
ACAN library for Teensy 3.1 / 3.2, 3.5, 3.6
Version 1.0.0

Pierre Molinaro

October 9, 2017

Contents

1 Versions 2

2 Features 3

3 Data flow 3

4 A simple example: LoopBackDemo 5

5 The CANMessage class 7

6 Driver instances 7

7 Alternate pins 8

8 Sending data frames 8
8.1 tryToSend for sending data frames . 8
8.2 Driver transmit buffer size . 9
8.3 The transmitBufferSize method . 9
8.4 The transmitBufferCount method . 10
8.5 The transmitBufferPeakCount method . 10

9 Sending remote frames 10

10 Retrieving received messages using the receive method 10
10.1 Driver receive buffer size . 12
10.2 The receiveBufferSize method . 12
10.3 The receiveBufferCount method . 12
10.4 The receiveBufferPeakCount method . 12

11 Configuration 12

12 Primary filters 13
12.1 Primary filter example . 13
12.2 Primary filter as pass-all filter . 14
12.3 Primary filter for matching several identifiers . 15
12.4 Primary filter conformance . 16

1

1 VERSIONS

12.5 The receive method revisited . 16

13 Secondary filters 17
13.1 Secondary filters, without primary filter . 17
13.2 Primary and secondary filters . 18
13.3 Secondary filter as pass-all filter . 18
13.4 Secondary filter conformance . 19
13.5 The receive method revisited . 19

14 The dispatchReceivedMessage method 20

15 The ACAN::begin method reference 22
15.1 The ACAN::begin method prototype . 22
15.2 The error code . 22

15.2.1 CAN Bit setting too far from wished rate . 23
15.2.2 CAN Bit inconsistent configuration error . 23
15.2.3 Too much primary filters error . 24

15.3 Primary filters conformance error . 24
15.3.1 Too much secondary filters error . 24
15.3.2 Secondary filter conformance error . 24
15.3.3 No alternate Tx pin error . 24
15.3.4 No alternate Rx pin error . 24

16 ACANSettings class reference 24
16.1 The ACANSettings constructor: computation of the CAN bit settings 24
16.2 The CANBitSettingConsistency method . 27
16.3 The actualBitRate method . 28
16.4 The exactBitRate method . 29
16.5 The ppmFromWishedBitRate method . 29
16.6 The samplePointFromBitStart method . 29
16.7 Properties of the ACANSettings class . 30

16.7.1 The mListenOnlyMode property . 30
16.7.2 The mSelfReceptionMode property . 30
16.7.3 The mLoopBackMode property . 30
16.7.4 The mMessageIRQPriority property . 31

17 CAN controller state 31
17.1 The controllerState method . 31
17.2 The receiveErrorCounter method . 31
17.3 The transmitErrorCounter method . 31

1 Versions

Version Date Comment
1.0.0 October 9, 2017 Initial release

2

3 DATA FLOW

2 Features

The ACAN library is a CAN (”Controller Area Network”) driver for Teensy 3.1 / 3.2, 3.5, 3.6. It has
been designed to make it easy to start and to be easily configurable:

• default configuration sends and receives any frame – no default filter to provide;

• efficient built-in CAN bit settings computation from user bit rate;

• user can fully define its own CAN bit setting values;

• reception filters are easily defined – up to 14 primary filters and 18 secondary filters;

• reception filters accept call back functions;

• driver transmit buffer size is customisable;

• driver receive buffer size is customisable;

• overflow of the driver receive buffer is detectable;

• loop back, self reception, listing only FlexCAN controller modes are selectable.

3 Data flow

The figure 1 illustrates message flow for sending and receiving CAN messages.

FlexCAN controller is hardware, a module of the micro-controller. It implements 16 MBs (Mailboxes or
Message Buffers), used for the data frame transmit buffer, remote frame transmit buffer(s), reception
FIFO and reception filters. The actual partition depends from the selected configuration – see table
1 and section 11 page 12.

Sending Sending
settings.mConfiguration Reception remote frames data frames
k8_0_Filters 8 (MB0 ... MB7) 7 (MB8 ... MB14) 1 (MB15)
k10_6_Filters 10 (MB0 ... MB9) 5 (MB10 ... MB14) 1 (MB15)
k12_12_Filters 12 (MB0 ... MB11) 3 (MB12 ... MB14) 1 (MB15)
k14_18_Filters 14 (MB0 ... MB13) 1 (MB14) 1 (MB15)

Table 1 – FlexCAN MBs assignments, following settings.mConfiguration value

Sending messages. The FlexCAN hardware makes sending data frames different from sending
remote frames. For both, user code calls the tryToSend method – see section 8 page 8 for sending
data frames, and section 9 page 10 for sending remote frames. The data frames are stored in the
Driver Transmit Buffer, before to be moved by the message interrupt service routine into the data
frame transmit buffer. The size of the Driver Transmit Buffer is 16 by default – see section 8.2 page
9 for changing the default value.

Receivingmessages. The FlexCAN CAN Protocol Engine transmits all correct frames to the reception
filters. By default, they are configured as pass-all, see section 12 page 13 and section 13 page 17
for configuring them. Messages that pass the filters are stored in the Reception FIFO. Its depth is not
configurable – it is always 6-message. The message interrupt service routine transfers the messages
from Reception FIFO to the Driver Receive Buffer. The size of the Driver Receive Buffer is 32 by
default – see section 10.1 page 12 for changing the default value. Three user methods are available:

3

3 DATA FLOW

User code

ACAN driver

available

receive

dispatchReceivedMessagetryToSend

FlexCAN controller

remote frame

data frame

Driver reception Buffer
(FIFO)

Driver transmit Buffer
(FIFO)

CAN Protocol Engine

CAN Tx CAN Rx

Data frame
transmit buffer

Remote frame
transmit buffer(s)

Reception filters

Reception FIFO

Figure 1 – Message flow in ACAN driver and FlexCAN controller

4

4 A SIMPLE EXAMPLE: LOOPBACKDEMO

• the available method returns false if the Driver Receive Buffer is empty, and true otherwise;

• the receive method retrieves messages from the Driver Receive Buffer – see section 10 page
10, section 12.5 page 16 and section 13.5 page 19;

• the dispatchReceivedMessage method if you have defined primary and / or secondary filters
that name a call-back function – see section 14 page 20.

Sequentiality. The ACAN driver and the configuration of the FlexCAN controller ensures sequentiality
of data messages. This means that if an user program calls tryToSend first for a messageM1 and then
for a messageM2, the messageM1 will be always retrieved by receive or dispatchReceivedMessage
before the message M2.

4 A simple example: LoopBackDemo

The following code is a sample code for introducing the ACAN library. It runs on Teensy 3.1 / 3.2,
Teensy 3.5 and Teensy 3.6. It demonstrates how to configure the driver, to send a CAN message,
and to receive a CAN message.

Note it runs without any external hardware, it uses the loop back mode and the self reception mode.

1 #include <ACAN.h>

2

3 void setup () {

4 Serial.begin (9600) ;

5 Serial.println ("Hello") ;

6 ACANSettings settings (125 * 1000) ; // 125 kbit/s

7 settings.mLoopBackMode = true ;

8 settings.mSelfReceptionMode = true ;

9 const uint32_t errorCode = ACAN::can0.begin (settings) ;

10 if (0 == errorCode) {

11 Serial.println ("ACAN::can0␣ok") ;

12 }else{

13 Serial.print ("Error␣ACAN::can0:␣0x") ;

14 Serial.println (errorCode, HEX) ;

15 }

16 }

17

18 static unsigned gSendDate = 0 ;

19 static unsigned gSentCount = 0 ;

20 static unsigned gReceivedCount = 0 ;

21

22 void loop () {

23 CANMessage message ;

24 if (gSendDate < millis ()) {

25 message.id = 0x542 ;

26 const bool ok = ACAN::can0.tryToSend (message) ;

27 if (ok) {

28 gSendDate += 2000 ;

29 gSentCount += 1 ;

30 Serial.print ("Sent:␣") ;

31 Serial.println (gSentCount) ;

32 }

33 }

34 if (ACAN::can0.receive (message)) {

5

4 A SIMPLE EXAMPLE: LOOPBACKDEMO

35 gReceivedCount += 1 ;

36 Serial.print ("Received:␣") ;

37 Serial.println (gReceivedCount) ;

38 }

39 }

Line 1. This line includes the ACAN library.

