public: static const uint32_t kPhaseSegment1Is1AndTripleSampling = 1 << 11 ;

The ACAN class defines static constant properties that can be used as mask error:

public: static const uint32_t kTooMuchPrimaryFilters = 1 << 12 ;

public: static const uint32_t kNotConformPrimaryFilter = 1 << 13 ;

public: static const uint32_t kTooMuchSecondaryFilters = 1 << 14 ;

public: static const uint32_t kNotConformSecondaryFilter = 1 << 15 ;

public: static const uint32_t kNoAlternateTxPinForCan1 = 1 << 16 ;

public: static const uint32_t kNoAlternateRxPinForCan1 = 1 << 17 ;

public: static const uint32_t kCANBitConfiguration = 1 << 18 ;

25

15.2 The error code 15 THE ACAN::BEGIN METHOD REFERENCE

Bit number Comment Link
0 mBitRatePrescaler == 0
1 mBitRatePrescaler > 256
2 mPropagationSegment == 0
3 mPropagationSegment > 8
4 mPhaseSegment1 == 0
5 mPhaseSegment1 > 8
6 mPhaseSegment2 == 0
7 mPhaseSegment2 > 8
8 mRJW == 0
9 mRJW > 4
10 mRJW > mPhaseSegment2

11 mPhaseSegment2 == 1 and triple sampling
12 Too much primary filters section 15.2.3 page 27
13 Primary filter conformance error section 15.3 page 27
14 Too much secondary filters section 15.3.1 page 27
15 Secondary filter conformance error section 15.3.2 page 27
16 ACAN::can1 has no Tx alternate pin section 15.3.3 page 27
17 ACAN::can1 has no Rx alternate pin section 15.3.4 page 27
18 Inconsistent CAN Bit configuration section 15.2.2 page 27

Table 5 – The ACAN::begin method error codes

For example, you can write:

const uint32_t errorCode = ACAN::can0.begin (settings,

primaryFilters, primaryFilterCount,

secondaryFilters, secondaryFilterCount) ;

if (errorCode != 0) {

// Error(s)

if (errorCode & ACAN::kTooMuchPrimaryFilters) {

// Error: too much primary filters

}

...

}

15.2.1 CAN Bit setting too far from wished rate

This error is raised when the mBitConfigurationClosedToWishedRate of the settings object is false.
This means that the ACANSettings constructor cannot compute a CAN bit configuration close enough to the
wished bit rate. When thebegin is called withsettings.mBitConfigurationClosedToWishedRate false,
this error is reported. For example:

void setup () {

ACANSettings settings (1) ; // 1 bit/s !!!

// Here, settings.mBitConfigurationClosedToWishedRate is false

const uint32_t errorCode = ACAN::can0.begin (settings) ;

26

15.3 Primary filters conformance error 15 THE ACAN::BEGIN METHOD REFERENCE

// Here, errorCode == ACAN::kCANBitConfigurationTooFarFromWishedBitRateErrorMask

}

This error is a fatal error, the driver and the FlexCAN module are not configured. See section 16.1 page 28 for
a discussion about CAN bit setting computation.

15.2.2 CAN Bit inconsistent configuration error

This error is raised when you have changed the CAN bit properties (mBitRatePrescaler,mPropagationSegment,
mPhaseSegment1, mPhaseSegment2, mRJW), and one or more resulting values are inconsistent. See section
16.2 page 31.

15.2.3 Too much primary filters error

The number of primary filters is limited. See section 11 page 14 for getting the number of primary filters for
each configuration, and for changing default value.

15.3 Primary filters conformance error

One or several primary filters do not conform: see section 12.4 page 17. Comment out primary filter definitions
until finding the faultly definition.

15.3.1 Too much secondary filters error

The number of secondary filters is limited. See section 11 page 14 for getting the number of secondary filters
for each configuration, and for changing default value.

15.3.2 Secondary filter conformance error

One or several secondary filters do not conform: see section 13.4 page 22. Comment out secondary filter
definitions until finding the faultly definition.

15.3.3 No alternate Tx pin error

In the Teensy 3.6, ACAN::can1 does not support alternate Tx pin.

15.3.4 No alternate Rx pin error

In the Teensy 3.6, ACAN::can1 does not support alternate Rx pin.

