

Arduino LoRaWAN MAC in C (LMIC)

Version 4.1.0

2021-10-10

2 Arduino LoRaWAN MAC in C (LMIC) Technical Specification

LMIC Product Information

The LMIC library was originally developed and marketed by the IBM Zurich Research Laboratory (IBM

Research GmbH), 8803 Rüschlikon, Switzerland. For additional information please contact:

lrsc@zurich.ibm.com. This document was taken from V1.6, from July 2016.

The library was adapted for Arduino by Mathijs Kooijman and Thomas Telkamp. This version of the

document describes the version being maintained by MCCI Corporation at https://github.com/mcci-

catena/arduino-lmic/.

© 2018-2021 MCCI Corporation

Copyright MCCI Corporation, 2018-2021. All rights reserved. Distributed under the terms of the

LICENSE file found at https://github.com/mcci-catena/arduino-lmic/blob/master/LICENSE.

© 2014-2016 IBM Corporation

Copyright International Business Machines Corporation, 2014-2016. All Rights Reserved.

The following are trademarks or registered trademarks of International Business Machines Corporation

in the United States, or other countries, or both: IBM, the IBM Logo, Ready for IBM Technology.

MCCI and MCCI Catena are registered trademarks of MCCI Corporation.

LoRa is a registered trademark of Semtech Corporation.

LoRaWAN is a registered trademark of the LoRa Alliance.

Other company, product and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The information contained

in this document does not affect or change IBM product specifications or warranties. Nothing in this

document shall operate as an express or implied license or indemnity under the intellectual property

rights of IBM or third parties. All information contained in this document was obtained in specific

environments, and is presented as an illustration. The results obtained in other operating environments

may vary. THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS"

BASIS. In no event will IBM be liable for damages arising directly or indirectly from any use of the

information contained in this document.

mailto:lrsc@zurich.ibm.com
https://github.com/mcci-catena/arduino-lmic/
https://github.com/mcci-catena/arduino-lmic/
https://github.com/mcci-catena/arduino-lmic/blob/master/LICENSE

4 Arduino LoRaWAN MAC in C (LMIC) Technical Specification

Table of Contents

1. Introduction ... 5
1.1 LoRaWAN Versions and Features Supported .. 6
1.2 Class A and Class B Support .. 6

2. Programming Model and API ... 7
2.1 Programming Model .. 7
2.2 Run-time Functions ... 9
2.3 Application callbacks ... 10
2.4 The LMIC Struct .. 11
2.5 API Functions .. 12

3. Hardware Abstraction Layer .. 22
3.1 HAL Interface .. 23
3.2 HAL Reference Implementation for Arduino ... 25

4. Examples ... 26

5. Release History ... 27
5.1 IBM Release History ... 27

Introduction

Arduino LoRaWAN MAC in C (LMIC) Technical Specification 5

1. Introduction

The Arduino IBM LoRaWAN C-library (LMIC) is a portable implementation of the LoRaWAN™ 1.0.3

end-device specification in the C programming language. (“LMIC” stands for “LoRaWAN MAC in C”). It

supports the EU-868, US-915, AU-915, AS-923, KR-920 and IN-866 variants of the specification and it

can handle class A and class B devices. The library takes care of all logical MAC states and timing

constraints and drives the SEMTECH SX1272 or SX1276 radio. This way, applications are free to

perform other tasks and the protocol compliance is guaranteed by the library. In order to ensure

compliance with the specification and associated regulations, the state engine has been tested and

verified using a logic simulation environment. The library has been carefully engineered to precisely

satisfy the timing constraints of the MAC protocol and to even consider possible clock drifts in the timing

computations. Applications can access and configure all functionality via a simple event-based

programming model and do not have to deal with platform-specific details like interrupt handlers. By

using a thin hardware abstraction layer (HAL), the library can be easily ported to new hardware

platforms. An Arduino HAL is provided which allows for easy integration with most Arduino variants.

Eight-bit AVR platforms are supported as well as 32-bit platforms.