Line 6. Configuration is a four-step operation. This line is the first step. It instanciates the settings
object of the ACANSettings class. The constructor has one parameter: the wished CAN bit rate. It
returns a settings object fully initialized with CAN bit settings for the wished bit rate, and default
values for other configuration properties.

Lines 7 and 8. This is the second step. You can override the values of the properties of settings
object. Here, the mLoopBackMode and mSelfReceptionMode properties are set to true – they are
false by default. Theses two properties fully enables loop back, that is you can run this demo
sketch even it you have no connection to a physical CAN network. The section 16.7 page 30 lists all
properties you can override.

Line 9. This is the third step, configuration of the ACAN::can0 driver with settings values. You
cannot change the ACAN::can0 name – see section 6 page 7. The driver is configured for being able
to send any (standard / extended, data / remote) frame, and to receive all (standard / extended,
data / remote) frames. If you want to define reception filters, see section 12 page 13 and section 13
page 17.

Lines 10 to 15. Last step: the configuration of the ACAN::can0 driver returns an error code, stored
in the errorCode constant. It has the value 0 if all is ok – see section 15.2 page 22.

Line 18. The gSendDate global variable is used for sending a CAN message every 2 s.

Line 19. The gSentCount global variable counts the number of sent messages.

Line 20. The gReceivedCount global variable counts the number of received messages.

Line 23. The message object is fully initialized by the default constructor, it represents a standard
data frame, with an identifier equal to 0, and without any data – see section 5 page 7.

Line 24. It tests if it is time to send a message.

Line 25. Set the message identifier. In a real code, we set here message data, and for an extended
frame the ext boolean property.

Line 26. We try to send the data message. Actually, we try to transfer it into the Driver transmit
buffer. The transfer succeeds if the buffer is not full. The tryToSend method returns false if the
buffer is full, and true otherwise. Note the returned value only tells if the transfer into the Driver
transmit buffer is successful or not: we have no way to know if the frame is actually sent on the the
CAN network.

Lines 27 to 32. We act the successfull transfer by setting gSendDate to the next send date and
incrementing the gSentCount variable. Note if the transfer did fail, the send date is not changed, so
the tryToSend method will be called on the execution of the loop function.

Line 34. As the FlexCAN controller is configured in loop back mode (see lines 7 and 8), all sent
messages are received. The receive method returns false if no message is available from the
driver reception buffer. It returns true if a message has been successfully removed from the driver
reception buffer. This message is assigned to the message object.

6

6 DRIVER INSTANCES

Lines 35 to 37. It a message has been received, the gReceivedCount is incremented ans displayed.

5 The CANMessage class

A CANmessage is an object that contains all CAN frame user informations. All properties are initialized
by default, and represent a standard data frame, with an identifier equal to 0, and without any data.

class CANMessage {

public : uint32_t id = 0 ; // Frame identifier

public : bool ext = false ; // false -> standard frame, true -> extended

public : bool rtr = false ; // false -> data frame, true -> remote frame

public : uint8_t idx = 0 ;

public : uint8_t len = 0 ; // Length of data

public : union {

#ifdef __UINT64_TYPE__

uint64_t data64 ; // Caution: subject to endianness

#endif

uint32_t data32 [2] ; // Caution: subject to endianness

uint16_t data16 [4] ; // Caution: subject to endianness

uint8_t data [8] = {0, 0, 0, 0, 0, 0, 0, 0} ;

} ;

} ;

Note the message datas are defined by an union. So message datas can be seen as height bytes,
four 16-bits unsigned integers, two 32-bits, or one 64-bits. Be aware that multi-byte integers are
subject to endianness (Cortex M4 processors of Teensy 3.x are little-endian).

The idx property is not used in CAN frames, but:

• for a received message, it contains the acceptance filter index (see section 12.5 page 16 and
section 13.5 page 19);

• it is not used on sending messages.

6 Driver instances

Driver instances are global variables. You cannot choose their names, they are defined by the library.

Teensy Driver name
Teensy 3.1 / 3.2 ACAN::can0

Teensy 3.5 ACAN::can0

Teensy 3.6 ACAN::can0, ACAN::can1

Table 2 – Driver global variables

Code snippets in this document uses ACAN::can0. They also apply to ACAN::can1 of Teensy 3.6.

Note. Drivers variables are ACAN class static properties. This choice may seem strange. However, a
common error is to declare its own driver variable:

ACAN myCAN ; // Don't do that, it is an error !!!

7

8 SENDING DATA FRAMES

Declaring drivers variables as ACAN class static properties1 enables the compiler to raise an error if
you try to declare your own driver variable.

7 Alternate pins

For using alternate pins, just set mUseAlternateTxPin and / or mUseAlternateRxPin properties of
settings object:

ACANSettings settings (125 * 1000) ;

settings.mUseAlternateRxPin = true ;

settings.mUseAlternateTxPin = true ;

const uint32_t errorCode = ACAN::can0.begin (settings) ;

By default, theses properties are set to false. The following table lists default and alternate pins.
Note that ACAN::can1 does not support alternate pins. Trying to set alternate pin for ACAN::can1
raises error bits in the value returned by begin (see section 15 page 22).

Driver Default Alternate Default Alternate
Teensy name Tx pin Tx pin Rx pin Rx pin
Teensy 3.1 / 3.2 ACAN::can0 3 32 4 25
Teensy 3.5 ACAN::can0 3 29 4 30
Teensy 3.6 ACAN::can0 3 29 4 30
Teensy 3.6 ACAN::can1 33 No alternate Tx pin 34 No alternate Rx pin

Table 3 – Alternate CAN Tx and Rx pins

8 Sending data frames

Note. This section applies only to data frames. For sending remote frames, see section 9 page 10.

8.1 tryToSend for sending data frames

Call the method tryToSend for sending data frames; it returns:

• true if the message has been successfully transmitted to driver transmit buffer; note that does
not mean that the CAN frame has been actually sent;

• false if the message has not been successfully transmitted to driver transmit buffer, it was full.

So it is wise to systematically test the returned value. One way to achieve this is to loop while there
is no room in driver transmit buffer:

while (!ACAN::can0.tryToSend (message)) {

yield () ;

}

A better way is to use a global variable to note if message has been successfully transmitted to driver
transmit buffer. For example, for sending a message every 2 seconds:

1The ACAN constructor is declared private.

8

8.2 Driver transmit buffer size 8 SENDING DATA FRAMES

static unsigned gSendDate = 0 ;

void loop () {

CANMessage message ;

if (gSendDate < millis ()) {

// Initialize message properties

const bool ok = ACAN::can0.tryToSend (message) ;

if (ok) {

gSendDate += 2000 ;

}

}

}

An other hint to use a global boolean variable as a flag that remains true while the frame has not
been sent.

static bool gSendMessage = false ;

void loop () {

...

if (frame_should_be_sent) {

gSendMessage = true ;

}

...

if (gSendMessage) {

CANMessage message ;

// Initialize message properties

const bool ok = ACAN::can0.tryToSend (message) ;

if (ok) {

gSendMessage = false ;

}

}

...

}

8.2 Driver transmit buffer size

By default, driver transmit buffer size is 16. You can change this default value by setting the
mTransmitBufferSize property of settings variable:

ACANSettings settings (125 * 1000) ;

settings.mTransmitBufferSize = 30 ;

const uint32_t errorCode = ACAN::can0.begin (settings) ;

...

As the size of CANMessage class is 16 bytes, the actual size of the driver transmit buffer is the value
of settings.mTransmitBufferSize * 16.

8.3 The transmitBufferSize method

The transmitBufferSize method returns the size of the driver transmit buffer, that is the value of
settings.mTransmitBufferSize.

const uint32_t s = ACAN::can0.transmitBufferSize () ;

9

8.4 The transmitBufferCount method10 RETRIEVING RECEIVED MESSAGES USING THE RECEIVE METHOD

8.4 The transmitBufferCount method

The transmitBufferCount method returns the current number of messages in the transmit buffer.

const uint32_t n = ACAN::can0.transmitBufferCount () ;

8.5 The transmitBufferPeakCount method

The transmitBufferPeakCount method returns the peak value of message count in the transmit
buffer.

const uint32_t max = ACAN::can0.transmitBufferPeakCount () ;

Il the transmit buffer is full when tryToSend is called, the return value is false. In such case, the
following calls of transmitBufferPeakCount will return transmitBufferSize ()+1.