27

16 ACANSETTINGS CLASS REFERENCE

16 ACANSettings class reference

Note. The ACANSettings class is not Arduino specific. You can compile it on your desktop computer with
your favorite C++ compiler.

16.1 The ACANSettings constructor: computation of the CAN bit settings

The constructor of the ACANSettings has one mandatory argument: the wished bit rate. It tries to compute
the CAN bit settings for this bit rate. If it succeeds, the constructed object has itsmBitConfigurationClosed-
ToWishedRate property set to true, otherwise it is set to false. For example:

void setup () {

ACANSettings settings (1 * 1000 * 1000) ; // 1 Mbit/s

// Here, settings.mBitConfigurationClosedToWishedRate is true

...

}

Of course, CAN bit computation always succeeds for classical bit rates: 1 Mbit/s, 500 kbit/s, 250 kbit/s, 125
kbit/s. But CAN bit computation can also succeed for some unusual bit rates, as 842 kbit/s. You can check the
result by computing actual bit rate, and the distance from the wished bit rate:

void setup () {

Serial.begin (9600) ;

ACANSettings settings (842 * 1000) ; // 842 kbit/s

Serial.print ("mBitConfigurationClosedToWishedRate:␣") ;

Serial.println (settings.mBitConfigurationClosedToWishedRate) ; // 1 (--> is true)

Serial.print ("actual␣bit␣rate:␣") ;

Serial.println (settings.actualBitRate ()) ; // 842105 bit/s

Serial.print ("distance:␣") ;

Serial.println (settings.ppmFromWishedBitRate ()) ; // 124 ppm

...

}

The actual bit rate is 842,105 bit/s, and its distance from wished bit rate is 124 ppm. ”ppm” stands for ”part-
per-million”, and 1 ppm = 10−6. In other words, 10, 000 ppm = 1%.

By default, a wished bit rate is accepted if the distance from the computed actual bit rate is lower or equal
to 1, 000 ppm = 0.1 %. You can change this default value by adding your own value as second argument of
ACANSettings constructor:

void setup () {

Serial.begin (9600) ;

ACANSettings settings (842 * 1000, 100) ; // 842 kbit/s, max distance is 100 ppm

Serial.print ("mBitConfigurationClosedToWishedRate:␣") ;

Serial.println (settings.mBitConfigurationClosedToWishedRate) ; // 0 (--> is false)

Serial.print ("actual␣bit␣rate:␣") ;

Serial.println (settings.actualBitRate ()) ; // 842105 bit/s

Serial.print ("distance:␣") ;

Serial.println (settings.ppmFromWishedBitRate ()) ; // 124 ppm

28

16.1 The ACANSettings constructor: computation of the CAN bit settings16 ACANSETTINGS CLASS REFERENCE

...

}

The second argument does not change the CAN bit computation, it only changes the acceptance test for setting
the mBitConfigurationClosedToWishedRate property. For example, you can specify that you want the
computed actual bit to be exactly the wished bit rate:

void setup () {

Serial.begin (9600) ;

ACANSettings settings (500 * 1000, 0) ; // 500 kbit/s, max distance is 0 ppm

Serial.print ("mBitConfigurationClosedToWishedRate:␣") ;

Serial.println (settings.mBitConfigurationClosedToWishedRate) ; // 1 (--> is true)

Serial.print ("actual␣bit␣rate:␣") ;

Serial.println (settings.actualBitRate ()) ; // 500,000 bit/s

Serial.print ("distance:␣") ;

Serial.println (settings.ppmFromWishedBitRate ()) ; // 0 ppm

...

}

The fastest exact bit rate is 3,2 Mbit/s. It works when the FlexCAN module is configured in both loop back
mode (section 16.7.3 page 35) and self reception mode (section 16.7.2 page 35). Note bit rates above 1 Mbit/s
do not conform to the ISO-11898; CAN transceivers as MCP2551 require the bit rate lower or equal to 1 Mbit/s.

The slowest exact bit rate is 2.5 kbit/s. Note many CAN transceivers as the MCP2551 provide ”detection of
ground fault (permanent Dominant) on TXD input”. For example, theMCP2551 constraints the bit rate to be greater
or equal to 16 kbit/s. If you want to work with slower bit rates and you need a transceiver, use one without
this detection, as the PCA82C250.