In addition to the provided LMIC library, a real-world application also needs drivers for the sensors or

other hardware it desires to control. These application drivers are outside the scope of this document

and are not part of this library.

Figure 1. Application device components

High-level view of all application device components.

LMIC Library

SX1272/1276 LoRa Radio Sensor Hardware

MCU

Application Code

Application Drivers

(Sensors, etc.)

Hardware Abstraction Layer

MAC State Engine

Run-time Environment

Arduino Platform

https://github.com/mcci-catena/arduino-lmic

Arduino LMIC Library. Version 4.1.0.

6 Arduino LoRaWAN MAC in C (LMIC) Technical Specification

1.1 LoRaWAN Versions and Features Supported

The LMIC library supports Class A operation as described by the LoRaWAN specification V1.0.3 and

V1.0.2. It does not support V1.1.

Class B support code is provided, but is not tested.

LoRaWAN 1.0.3 Class A multicast downlinks are not supported.

Class C operation is not supported.

The library has been tested for compliance with the following LoRaWAN 1.0.2 test specifications as

implemented by RedwoodComm in their RWC5020A tester, using firmware version 1.170. The MCCI

Catena 4610 was used as the reference device.

• EU868 V1.5 (excluding optional data rates)

• US915 V1.3 (excluding optional data rates; testing was done using channels 0~7 and 64). The

TxPower test fails because the LMIC complies with LoRaWAN V1.0.3. The TxPower test uses

a value that is defined for V1.0.3, but not for V1.0.2, and expects the device to reject the value.

• AS923 V1.1 (excluding optional data rates)

• KR920 V1.2

• IN865 V1.0

All tests were performed using a tethered connection.

1.2 Class A and Class B Support

The Arduino LMIC library can be configured to support LoRaWAN Class A and Class B operation. A

Class A device receives only at fixed times after transmitting a message. This allows for low power

operation, but means that downlink latency is controlled by how often the device transmits. A Class B

device synchronizes to beacons transmitted by the network, and listens for messages at certain intervals

(“ping slots”) during the interval between beacons.

Devices (and the LMIC library) start out as Class A devices, and switch to Class B based on requests

from the application layer of the device.

This document uses the term “pinging” to mean that the LMIC is operating in Class B and also listening

for downlink during ping slots. If a device is pinging, then the LMIC must also be tracking the beacon. It

is possible to track the beacon (perhaps for time synchronization purposes) without enabling pinging.

Since many devices and networks only support Class A operation, the library can be configured at

compile time to omit support for tracking and pinging. It is possible to omit support for pinging without

omitting support for tracking, but this is not a tested configuration.

Programming Model and API

Arduino LoRaWAN MAC in C (LMIC) Technical Specification 7

2. Programming Model and API

The LMIC library can be accessed via a set of API functions, run-time functions, callback functions, and

a global LMIC data structure. The interface is defined in a single header file “lmic.h” which all

applications should include.

#include "lmic.h"

The library version follows Semantic Versioning 2.0.0 (https://semver.org/). A single symbol represents

the version. Bits 31..24 represent the major version, bits 23..15 the minor version, and bits 15..8

represent the patch. Bits 7..0 are used for representing the pre-release, called “LOCAL” for historical

reasons.

A function-like macro, ARDUINO_LMIC_VERSION_CALC(), is used to construct version numbers.

#define ARDUINO_LMIC_VERSION ARDUINO_LMIC_VERSION_CALC(2, 3, 2, 0)

For convenience, the library supplies function-like macros ARDUINO_LMIC_VERSION_GET_MAJOR(),

ARDUINO_LMIC_VERSION_GET_MINOR(), ARDUINO_LMIC_VERSION_GET_PATCH(), and ARDUINO_LMIC_VERSION_-

GET_LOCAL(), which extract the appropriate field from a version number.

Version numbers are represented naively – the four fields are simply packed together into a 32-bit word.

This makes them easy to display, but hard to compare. Pre-releases are numbered higher than releases,

but compare less. Several macros are provided to make it easy to compare versions numbers.