So, when transmitBufferPeakCount returns a value lower or equal to transmitBufferSize (), it
means that calls to tryToSend have always returned true.

9 Sending remote frames

Note. This section applies only to remote frames. For sending data frames, see section 8 page 8.

The hardware design of the FlexCAN module makes sending remote frames different from data
frames.

However, for sending remote frames, you also invoke the tryToSend method. This method under-
stands if a remote frame should be sent, the rtr property of its argument is set (it is cleared by
default, denoting a data frame).

CanMessage message ;

message.rtr = true ; // Remote frame

...

const bool sent = ACAN::can0.tryToSend (message) ;

...

The FlexCAN module embedded in Teensy 3.x microcontrollers implements 16mailboxes, for sending
and receiving CAN frames. Following the settings.mConfiguration, it allocates 7, 5, 3 or 1 MBs for
sending remote frames, as indicating by the table 4 page 13. By default, settings.mConfiguration
is set to k12_12_Filters, as remote frames are rarely needed.

10 Retrieving received messages using the receive method

There are two ways for retrieving received messages :

• using the receive method, as explained in this section;

• using the dispatchReceivedMessage method (see section 14 page 20).

This is a basic example:

10

10 RETRIEVING RECEIVED MESSAGES USING THE RECEIVE METHOD

void setup () {

ACANSettings settings (125 * 1000) ;

...

const uint32_t errorCode = ACAN::can0.begin (settings) ; // No receive filter

...

}

void loop () {

CANMessage message ;

if (ACAN::can0.receive (message)) {

// Handle received message

}

}

The receive method:

• returns false if the driver receive buffer is empty, message argument is not modified;

• returns true if a message has been has been removed from the driver receive buffer, and the
message argument is assigned.

You need to manually dispatch the received messages. If you did not provide any receive filter, you
should check the rtr bit (remote or data frame?), the ext bit (standard or extended frame), and the
id (identifier value). The following snippet dispatches three messages:

void setup () {

ACANSettings settings (125 * 1000) ;

...

const uint32_t errorCode = ACAN::can0.begin (settings) ; // No receive filter

...

}

void loop () {

CANMessage message ;

if (ACAN::can0.receive (message)) {

if (!message.rtr && message.ext && (message.id == 0x123456)) {

handle_myMessage_0 (message) ; // Extended data frame, id is 0x123456

}else if (!message.rtr && !message.ext && (message.id == 0x234)) {

handle_myMessage_1 (message) ; // Standard data frame, id is 0x234

}else if (message.rtr && !message.ext && (message.id == 0x542)) {

handle_myMessage_2 (message) ; // Standard remote frame, id is 0x542

}

}

...

}

The handle_myMessage_0 function has the following header:

void handle_myMessage_0 (const CANMessage & inMessage) {

...

}

So are the header of the handle_myMessage_1 and the handle_myMessage_2 functions.

11

10.1 Driver receive buffer size 11 CONFIGURATION

10.1 Driver receive buffer size

By default, the driver receive buffer size is 32. You can change this default value by setting the
mReceiveBufferSize property of settings variable:

ACANSettings settings (125 * 1000) ;

settings.mReceiveBufferSize = 100 ;

const uint32_t errorCode = ACAN::can0.begin (settings) ;

...

As the size of CANMessage class is 16 bytes, the actual size of the driver receive buffer is the value
of settings.mReceiveBufferSize * 16.

10.2 The receiveBufferSize method

The receiveBufferSize method returns the size of the driver receive buffer, that is the value of
settings.mReceiveBufferSize.

const uint32_t s = ACAN::can0.receiveBufferSize () ;

10.3 The receiveBufferCount method

The receiveBufferCount method returns the current number of messages in the driver receive
buffer.

const uint32_t n = ACAN::can0.receiveBufferCount () ;

10.4 The receiveBufferPeakCount method

The receiveBufferPeakCount method returns the peak value of message count in the driver receive
buffer.

const uint32_t max = ACAN::can0.receiveBufferPeakCount () ;

Note the driver receive buffer may overflow, if messages are not retrieved (by calls of receive or
dispatchReceivedMessagemethods). If an overflow occurs, further calls of ACAN::can0.receiveBufferPeakCount
() return ACAN::can0.receiveBufferSize ()+1.

11 Configuration

The mConfiguration property of the settings variable defines the FlexCAN module configuration –
see table 4. By default, its value is ACANSettings::k12_12_Filters.

You can easily override the default configuration:

void setup () {

ACANSettings settings (125 * 1000) ;

settings.mConfiguration = ACANSettings::k14_18_Filters ;

const uint32_t errorCode = ACAN::can0.begin (settings) ; // No receive filter

...

}

12

12 PRIMARY FILTERS

settings.mConfiguration Primary filters Secondary filters MB for sending remote frames
section 12 page 13 section 13 page 17 section 9 page 10

k8_0_Filters 8 0 7
k10_6_Filters 10 6 5
k12_12_Filters 12 12 3
k14_18_Filters 14 18 1

Table 4 – FlexCAN configuration, following settings.mConfiguration value

12 Primary filters

A first step is to define receive filters2. The receive filters are set to the FlexCAN module, so filtering
is performed by hardware, without any CPU charge. The messages that pass the filters are transfered
into the FlexCAN RxFIFO by the FlexCAN module, and transfered info the driver receive buffer by the
driver. So the receive method only gets messages that have passed the filters.

The driver lets you to define two kinds of filters: primary filters and secondary filters3. Making the
difference is required by FlexCAN hardware design: primary filters are more powerfull than secondary
filters.

12.1 Primary filter example

For defining primary filters4, you write:

void setup () {

ACANSettings settings (125 * 1000) ;

...

const ACANPrimaryFilter primaryFilters [] = {

ACANPrimaryFilter (kData, kExtended, 0x123456), // Filter #0

ACANPrimaryFilter (kData, kStandard, 0x234), // Filter #1

ACANPrimaryFilter (kRemote, kStandard, 0x542) // Filter #2

} ;

const uint32_t errorCode = ACAN::can0.begin (settings,

primaryFilters, // The filter array

3) ; // Filter array size

...

}

void loop () {

CANMessage message ;

if (ACAN::can0.receive (message)) { // Only frames that pass a filter are retrieved

if (!message.rtr && message.ext && (message.id == 0x123456)) {

handle_myMessage_0 (message) ; // Extended data frame, id is 0x123456

}else if (!message.rtr && !message.ext && (message.id == 0x234)) {

handle_myMessage_1 (message) ; // Standard data frame, id is 0x234

}else if (message.rtr && !message.ext && (message.id == 0x542)) {

handle_myMessage_2 (message) ; // Standard remote frame, id is 0x542

}

}

...

2The second step is to use the dispatchReceivedMessage method instead of the receive method, see section 14 page 20.
3The primary filters and secondary filters terms are used in this document for simplicity. FlexCAN documentation names them

respectively Rx FIFO filter Table Elements Affected by Rx Individual Masks and Rx FIFO filter Table Elements Affected by Rx FIFO
Global Mask.

4For secondary filters, see section 13 page 17.

13

12.2 Primary filter as pass-all filter 12 PRIMARY FILTERS

}

Each element of the primaryFilters constant array defines an acceptance filter. Should be speci-
fied5:

• the required kind: data frames (kData) or remote frames (kRemote);

• the required format: standard frames (kStandard) or extended frames (kExtended);

• the required identifier value.

Maximum number of primary filters. The number of primary filters is limited: 12 by default, as
the default value of settings.mConfiguration is ACANSettings::k12_12_Filters. See section 11
page 12 for getting the number of primary filters for each configuration, and for setting your own
configuration.

Test order. The FlexCAN hardware examines the filters in the increasing order of their indexes in
the primaryFilters constant array. As soon as a match occurs, the message is transfered to Rx
FIFO buffer and the examination process is completed. If no match occurs, the message is lost.

A consequence is if a filter appears twice, the second occurrence will never match. In the next
example, the Filter #3 will never match, as it is identical to filter #1.

void setup () {

...

const ACANPrimaryFilter primaryFilters [] = {

ACANPrimaryFilter (kData, kExtended, 0x123456), // Filter #0

ACANPrimaryFilter (kData, kStandard, 0x234), // Filter #1

ACANPrimaryFilter (kRemote, kStandard, 0x542), // Filter #2

ACANPrimaryFilter (kData, kStandard, 0x234) // Filter #3

} ;

...