In any way, the bit rate computation always gives a consistent result, resulting an actual bit rate closest from
the wished bit rate. For example:

void setup () {

Serial.begin (9600) ;

ACANSettings settings (440 * 1000) ; // 440 kbit/s

Serial.print ("mBitConfigurationClosedToWishedRate:␣") ;

Serial.println (settings.mBitConfigurationClosedToWishedRate) ; // 0 (--> is false)

Serial.print ("actual␣bit␣rate:␣") ;

Serial.println (settings.actualBitRate ()) ; // 444,444 bit/s

Serial.print ("distance:␣") ;

Serial.println (settings.ppmFromWishedBitRate ()) ; // 10,100 ppm

...

}

You can get the details of the CAN bit decomposition. For example:

void setup () {

Serial.begin (9600) ;

ACANSettings settings (440 * 1000) ; // 440 kbit/s

Serial.print ("mBitConfigurationClosedToWishedRate:␣") ;

Serial.println (settings.mBitConfigurationClosedToWishedRate) ; // 0 (--> is false)

29

16.1 The ACANSettings constructor: computation of the CAN bit settings16 ACANSETTINGS CLASS REFERENCE

Serial.print ("actual␣bit␣rate:␣") ;

Serial.println (settings.actualBitRate ()) ; // 444,444 bit/s

Serial.print ("distance:␣") ;

Serial.println (settings.ppmFromWishedBitRate ()) ; // 10,100 ppm

Serial.print ("Bit␣rate␣prescaler:␣") ;

Serial.println (settings.mBitRatePrescaler) ; // BRP = 2

Serial.print ("Propagation␣segment:␣") ;

Serial.println (settings.mPropagationSegment) ; // PropSeg = 6

Serial.print ("Phase␣segment␣1:␣") ;

Serial.println (settings.mPhaseSegment1) ; // PS1 = 5

Serial.print ("Phase␣segment␣2:␣") ;

Serial.println (settings.mPhaseSegment2) ; // PS2 = 6

Serial.print ("Resynchronization␣Jump␣Width:␣") ;

Serial.println (settings.mRJW) ; // RJW = 4

Serial.print ("Triple␣Sampling:␣") ;

Serial.println (settings.mTripleSampling) ; // 0, meaning single sampling

Serial.print ("Sample␣Point:␣") ;

Serial.println (settings.samplePointFromBitStart ()) ; // 68, meaning 68%

Serial.print ("Consistency:␣") ;

Serial.println (settings.CANBitSettingConsistency ()) ; // 0, meaning Ok

...

}

ThesamplePointFromBitStartmethod returns sample point, expressed in per-cent of the bit duration from
the beginning of the bit.

Note the computation may calculate a bit decomposition too far from the wished bit rate, but it is always
consistent. You can check this by calling the CANBitSettingConsistency method.

You can change the property values for adapting to the particularities of your CAN network propagation time.
By example, you can increment the mPhaseSegment1 value, and decrement the mPhaseSegment2 value in
order to sample the CAN Rx pin later.

void setup () {

Serial.begin (9600) ;

ACANSettings settings (500 * 1000) ; // 500 kbit/s

Serial.print ("mBitConfigurationClosedToWishedRate:␣") ;

Serial.println (settings.mBitConfigurationClosedToWishedRate) ; // 1 (--> is true)

settings.mPhaseSegment1 ++ ; // 5 -> 6: safe, 1 <= PS1 <= 8

settings.mPhaseSegment2 -- ; // 5 -> 4: safe, 2 <= PS2 <= 8 and RJW <= PS2

Serial.print ("Sample␣Point:␣") ;

Serial.println (settings.samplePointFromBitStart ()) ; // 75, meaning 75%

Serial.print ("actual␣bit␣rate:␣") ;

Serial.println (settings.actualBitRate ()) ; // 500000: ok, bit rate did not change

Serial.print ("Consistency:␣") ;

Serial.println (settings.CANBitSettingConsistency ()) ; // 0, meaning Ok

...

}

30

16.2 The CANBitSettingConsistency method 16 ACANSETTINGS CLASS REFERENCE

Be aware to always respect CAN bit timing consistency! The constraints are:

1 ⩽ mBitRatePrescaler ⩽ 256

1 ⩽ mRJW ⩽ 4

1 ⩽ mPropagationSegment ⩽ 8

Single sampling: 1 ⩽ mPhaseSegment1 ⩽ 8

Triple sampling: 2 ⩽ mPhaseSegment1 ⩽ 8

2 ⩽ mPhaseSegment2 ⩽ 8

mRJW ⩽ mPhaseSegment2

Resulting actual bit rate is given by:

Actual bit rate =
16 MHz

mBitRatePrescaler · (1 + mPropagationSegment+ mPhaseSegment1+ mPhaseSegment2)

And sampling points (in per-cent unit) are given by:

Sampling point (single sampling) = 100 · 1 + mPropagationSegment+ mPhaseSegment1

1 + mPropagationSegment+ mPhaseSegment1+ mPhaseSegment2

Sampling first point (triple sampling) = 100 · mPropagationSegment+ mPhaseSegment1

1 + mPropagationSegment+ mPhaseSegment1+ mPhaseSegment2

16.2 The CANBitSettingConsistency method

This method checks the CAN bit decomposition (given by mBitRatePrescaler, mPropagationSegment,
mPhaseSegment1, mPhaseSegment2, mRJW property values) is consistent.

void setup () {

Serial.begin (9600) ;

ACANSettings settings (500 * 1000) ; // 500 kbit/s

Serial.print ("mBitConfigurationClosedToWishedRate:␣") ;

Serial.println (settings.mBitConfigurationClosedToWishedRate) ; // 1 (--> is true)

settings.mPhaseSegment1 = 0 ; // Error, mPhaseSegment1 should be >= 1 (and <= 8)

Serial.print ("Consistency:␣0x") ;

Serial.println (settings.CANBitSettingConsistency (), HEX) ; // 0x10, meaning error

...

}

The CANBitSettingConsistency method returns 0 if CAN bit decomposition is consistent. Otherwise, the
returned value is a bit field that can report several errors – see table 6.

The ACANSettings class defines static constant properties that can be used as mask error:

public: static const uint32_t kBitRatePrescalerIsZero = 1 << 0 ;

public: static const uint32_t kBitRatePrescalerIsGreaterThan256 = 1 << 1 ;

31

16.3 The actualBitRate method 16 ACANSETTINGS CLASS REFERENCE

Bit number Error
0 mBitRatePrescaler == 0
1 mBitRatePrescaler > 256
2 mPropagationSegment == 0
3 mPropagationSegment > 8
4 mPhaseSegment1 == 0
5 mPhaseSegment1 > 8
6 mPhaseSegment2 == 0
7 mPhaseSegment2 > 8
8 mRJW == 0
9 mRJW > 4
10 mRJW > mPhaseSegment2

11 mPhaseSegment2 == 1 and triple sampling

Table 6 – The ACANSettings::CANBitSettingConsistency method error codes

public: static const uint32_t kPropagationSegmentIsZero = 1 << 2 ;

public: static const uint32_t kPropagationSegmentIsGreaterThan8 = 1 << 3 ;

public: static const uint32_t kPhaseSegment1IsZero = 1 << 4 ;

public: static const uint32_t kPhaseSegment1IsGreaterThan8 = 1 << 5 ;

public: static const uint32_t kPhaseSegment2IsZero = 1 << 6 ;

public: static const uint32_t kPhaseSegment2IsGreaterThan8 = 1 << 7 ;

public: static const uint32_t kRJWIsZero = 1 << 8 ;

public: static const uint32_t kRJWIsGreaterThan4 = 1 << 9 ;

public: static const uint32_t kRJWIsGreaterThanPhaseSegment2 = 1 << 10 ;

public: static const uint32_t kPhaseSegment1Is1AndTripleSampling = 1 << 11 ;

16.3 The actualBitRate method

TheactualBitRatemethod returns the actual bit computed frommBitRatePrescaler,mPropagationSegment,
mPhaseSegment1, mPhaseSegment2, mRJW property values.

void setup () {

Serial.begin (9600) ;

ACANSettings settings (440 * 1000) ; // 440 kbit/s

Serial.print ("mBitConfigurationClosedToWishedRate:␣") ;

Serial.println (settings.mBitConfigurationClosedToWishedRate) ; // 0 (--> is false)

Serial.print ("actual␣bit␣rate:␣") ;

Serial.println (settings.actualBitRate ()) ; // 444,444 bit/s

...