}

12.2 Primary filter as pass-all filter

You can specify a primary filter that matches any frame:

ACANPrimaryFilter ()

You can use it for accepting all frames that did not match previous filters:

void setup () {

...

const ACANPrimaryFilter primaryFilters [] = {

ACANPrimaryFilter (kData, kExtended, 0x123456), // Filter #0

ACANPrimaryFilter (kData, kStandard, 0x234), // Filter #1

ACANPrimaryFilter (kRemote, kStandard, 0x542), // Filter #2

ACANPrimaryFilter () // Filter #3

} ; // Filter #3 catches any message that did not match filters #0, #1 and #2

...

}

Be aware if the pass-all filter is not the last one, following ones will never match.
5There is a fourth optional argument, that is NULL by default – see section 14 page 20.

14

12.3 Primary filter for matching several identifiers 12 PRIMARY FILTERS

void setup () {

...

const ACANPrimaryFilter primaryFilters [] = {

ACANPrimaryFilter (kData, kExtended, 0x123456), // Filter #0

ACANPrimaryFilter (kData, kStandard, 0x234), // Filter #1

ACANPrimaryFilter (), // Filter #2

ACANPrimaryFilter (kRemote, kStandard, 0x542) // Filter #3

} ; // Filter #3 will never match

...

}

12.3 Primary filter for matching several identifiers

A primary filter can be configured for matching several identifiers6. You provide two values: a
filter_mask and a filter_acceptance. A message with an identifier is accepted if:

filter_mask & identifier = filter_acceptance

The & operator is the bit-wise and operator.

Let’s take an example: the filter should match standard data frames with identifiers equal to 0x540,
0x541, 0x542 and 0x543. The four identifiers differs by the two lower bits. As a standard identifiers
are 11-bits wide, the filter_mask is 0x7FC. The filter acceptance is 0x540. The filter is declared by:

...

ACANPrimaryFilter (kData, // Accept only data frames

kStandard, // Accept only standard frames

0x7FC, // Filter mask

0x540) // Filter acceptance

...

}

For a standard frame (11-bit identifier), both filter_mask and a filter_acceptance should be lower
or equal to 0x7FF.

For a extended frame (29-bit identifier), both filter_mask and a filter_acceptance should be lower
or equal to 0x1FFF_FFFF.

Be aware that the filter_mask and a filter_acceptance must also conform to the following con-
straint: if a bit is clear in the filter_mask, the corresponding bit of the filter_acceptance should
also be clear. In other words, filter_mask and a filter_acceptance should check:

filter_mask & filter_acceptance = filter_acceptance

For example, the filter mask 0x7FC and the filter acceptance 0x541 do not conform because the bit
0 of filter_mask is clear and the bit 0 of the filter acceptance is set.

A non conform filter may never match.
6A secondary filter cannot be configured for matching several identifiers.

15

12.4 Primary filter conformance 12 PRIMARY FILTERS

12.4 Primary filter conformance

The pass-all primary filter (section 12.2 page 14) always conforms.

For a primary filter for matching several identifiers, see section 12.3 page 15.

For a primary filter for one single identifier:

• for a standard frame (11-bit identifier), the given identifier value should be lower or equal to
0x7FF;

• for a extended frame (29-bit identifier), the given identifier value should be lower or equal to
0x1FFF_FFFF.

If one or more primary filters do not conform, the execution of the begin method returns an error –
see table 5 page 23.

12.5 The receive method revisited

The receive method retrieves a received message. When you define primary filters, the value of
the idx property of the message is the matching filter index. For example:

void setup () {

ACANSettings settings (125 * 1000) ;

...

const ACANPrimaryFilter primaryFilters [] = {

ACANPrimaryFilter (kData, kExtended, 0x123456), // Filter #0

ACANPrimaryFilter (kData, kStandard, 0x234), // Filter #1

ACANPrimaryFilter (kRemote, kStandard, 0x542) // Filter #2

} ;

const uint32_t errorCode = ACAN::can0.begin (settings, primaryFilters, 3) ;

...

}

void loop () {

CANMessage message ;

if (ACAN::can0.receive (message)) { // Only frames that pass a filter are retrieved

switch (message.idx) {

case 0:

handle_myMessage_0 (message) ; // Extended data frame, id is 0x123456

break ;

case 1:

handle_myMessage_1 (message) ; // Standard data frame, id is 0x234

break ;

case 2:

handle_myMessage_2 (message) ; // Standard remote frame, id is 0x542

break ;

default:

break ;

}

}

...

}

An improvement is to use the dispatchReceivedMessage method – see section 14 page 20.

16

13 SECONDARY FILTERS

13 Secondary filters

Depending from the configuration, you can define several secondary filters – see table 4 page 13.

13.1 Secondary filters, without primary filter

This is an example without primary filter, and with secondary filters:

void setup () {

ACANSettings settings (125 * 1000) ;

...

const ACANSecondaryFilter secondaryFilters [] = {

ACANSecondaryFilter (kData, kExtended, 0x123456), // Filter #0

ACANSecondaryFilter (kData, kStandard, 0x234), // Filter #1

ACANSecondaryFilter (kRemote, kStandard, 0x542) // Filter #2

} ;

const uint32_t errorCode = ACAN::can0.begin (settings,

NULL, 0, // No primary filter

secondaryFilters, // The filter array

3) ; // Filter array size

...

void loop () {

CANMessage message ;

if (ACAN::can0.receive (message)) { // Only frames that pass a filter are retrieved

if (!message.rtr && message.ext && (message.id == 0x123456)) {

handle_myMessage_0 (message) ; // Extended data frame, id is 0x123456

}else if (!message.rtr && !message.ext && (message.id == 0x234)) {

handle_myMessage_1 (message) ; // Standard data frame, id is 0x234

}else if (message.rtr && !message.ext && (message.id == 0x542)) {

handle_myMessage_2 (message) ; // Standard remote frame, id is 0x542

}

}

...

}

}

Each element of the secondaryFilters constant array defines an acceptance filter. Should be spec-
ified7:

• the required kind: data frames (kData) or remote frames (kRemote);

• the required format: standard frames (kStandard) or extended frames (kExtended);

• the required identifier value.

Maximum number of secondary filters. The number of secondary filters is limited: 12 by default,
as the default value of settings.mConfiguration is ACANSettings::k12_12_Filters. See section
11 page 12 for getting the number of secondary filters for each configuration, and for changing default
value.

Test order. The FlexCAN hardware examines the filters in the increasing order of their indexes in
the secondaryFilters constant array. As soon as a match occurs, the message is transfered to Rx
FIFO buffer and the examination process is completed. If no match occurs, the message is lost.

A consequence is if a filter appears twice, the second occurrence will never match.
7There is a fourth optional argument, that is NULL by default – see section 14 page 20.

17

13.2 Primary and secondary filters 13 SECONDARY FILTERS

13.2 Primary and secondary filters

This is an example with one primary filter, and two secondary filters:

void setup () {

ACANSettings settings (125 * 1000) ;

...

const ACANPrimaryFilter primaryFilters [] = {

ACANPrimaryFilter (kData, kExtended, 0x123456), // Filter #0

} ;

const ACANSecondaryFilter secondaryFilters [] = {

ACANSecondaryFilter (kData, kStandard, 0x234), // Filter #1

ACANSecondaryFilter (kRemote, kStandard, 0x542) // Filter #2

} ;

const uint32_t errorCode = ACAN::can0.begin (settings,

primaryFilters,

1, // Primary filter array size

secondaryFilters,

2) ; // Secondary filter array size

...

void loop () {

CANMessage message ;

if (ACAN::can0.receive (message)) { // Only frames that pass a filter are retrieved

if (!message.rtr && message.ext && (message.id == 0x123456)) {

handle_myMessage_0 (message) ; // Extended data frame, id is 0x123456

}else if (!message.rtr && !message.ext && (message.id == 0x234)) {

handle_myMessage_1 (message) ; // Standard data frame, id is 0x234

}else if (message.rtr && !message.ext && (message.id == 0x542)) {

handle_myMessage_2 (message) ; // Standard remote frame, id is 0x542

}

}

...