}

Note. If CAN bit settings are not consistent (see section 16.2 page 31), the returned value is irrelevant.

32

16.4 The exactBitRate method 16 ACANSETTINGS CLASS REFERENCE

16.4 The exactBitRate method

The exactBitRate method returns true if the actual bit rate is equal to the wished bit rate, and false

otherwise.

void setup () {

Serial.begin (9600) ;

ACANSettings settings (842 * 1000) ; // 842 kbit/s

Serial.print ("mBitConfigurationClosedToWishedRate:␣") ;

Serial.println (settings.mBitConfigurationClosedToWishedRate) ; // 1 (--> is true)

Serial.print ("actual␣bit␣rate:␣") ;

Serial.println (settings.actualBitRate ()) ; // 842105 bit/s

Serial.print ("distance:␣") ;

Serial.println (settings.ppmFromWishedBitRate ()) ; // 124 ppm

Serial.print ("Exact:␣") ;

Serial.println (settings.exactBitRate ()) ; // 0 (---> false)

...

}

Note. If CAN bit settings are not consistent (see section 16.2 page 31), the returned value is irrelevant.

16.5 The ppmFromWishedBitRate method

The ppmFromWishedBitRate method returns the distance from the actual bit rate to the wished bit rate,
expressed in part-per-million (ppm): 1 ppm = 10−6. In other words, 10, 000 ppm = 1%.

void setup () {

Serial.begin (9600) ;

ACANSettings settings (842 * 1000) ; // 842 kbit/s

Serial.print ("mBitConfigurationClosedToWishedRate:␣") ;

Serial.println (settings.mBitConfigurationClosedToWishedRate) ; // 1 (--> is true)

Serial.print ("actual␣bit␣rate:␣") ;

Serial.println (settings.actualBitRate ()) ; // 842105 bit/s

Serial.print ("distance:␣") ;

Serial.println (settings.ppmFromWishedBitRate ()) ; // 124 ppm

...

}

Note. If CAN bit settings are not consistent (see section 16.2 page 31), the returned value is irrelevant.

16.6 The samplePointFromBitStart method

The samplePointFromBitStart method returns the distance of sample point from the start of the CAN bit,
expressed in part-per-cent (ppc): 1 ppc = 1% = 10−2. If triple sampling is selected, the returned value is the
distance of the first sample point from the start of the CAN bit. It is a good practice to get sample point from
65% to 80%.

33

16.7 Properties of the ACANSettings class 16 ACANSETTINGS CLASS REFERENCE

void setup () {

Serial.begin (9600) ;

ACANSettings settings (500 * 1000) ; // 500 kbit/s

Serial.print ("mBitConfigurationClosedToWishedRate:␣") ;

Serial.println (settings.mBitConfigurationClosedToWishedRate) ; // 1 (--> is true)

Serial.print ("Sample␣point:␣") ;

Serial.println (settings.samplePointFromBitStart ()) ; // 68 --> 68%

...

}

Note. If CAN bit settings are not consistent (see section 16.2 page 31), the returned value is irrelevant.

16.7 Properties of the ACANSettings class

All properties of the ACANSettings class are declared public and are initialized (table 7). The default values
of properties frommWhishedBitRate untilmTripleSampling corresponds to a CAN bit rate of 250,000 bit/s.

Property Type Initial value Comment
mWhishedBitRate uint32_t 250,000 See section 16.1 page 28
mBitRatePrescaler uint16_t 4 See section 16.1 page 28
mPropagationSegment uint8_t 5 See section 16.1 page 28
mPhaseSegment1 uint8_t 5 See section 16.1 page 28
mPhaseSegment2 uint8_t 5 See section 16.1 page 28
mRJW uint8_t 4 See section 16.1 page 28
mTripleSampling bool false See section 16.1 page 28
mBitConfigurationClosedToWishedRate bool true See section 16.1 page 28
mListenOnlyMode bool false See section 16.7.1 page 34
mSelfReceptionMode bool false See section 16.7.2 page 35
mLoopBackMode bool false See section 16.7.3 page 35
mConfiguration tConfiguration k12_12_Filters See section 11 page 14
mUseAlternateTxPin bool false See section 7 page 9
mUseAlternateRxPin bool false See section 7 page 9
mMessageIRQPriority uint8_t 64 See section 16.7.4 page 35
mReceiveBufferSize uint16_t 32 See section 10.1 page 13
mTransmitBufferSize uint16_t 16 See section 8.2 page 10
mTxPinIsOpenCollector bool false See section 16.7.5 page 35
mRxPinHasInternalPullUp bool false See section 16.7.6 page 35

Table 7 – Properties of the ACANSettings class

16.7.1 The mListenOnlyMode property

This boolean property corresponds to the LOM bit of the FlexCAN CTRL1 control register.