}

Test order. The FlexCAN hardware performs sequentially:

• testing the primary filters in the increasing order of their indexes in the primaryFilters constant
array;

• as soon as a match with a primary filter occurs, the message is transfered to Rx FIFO buffer and
the examination process is completed;

• if no match occurs, testing the secondary filters in the increasing order of their indexes in the
secondaryFilters constant array;

• as soon as a match with a secondary filter occurs, the message is transfered to Rx FIFO buffer
and the examination process is completed;

• if no match occurs, the message is lost.

A consequence is if a filter appears twice, the second occurrence will never match. If a secondary
filter matches the same message that a primary filter, the secondary filter will never match.

13.3 Secondary filter as pass-all filter

You can specify a secondary filter that matches any frame:

18

13.4 Secondary filter conformance 13 SECONDARY FILTERS

ACANSecondaryFilter ()

You can use it for accepting all frames that did not match previous filters:

void setup () {

...

const ACANSecondaryFilter secondaryFilters [] = {

ACANSecondaryFilter (kData, kExtended, 0x123456), // Filter #0

ACANSecondaryFilter (kData, kStandard, 0x234), // Filter #1

ACANSecondaryFilter (kRemote, kStandard, 0x542), // Filter #2

ACANSecondaryFilter () // Filter #3

} ; // Filter #3 catches any message that did not match filters #0, #1 and #2

...

}

Be aware if the pass-all filter is not the last one, following ones will never match.

void setup () {

...

const ACANSecondaryFilter primaryFilters [] = {

ACANSecondaryFilter (kData, kExtended, 0x123456), // Filter #0

ACANSecondaryFilter (kData, kStandard, 0x234), // Filter #1

ACANSecondaryFilter (), // Filter #2

ACANSecondaryFilter (kRemote, kStandard, 0x542) // Filter #3

} ; // Filter #3 will never match

...

}

If you use a primary pass-all filter, secondary filters will never match:

void setup () {

...

const ACANPrimaryFilter primaryFilters [] = {

ACANPrimaryFilter (kData, kExtended, 0x123456) // Filter #0

ACANPrimaryFilter (), // Filter #1 - pass-all

} ;

const ACANSecondaryFilter secondaryFilters [] = {

ACANSecondaryFilter (kData, kStandard, 0x234), // Filter never matches

ACANSecondaryFilter (kRemote, kStandard, 0x542) // Filter never matches

} ;

...

13.4 Secondary filter conformance

The pass-all secondary filter (section 13.3 page 18) always conforms.

For a standard frame (11-bit identifier), a secondary filter definition is conform if the given identifier
value is lower or equal to 0x7FF.

For a extended frame (29-bit identifier), a secondary filter definition is conform if the given identifier
value is lower or equal to 0x1FFF_FFFF.

13.5 The receive method revisited

The receive method retrieves a received message. When you define primary and secondary filters,
the value of the idx property of the message is the matching filter index. Filters are numbering from

19

14 THE DISPATCHRECEIVEDMESSAGE METHOD

0, starting by the first element of the first primary filter array until the last one, and continuing from
the first element of the secondary filter array, until its last element. So the the idx property of the
message can be used for dispatching the received message:

void setup () {

ACANSettings settings (125 * 1000) ;

...

const ACANPrimaryFilter primaryFilters [] = {

ACANPrimaryFilter (kData, kExtended, 0x123456), // Filter #0

} ;

const ACANSecondaryFilter secondaryFilters [] = {

ACANSecondaryFilter (kData, kStandard, 0x234), // Filter #1

ACANSecondaryFilter (kRemote, kStandard, 0x542) // Filter #2

} ;

const uint32_t errorCode = ACAN::can0.begin (settings,

primaryFilters, 1,

secondaryFilters, 2) ;

...

}

void loop () {

CANMessage message ;

if (ACAN::can0.receive (message)) { // Only frames that pass a filter are retrieved

switch (message.idx) {

case 0:

handle_myMessage_0 (message) ; // Extended data frame, id is 0x123456

break ;

case 1:

handle_myMessage_1 (message) ; // Standard data frame, id is 0x234

break ;

case 2:

handle_myMessage_2 (message) ; // Standard remote frame, id is 0x542

break ;

default:

break ;

}

}

...

}

An improvement is to use the dispatchReceivedMessage method – see section 14 page 20.

14 The dispatchReceivedMessage method

The last improvement is to call the dispatchReceivedMessage method – do not call the receive

method any more. You can use it if you have defined primary and / or secondary filters that name a
call-back function.

The primary and secondary filter constructors have as a last argument a call back function pointer.
It defaults to NULL, so until now the code snippets do not use it.

For enabling the use of the dispatchReceivedMessagemethod, you add to each filter definition as last
argument the function that will handle the message. In the loop function, call the dispatchReceivedMessage
method: it dispatches the messages to the call back functions.

void setup () {

20

14 THE DISPATCHRECEIVEDMESSAGE METHOD

ACANSettings settings (125 * 1000) ;

...

const ACANPrimaryFilter primaryFilters [] = {

ACANPrimaryFilter (kData, kExtended, 0x123456, handle_myMessage_0)

} ;

const ACANSecondaryFilter secondaryFilters [] = {

ACANSecondaryFilter (kData, kStandard, 0x234, handle_myMessage_1),

ACANSecondaryFilter (kRemote, kStandard, 0x542, handle_myMessage_2)

} ;

const uint32_t errorCode = ACAN::can0.begin (settings,

primaryFilters, 1,

secondaryFilters, 2) ;

...

}

void loop () {

ACAN::can0.dispatchReceivedMessage () ; // Do not use ACAN::can0.receive any more

...

}

The dispatchReceivedMessage method handles one message at a time. More precisely:

• if it returns false, the driver receive buffer was empty;

• if it returns true, the driver receive buffer was not empty, one message has been removed and
dispatched.

So, the return value can used for emptying and dispatching all received messages:

void loop () {

while (ACAN::can0.dispatchReceivedMessage ()) {

}

...

}

If a filter definition does not name a call back function, the corresponding messages are lost. In the
code below, filter #1 does not name a call back function, standard data frames with identifier 0x234
are lost.

void setup () {

...

const ACANPrimaryFilter primaryFilters [] = {

ACANPrimaryFilter (kData, kExtended, 0x123456, handle_myMessage_0)

} ;

const ACANSecondaryFilter secondaryFilters [] = {

ACANSecondaryFilter (kData, kStandard, 0x234), // Filter #1

ACANSecondaryFilter (kRemote, kStandard, 0x542, handle_myMessage_2)

} ;

...

}

The dispatchReceivedMessage method has an optional argument – NULL by default: a function
name. This function is called for every message that pass the receive filters, with an argument equal
to the matching filter index:

void filterMatchFunction (const uint32_t inFilterIndex) {

...

21

15 THE ACAN::BEGIN METHOD REFERENCE

}

void loop () {

ACAN::can0.dispatchReceivedMessage (filterMatchFunction) ;

...

}

You can use this function for maintaining statitistics about receiver filter matches.

15 The ACAN::begin method reference

15.1 The ACAN::begin method prototype

The begin method prototype is:

uint32_t ACAN::begin (const ACANSettings & inSettings,

const ACANPrimaryFilter inPrimaryFilters [] = NULL,

const uint32_t inPrimaryFilterCount = 0,

const ACANSecondaryFilter inSecondaryFilters [] = NULL,

const uint32_t inSecondaryFilterCount = 0) ;

The four last arguments have default values.

Omitting the last argument makes no secondary filter is defined:

const uint32_t errorCode = ACAN::can0.begin (settings,

primaryFilters, primaryFilterCount,

secondaryFilters) ;

Omitting the last two arguments makes no secondary filter is defined:

const uint32_t errorCode = ACAN::can0.begin (settings, primaryFilters, primaryFilterCount) ;

Omitting the last three or the last four arguments makes no primary and no secondary filter is defined
– so any (data / remote, standard / extended) frame is received:

const uint32_t errorCode = ACAN::can0.begin (settings, primaryFilters) ;

const uint32_t errorCode = ACAN::can0.begin (settings) ;

15.2 The error code

The begin method returns an error code. The value 0 denotes no error. Otherwise, you consider
every bit as an error flag, as described in table 5. An error code could report several errors.

The ACAN class defines bit error masks as public static constant properties:

public: static const uint32_t kCANBitConfigurationTooFarFromWishedBitRate = 1 << 0 ;

public: static const uint32_t kCANBitInconsistentConfiguration = 1 << 1 ;

public: static const uint32_t kTooMuchPrimaryFilters = 1 << 2 ;

public: static const uint32_t kNotConformPrimaryFilter = 1 << 3 ;

public: static const uint32_t kTooMuchSecondaryFilters = 1 << 4 ;

public: static const uint32_t kNotConformSecondaryFilter = 1 << 5 ;

public: static const uint32_t kNoAlternateTxPinForCan1 = 1 << 6 ;

public: static const uint32_t kNoAlternateRxPinForCan1 = 1 << 7 ;

22

15.2 The error code 15 THE ACAN::BEGIN METHOD REFERENCE

Error Codes Comment Link
31 – 8 7 6 5 4 3 2 1 0
0 ... 0 0 0 0 0 0 0 0 0 No error
0 ... 0 0 0 0 0 0 0 0 1 CAN Bit configuration too far from wished bit rate section 15.2.1 page 23
0 ... 0 0 0 0 0 0 0 1 0 Inconsistent CAN Bit configuration section 15.2.2 page 23
0 ... 0 x x x x x 1 0 0 Too much primary filters section 15.2.3 page 24
0 ... 0 x x x x 1 x 0 0 Primary filter conformance error section 15.3 page 24
0 ... 0 x x x 1 x x 0 0 Too much secondary filters section 15.3.1 page 24
0 ... 0 x x 1 x x x 0 0 Secondary filter conformance error section 15.3.2 page 24
0 ... 0 x 1 x x x x 0 0 ACAN::can1 has no Tx alternate pin section 15.3.3 page 24
0 ... 0 1 x x x x x 0 0 ACAN::can1 has no Rx alternate pin section 15.3.4 page 24

Table 5 – The ACAN::begin method error codes

For example, you can write:

const uint32_t errorCode = ACAN::can0.begin (settings,

primaryFilters, primaryFilterCount,

secondaryFilters, secondaryFilterCount) ;

if (errorCode != 0) {

// Error(s)

if (errorCode & ACAN::kTooMuchPrimaryFilters) {

// Error: too much primary filters

}

...

}

15.2.1 CAN Bit setting too far from wished rate

This error is raised when the mBitConfigurationClosedToWishedRate of the settings object is false.
This means that the ACANSettings constructor cannot compute a CAN bit configuration close enough
to the wished bit rate. When the begin is called with settings.mBitConfigurationClosedToWishedRate
false, this error is reported. For example:

void setup () {

ACANSettings settings (1) ; // 1 bit/s !!!

// Here, settings.mBitConfigurationClosedToWishedRate is false

const uint32_t errorCode = ACAN::can0.begin (settings) ;

// Here, errorCode == ACAN::kCANBitConfigurationTooFarFromWishedBitRateErrorMask

}

This error is a fatal error, the driver and the FlexCAN module are not configured. See section 16.1
page 24 for a discussion about CAN bit setting computation.

15.2.2 CAN Bit inconsistent configuration error

This error is raised when you have changed the CAN bit properties (mBitRatePrescaler, mPropagationSegment,
mPhaseSegment1, mPhaseSegment2, mRJW), and one or more resulting values are inconsistent. See
section 16.2 page 27.

23

15.3 Primary filters conformance error 16 ACANSETTINGS CLASS REFERENCE

15.2.3 Too much primary filters error

The number of primary filters is limited. See section 11 page 12 for getting the number of primary
filters for each configuration, and for changing default value.

15.3 Primary filters conformance error

One or several primary filters do not conform: see section 12.4 page 16. Comment out primary filter
definitions until finding the faultly definition.

15.3.1 Too much secondary filters error

The number of secondary filters is limited. See section 11 page 12 for getting the number of secondary
filters for each configuration, and for changing default value.

15.3.2 Secondary filter conformance error

One or several secondary filters do not conform: see section 13.4 page 19. Comment out secondary
filter definitions until finding the faultly definition.

15.3.3 No alternate Tx pin error

In the Teensy 3.6, ACAN::can1 does not support alternate Tx pin.

15.3.4 No alternate Rx pin error

In the Teensy 3.6, ACAN::can1 does not support alternate Rx pin.

16 ACANSettings class reference

Note. The ACANSettings class is not Arduino specific. You can compile it on your desktop computer
with your favorite C++ compiler.

16.1 The ACANSettings constructor: computation of the CAN bit settings

The constructor of the ACANSettings has one mandatory argument: the wished bit rate. It tries
to compute the CAN bit settings for this bit rate. If it succeeds, the constructed object has its
mBitConfigurationClosedToWishedRate property set to true, otherwise it is set to false. For ex-
ample:

void setup () {

ACANSettings settings (1 * 1000 * 1000) ; // 1 Mbit/s

// Here, settings.mBitConfigurationClosedToWishedRate is true

...

}

24

16.1 The ACANSettings constructor: computation of the CAN bit settings16 ACANSETTINGS CLASS REFERENCE

Of course, CAN bit computation always succeeds for classical bit rates: 1 Mbit/s, 500 kbit/s, 250
kbit/s, 125 kbit/s. But CAN bit computation can also succeed for some unusual bit rates, as 842
kbit/s. You can check the result by computing actual bit rate, and the distance from the wished bit
rate:

void setup () {

Serial.begin (9600) ;

ACANSettings settings (842 * 1000) ; // 842 kbit/s

Serial.print ("mBitConfigurationClosedToWishedRate:␣") ;

Serial.println (settings.mBitConfigurationClosedToWishedRate) ; // 1 (--> is true)

Serial.print ("actual␣bit␣rate:␣") ;

Serial.println (settings.actualBitRate ()) ; // 842105 bit/s

Serial.print ("distance:␣") ;

Serial.println (settings.ppmFromWishedBitRate ()) ; // 124 ppm

...

}

The actual bit rate is 842,105 bit/s, and its distance from wished bit rate is 124 ppm. ”ppm” stands
for ”part-per-million”, and 1 ppm = 10−6. In other words, 10, 000 ppm = 1%.

By default, a wished bit rate is accepted if the distance from the computed actual bit rate is lower or
equal to 1, 000 ppm = 0.1 %. You can change this default value by adding your own value as second
argument of ACANSettings constructor:

void setup () {

Serial.begin (9600) ;

ACANSettings settings (842 * 1000, 100) ; // 842 kbit/s, max distance is 100 ppm

Serial.print ("mBitConfigurationClosedToWishedRate:␣") ;

Serial.println (settings.mBitConfigurationClosedToWishedRate) ; // 0 (--> is false)

Serial.print ("actual␣bit␣rate:␣") ;

Serial.println (settings.actualBitRate ()) ; // 842105 bit/s

Serial.print ("distance:␣") ;

Serial.println (settings.ppmFromWishedBitRate ()) ; // 124 ppm

...

}

The second argument does not change the CAN bit computation, it only changes the acceptance test
for setting the mBitConfigurationClosedToWishedRate property. For example, you can specify that
you want the computed actual bit to be exactly the wished bit rate:

void setup () {

Serial.begin (9600) ;

ACANSettings settings (500 * 1000, 0) ; // 500 kbit/s, max distance is 0 ppm

Serial.print ("mBitConfigurationClosedToWishedRate:␣") ;

Serial.println (settings.mBitConfigurationClosedToWishedRate) ; // 1 (--> is true)

Serial.print ("actual␣bit␣rate:␣") ;

Serial.println (settings.actualBitRate ()) ; // 500,000 bit/s

Serial.print ("distance:␣") ;

Serial.println (settings.ppmFromWishedBitRate ()) ; // 0 ppm

...

}

The fastest exact bit rate is 3,2 Mbit/s. It works when the FlexCAN module is configured in both
loop back mode (section 16.7.3 page 30) and self reception mode (section 16.7.2 page 30). Note bit
rates above 1 Mbit/s do not conform to the ISO-11898; CAN transceivers as MCP2551 require the bit
rate lower or equal to 1 Mbit/s.