34

17 CAN CONTROLLER STATE

16.7.2 The mSelfReceptionMode property

This boolean property corresponds to the complement of the SRXDIS bit of the FlexCAN MCR control register.

16.7.3 The mLoopBackMode property

This boolean property corresponds to the LBP bit of the FlexCAN CTRL1 control register.

16.7.4 The mMessageIRQPriority property

This property sets the priority of the CAN message interrupt. Highest priority is 0, lowest is 255.

16.7.5 The mTxPinIsOpenCollector property

When the mTxPinIsOpenCollector property is set to true, the RECESSIVE output state puts the Tx pin
Hi-Z, instead of driving high. The Tx pin is always driving low in DOMINANT state.

Output state Tx Pin Output
DOMINANT 0

RECESSIVE 1

(a) mTxPinIsOpenCollector is false (de-
fault)

Output state Tx Pin Output
DOMINANT 0

RECESSIVE Hi-Z

(b) mTxPinIsOpenCollector is true

Table 8 – Tx pin output, following the mTxPinIsOpenCollector property setting

16.7.6 The mRxPinHasInternalPullUp property

By setting this property, theRxpin is configured with the internal pullup enabled. This ensures thatRECESSIVE
values are received if the pin is unconnected.

17 CAN controller state

Three methods return the CAN controller state, the receive error counter and the transmit error counter.

17.1 The controllerState method

public: tControllerState controllerState (void) const ;

This method returns the current state (error active, error passive, bus off) of the CAN controller. ThetControllerState
type is defined by an enumeration:

typedef enum {kActive, kPassive, kBusOff} tControllerState ;

35

17.2 The receiveErrorCounter method 17 CAN CONTROLLER STATE

17.2 The receiveErrorCounter method

public: uint32_t receiveErrorCounter (void) const ;

17.3 The transmitErrorCounter method

public: uint32_t transmitErrorCounter (void) const ;

As the CANx_ESR FlexCAN control register does not return a valid value when the CAN controller is in the bus
off state, the value 256 is forced.

36

	Versions
	Features
	Data flow
	A simple example: LoopBackDemo
	The CANMessage class
	Driver instances
	Alternate pins
	Sending data frames
	tryToSend for sending data frames
	Driver transmit buffer size
	The transmitBufferSize method
	The transmitBufferCount method
	The transmitBufferPeakCount method

	Sending remote frames
	Retrieving received messages using the receive method
	Driver receive buffer size
	The receiveBufferSize method
	The receiveBufferCount method
	The receiveBufferPeakCount method

	Configuration
	Primary filters
	Primary filter example
	Primary filter as pass-all filter
	Primary filter for matching several identifiers
	Primary filter conformance
	The receive method revisited

	Secondary filters
	Secondary filters, without primary filter
	Primary and secondary filters
	Secondary filter as pass-all filter
	Secondary filter conformance
	The receive method revisited

	The dispatchReceivedMessage method
	The ACAN::begin method reference
	The ACAN::begin method prototype
	The error code
	CAN Bit setting too far from wished rate
	CAN Bit inconsistent configuration error
	Too much primary filters error

	Primary filters conformance error
	Too much secondary filters error
	Secondary filter conformance error
	No alternate Tx pin error
	No alternate Rx pin error

	ACANSettings class reference
	The ACANSettings constructor: computation of the CAN bit settings
	The CANBitSettingConsistency method
	The actualBitRate method
	The exactBitRate method
	The ppmFromWishedBitRate method
	The samplePointFromBitStart method
	Properties of the ACANSettings class
	The mListenOnlyMode property
	The mSelfReceptionMode property
	The mLoopBackMode property
	The mMessageIRQPriority property
	The mTxPinIsOpenCollector property
	The mRxPinHasInternalPullUp property

	CAN controller state
	The controllerState method
	The receiveErrorCounter method
	The transmitErrorCounter method