The slowest exact bit rate is 2.5 kbit/s. Note many CAN transceivers as the MCP2551 provide ”detec-
tion of ground fault (permanent Dominant) on TXD input”. For example, the MCP2551 constraints the

25

16.1 The ACANSettings constructor: computation of the CAN bit settings16 ACANSETTINGS CLASS REFERENCE

bit rate to be greater or equal to 16 kbit/s. If you want to work with slower bit rates and you need a
transceiver, use one without this detection, as the PCA82C250.

In any way, the bit rate computation always gives a consistent result, resulting an actual bit rate
closest from the wished bit rate. For example:

void setup () {

Serial.begin (9600) ;

ACANSettings settings (440 * 1000) ; // 440 kbit/s

Serial.print ("mBitConfigurationClosedToWishedRate:␣") ;

Serial.println (settings.mBitConfigurationClosedToWishedRate) ; // 0 (--> is false)

Serial.print ("actual␣bit␣rate:␣") ;

Serial.println (settings.actualBitRate ()) ; // 444,444 bit/s

Serial.print ("distance:␣") ;

Serial.println (settings.ppmFromWishedBitRate ()) ; // 10,100 ppm

...

}

You can get the details of the CAN bit decomposition. For example:

void setup () {

Serial.begin (9600) ;

ACANSettings settings (440 * 1000) ; // 440 kbit/s

Serial.print ("mBitConfigurationClosedToWishedRate:␣") ;

Serial.println (settings.mBitConfigurationClosedToWishedRate) ; // 0 (--> is false)

Serial.print ("actual␣bit␣rate:␣") ;

Serial.println (settings.actualBitRate ()) ; // 444,444 bit/s

Serial.print ("distance:␣") ;

Serial.println (settings.ppmFromWishedBitRate ()) ; // 10,100 ppm

Serial.print ("Bit␣rate␣prescaler:␣") ;

Serial.println (settings.mBitRatePrescaler) ; // BRP = 2

Serial.print ("Propagation␣segment:␣") ;

Serial.println (settings.mPropagationSegment) ; // PropSeg = 6

Serial.print ("Phase␣segment␣1:␣") ;

Serial.println (settings.mPhaseSegment1) ; // PS1 = 5

Serial.print ("Phase␣segment␣2:␣") ;

Serial.println (settings.mPhaseSegment2) ; // PS2 = 6

Serial.print ("Resynchronization␣Jump␣Width:␣") ;

Serial.println (settings.mRJW) ; // RJW = 4

Serial.print ("Triple␣Sampling:␣") ;

Serial.println (settings.mTripleSampling) ; // 0, meaning single sampling

Serial.print ("Sample␣Point:␣") ;

Serial.println (settings.samplePointFromBitStart ()) ; // 68, meaning 68%

Serial.print ("Consistency:␣") ;

Serial.println (settings.CANBitSettingConsistency ()) ; // 0, meaning Ok

...

}

The samplePointFromBitStart method returns sample point, expressed in per-cent of the bit dura-
tion from the beginning of the bit.

Note the computation may calculate a bit decomposition too far from the wished bit rate, but it is
always consistent. You can check this by calling the CANBitSettingConsistency method.

You can change the property values for adapting to the particularities of your CAN network prop-
agation time. By example, you can increment the mPhaseSegment1 value, and decrement the
mPhaseSegment2 value in order to sample the CAN Rx pin later.

void setup () {

26

16.2 The CANBitSettingConsistency method 16 ACANSETTINGS CLASS REFERENCE

Serial.begin (9600) ;

ACANSettings settings (500 * 1000) ; // 500 kbit/s

Serial.print ("mBitConfigurationClosedToWishedRate:␣") ;

Serial.println (settings.mBitConfigurationClosedToWishedRate) ; // 1 (--> is true)

settings.mPhaseSegment1 ++ ; // 5 -> 6: safe, 1 <= PS1 <= 8

settings.mPhaseSegment2 -- ; // 5 -> 4: safe, 2 <= PS2 <= 8 and RJW <= PS2

Serial.print ("Sample␣Point:␣") ;

Serial.println (settings.samplePointFromBitStart ()) ; // 75, meaning 75%

Serial.print ("actual␣bit␣rate:␣") ;

Serial.println (settings.actualBitRate ()) ; // 500000: ok, bit rate did not change

Serial.print ("Consistency:␣") ;

Serial.println (settings.CANBitSettingConsistency ()) ; // 0, meaning Ok

...

}

Be aware to always respect CAN bit timing consistency! The constraints are:

1 ⩽ mBitRatePrescaler ⩽ 256

1 ⩽ mRJW ⩽ 4

1 ⩽ mPropagationSegment ⩽ 8

Single sampling: 1 ⩽ mPhaseSegment1 ⩽ 8

Triple sampling: 2 ⩽ mPhaseSegment1 ⩽ 8

2 ⩽ mPhaseSegment2 ⩽ 8

mRJW ⩽ mPhaseSegment2

Resulting actual bit rate is given by:

Actual bit rate =
16 MHz

mBitRatePrescaler · (1 + mPropagationSegment+ mPhaseSegment1+ mPhaseSegment2)

And sampling point (in per-cent unit) are given by:

Sampling point (single sampling) = 100 ·
1 + mPropagationSegment+ mPhaseSegment1

1 + mPropagationSegment+ mPhaseSegment1+ mPhaseSegment2

Sampling first point (triple sampling) = 100 ·
mPropagationSegment+ mPhaseSegment1

1 + mPropagationSegment+ mPhaseSegment1+ mPhaseSegment2

16.2 The CANBitSettingConsistency method

This method checks the CAN bit decomposition (given by mBitRatePrescaler, mPropagationSegment,
mPhaseSegment1, mPhaseSegment2, mRJW property values) is consistent.

void setup () {

Serial.begin (9600) ;

ACANSettings settings (500 * 1000) ; // 500 kbit/s

Serial.print ("mBitConfigurationClosedToWishedRate:␣") ;

Serial.println (settings.mBitConfigurationClosedToWishedRate) ; // 1 (--> is true)

settings.mPhaseSegment1 = 0 ; // Error, mPhaseSegment1 should be >= 1 (and <= 8)

Serial.print ("Consistency:␣0x") ;

27

16.3 The actualBitRate method 16 ACANSETTINGS CLASS REFERENCE

Serial.println (settings.CANBitSettingConsistency (), HEX) ; // 0x10, meaning error

...

}

The CANBitSettingConsistencymethod returns 0 if CAN bit decomposition is consistent. Otherwise,
the returned value is a bit field that can report several errors – see table 6.

Error Codes Error
31 – 11 10 9 8 7 6 5 4 3 2 1 0
0 ... 0 0 0 0 0 0 0 0 0 0 0 0 No error
0 ... 0 x x x x x x x x x x 1 mBitRatePrescaler == 0
0 ... 0 x x x x x x x x x 1 x mBitRatePrescaler > 256
0 ... 0 x x x x x x x x 1 x x mPropagationSegment == 0
0 ... 0 x x x x x x x 1 x x x mPropagationSegment > 8
0 ... 0 x x x x x x 1 x x x x mPhaseSegment1 == 0
0 ... 0 x x x x x 1 x x x x x mPhaseSegment1 > 8
0 ... 0 x x x x 1 x x x x x x mPhaseSegment2 == 0
0 ... 0 x x x 1 x x x x x x x mPhaseSegment2 > 8
0 ... 0 x x 1 x x x x x x x x mRJW == 0
0 ... 0 x 1 x x x x x x x x x mRJW > 4
0 ... 0 1 x x x x x x x x x x mRJW > mPhaseSegment2

Table 6 – The ACANSettings::CANBitSettingConsistency method error codes

The ACANSettings class defines static constant properties that can be used as mask error:

public: static const uint32_t kBitRatePrescalerIsZero = 1 << 0 ;

public: static const uint32_t kBitRatePrescalerIsGreaterThan256 = 1 << 1 ;

public: static const uint32_t kPropagationSegmentIsZero = 1 << 2 ;

public: static const uint32_t kPropagationSegmentIsGreaterThan8 = 1 << 3 ;

public: static const uint32_t kPhaseSegment1IsZero = 1 << 4 ;

public: static const uint32_t kPhaseSegment1IsGreaterThan8 = 1 << 5 ;

public: static const uint32_t kPhaseSegment2IsZero = 1 << 6 ;

public: static const uint32_t kPhaseSegment2IsGreaterThan8 = 1 << 7 ;

public: static const uint32_t kRJWIsZero = 1 << 8 ;

public: static const uint32_t kRJWIsGreaterThan4 = 1 << 9 ;

public: static const uint32_t kRJWIsGreaterThanPhaseSegment2 = 1 << 10 ;

16.3 The actualBitRate method

The actualBitRatemethod returns the actual bit computed from mBitRatePrescaler, mPropagationSegment,
mPhaseSegment1, mPhaseSegment2, mRJW property values.

void setup () {

Serial.begin (9600) ;

ACANSettings settings (440 * 1000) ; // 440 kbit/s

Serial.print ("mBitConfigurationClosedToWishedRate:␣") ;

Serial.println (settings.mBitConfigurationClosedToWishedRate) ; // 0 (--> is false)

Serial.print ("actual␣bit␣rate:␣") ;

Serial.println (settings.actualBitRate ()) ; // 444,444 bit/s

...

}

Note. If CAN bit settings are not consistent (see section 16.2 page 27), the returned value is
irrelevant.

28

16.4 The exactBitRate method 16 ACANSETTINGS CLASS REFERENCE

16.4 The exactBitRate method

The exactBitRate method returns true if the actual bit rate is equal to the wished bit rate, and
false otherwise.

void setup () {

Serial.begin (9600) ;

ACANSettings settings (842 * 1000) ; // 842 kbit/s

Serial.print ("mBitConfigurationClosedToWishedRate:␣") ;

Serial.println (settings.mBitConfigurationClosedToWishedRate) ; // 1 (--> is true)

Serial.print ("actual␣bit␣rate:␣") ;

Serial.println (settings.actualBitRate ()) ; // 842105 bit/s

Serial.print ("distance:␣") ;

Serial.println (settings.ppmFromWishedBitRate ()) ; // 124 ppm

Serial.print ("Exact:␣") ;

Serial.println (settings.exactBitRate ()) ; // 0 (---> false)

...

}

Note. If CAN bit settings are not consistent (see section 16.2 page 27), the returned value is
irrelevant.

16.5 The ppmFromWishedBitRate method

The ppmFromWishedBitRate method returns the distance from the actual bit rate to the wished bit
rate, expressed in part-per-million (ppm): 1 ppm = 10−6. In other words, 10, 000 ppm = 1%.

void setup () {

Serial.begin (9600) ;

ACANSettings settings (842 * 1000) ; // 842 kbit/s

Serial.print ("mBitConfigurationClosedToWishedRate:␣") ;

Serial.println (settings.mBitConfigurationClosedToWishedRate) ; // 1 (--> is true)

Serial.print ("actual␣bit␣rate:␣") ;

Serial.println (settings.actualBitRate ()) ; // 842105 bit/s

Serial.print ("distance:␣") ;

Serial.println (settings.ppmFromWishedBitRate ()) ; // 124 ppm

...

}

Note. If CAN bit settings are not consistent (see section 16.2 page 27), the returned value is
irrelevant.

16.6 The samplePointFromBitStart method

The samplePointFromBitStart method returns the distance of sample point from the start of the
CAN bit, expressed in part-per-cent (ppc): 1 ppc = 1% = 10−2. If triple sampling is selected, the
returned value is the distance of the first sample point from the start of the CAN bit. It is a good
practice to get sample point from 65% to 80%.

void setup () {

Serial.begin (9600) ;

ACANSettings settings (500 * 1000) ; // 500 kbit/s

Serial.print ("mBitConfigurationClosedToWishedRate:␣") ;

Serial.println (settings.mBitConfigurationClosedToWishedRate) ; // 1 (--> is true)

29

16.7 Properties of the ACANSettings class 16 ACANSETTINGS CLASS REFERENCE

Serial.print ("Sample␣point:␣") ;

Serial.println (settings.samplePointFromBitStart ()) ; // 68 --> 68%

...

}

Note. If CAN bit settings are not consistent (see section 16.2 page 27), the returned value is
irrelevant.

16.7 Properties of the ACANSettings class

All properties of the ACANSettings class are declared public and are initialized (table 7). The default
values of properties from mWhishedBitRate until mTripleSampling corresponds to a CAN bit rate of
250,000 bit/s.

Property Type Initial value Comment
mWhishedBitRate uint32_t 250,000 See section 16.1 page 24
mBitRatePrescaler uint16_t 4 See section 16.1 page 24
mPropagationSegment uint8_t 5 See section 16.1 page 24
mPhaseSegment1 uint8_t 5 See section 16.1 page 24
mPhaseSegment2 uint8_t 5 See section 16.1 page 24
mRJW uint8_t 4 See section 16.1 page 24
mTripleSampling bool false See section 16.1 page 24
mBitConfigurationClosedToWishedRate bool true See section 16.1 page 24
mListenOnlyMode bool false See section 16.7.1 page 30
mSelfReceptionMode bool false See section 16.7.2 page 30
mLoopBackMode bool false See section 16.7.3 page 30
mConfiguration tConfiguration k12_12_Filters See section 11 page 12
mUseAlternateTxPin bool false See section 7 page 8
mUseAlternateRxPin bool false See section 7 page 8
mMessageIRQPriority uint8_t 64 See section 16.7.4 page 31
mReceiveBufferSize uint16_t 32 See section 10.1 page 12
mTransmitBufferSize uint16_t 16 See section 8.2 page 9

Table 7 – Properties of the ACANSettings class

16.7.1 The mListenOnlyMode property

This boolean property corresponds to the LOM bit of the FlexCAN CTRL1 control register.

16.7.2 The mSelfReceptionMode property

This boolean property corresponds to the complement of the SRXDIS bit of the FlexCAN MCR control
register.

16.7.3 The mLoopBackMode property

This boolean property corresponds to the LBP bit of the FlexCAN CTRL1 control register.

30

17 CAN CONTROLLER STATE

16.7.4 The mMessageIRQPriority property

This property sets the priority of the CAN message interrupt. Highest priority is 0, lowest is 255.

17 CAN controller state

Three methods return the CAN controller state, the receive error counter and the transmit error
counter.

17.1 The controllerState method

public: tControllerState controllerState (void) const ;

This method returns the current state (error active, error passive, bus off) of the CAN controller. The
tControllerState type is defined by an enumeration:

typedef enum {kActive, kPassive, kBusOff} tControllerState ;

17.2 The receiveErrorCounter method

public: uint32_t receiveErrorCounter (void) const ;

17.3 The transmitErrorCounter method

public: uint32_t transmitErrorCounter (void) const ;

As the CANx_ESR FlexCAN control register does not return a valid value when the CAN controller is in
the bus off state, the value 256 is forced.

31

	Versions
	Features
	Data flow
	A simple example: LoopBackDemo
	The CANMessage class
	Driver instances
	Alternate pins
	Sending data frames
	tryToSend for sending data frames
	Driver transmit buffer size
	The transmitBufferSize method
	The transmitBufferCount method
	The transmitBufferPeakCount method

	Sending remote frames
	Retrieving received messages using the receive method
	Driver receive buffer size
	The receiveBufferSize method
	The receiveBufferCount method
	The receiveBufferPeakCount method

	Configuration
	Primary filters
	Primary filter example
	Primary filter as pass-all filter
	Primary filter for matching several identifiers
	Primary filter conformance
	The receive method revisited

	Secondary filters
	Secondary filters, without primary filter
	Primary and secondary filters
	Secondary filter as pass-all filter
	Secondary filter conformance
	The receive method revisited

	The dispatchReceivedMessage method
	The ACAN::begin method reference
	The ACAN::begin method prototype
	The error code
	CAN Bit setting too far from wished rate
	CAN Bit inconsistent configuration error
	Too much primary filters error

	Primary filters conformance error
	Too much secondary filters error
	Secondary filter conformance error
	No alternate Tx pin error
	No alternate Rx pin error

	ACANSettings class reference
	The ACANSettings constructor: computation of the CAN bit settings
	The CANBitSettingConsistency method
	The actualBitRate method
	The exactBitRate method
	The ppmFromWishedBitRate method
	The samplePointFromBitStart method
	Properties of the ACANSettings class
	The mListenOnlyMode property
	The mSelfReceptionMode property
	The mLoopBackMode property
	The mMessageIRQPriority property

	CAN controller state
	The controllerState method
	The receiveErrorCounter method
	The transmitErrorCounter method