ARDUINO_LMIC_VERSION_TO_ORDINAL() converts a version number computed by

ARDUINO_LMIC_VERSION_CALC() into an integer that can be compared using the normal C comparison

operators. ARDUINO_LMIC_VERSION_COMPARE_LT(v1, v2) compares two version numbers and returns non-

zero if v1 is less than v2 (after converting both to ordinals). ARDUINO_LMIC_VERSION_COMPARE_LE(v1, v2),

ARDUINO_LMIC_VERSION_COMPARE_GT(v1, v2), and ARDUINO_LMIC_VERSION_COMPARE_GE(v1, v2) test for

less-than-or-equal, greater-than, or greater-than-or-equal relationships.

To identify the original version of the IBM LMIC library two constants are defined in this header file.

#define LMIC_VERSION_MAJOR 1

#define LMIC_VERSION_MINOR 6

These version strings identify the base version of the library, and will not change.

2.1 Programming Model

The LMIC library offers a simple event-based programming model where all protocol events are

dispatched to the application’s onEvent() callback function (see 2.3.4). In order to free the application

of details like timings or interrupts, the library has a built-in run-time environment to take care of timer

queues and job management.

2.1.1 Application jobs

In this model all application code is run in so-called jobs which are executed on the main thread by the

run-time scheduler function os_runloop() (see 2.2.6). These application jobs are coded as normal C

functions and can be managed using the run-time functions described in section 2.1.3. For the job

management an additional per job control struct osjob_t is required which identifies the job and stores

https://semver.org/

Arduino LMIC Library. Version 4.1.0.

8 Arduino LoRaWAN MAC in C (LMIC) Technical Specification

context information. Jobs must not be long-running in order to ensure seamless operation! They

should only update state and schedule actions, which will trigger new job or event callbacks.

2.1.2 Main event loop

All an application must do is to initialize the run-time environment using the os_init() or os_init_ex()

function and then periodically call the job scheduler function os_runloop_once(). In order to bootstrap

protocol actions and generate events, an initial job needs to be set up. Therefore, a startup job is

scheduled using the os_setCallback() function.

osjob_t initjob;

void setup () {

 // initialize run-time env

 os_init();

 // setup initial job

 os_setCallback(&initjob, initfunc);

}

void loop () {

 // execute scheduled jobs and events

 os_runloop_once();

}

The startup code shown in the initfunc() function below initializes the MAC and starts joining the

network.

// initial job

static void initfunc (osjob_t* j) {

 // reset MAC state

 LMIC_reset();

 // start joining

 LMIC_startJoining();

 // init done - onEvent() callback will be invoked...

}

The initfunc() function will return immediately, and the onEvent() callback function will be invoked

by the scheduler later on for the events EV_JOINING, EV_JOINED or EV_JOIN_FAILED.

2.1.3 OS time

The LMIC uses values of the type ostime_t to represent time in ticks. The rate of these ticks defaults

to 32768 ticks per second, but may be configured at compile time to any value between 10000 ticks per

second and 64516 ticks per second.

In general, one tick is not an integral number of microseconds or milliseconds. Convenience functions

are provided for switching back and forth.

typedef int32_t ostime_t;

Note that this is a signed integer value; care must be taken when computing differences to avoid being

fooled by overflow. OS time starts at zero, and increments uniformly to INT32_MAX; it then wraps to

INT32_MIN and increments uniformly up to zero, and repeats. Rather than comparing two ostime_t

values, recommended practice is to subtract them and see if the result is positive or negative.

Programming Model and API

Arduino LoRaWAN MAC in C (LMIC) Technical Specification 9

2.2 Run-time Functions

The run-time functions mentioned before are used to control the run-time environment. This includes

initialization, scheduling and execution of the run-time jobs.

2.2.1 void os_init ()

Initialize the operating system by calling os_init_ex(NULL).

2.2.2 void os_init_ex (const void * pHalData)

To facilitate use of this library on multiple platforms, the os_init_ex() routine takes an arbitrary pointer to

platform data. The Arduino LMIC default HAL implementation expects this pointer to be a reference to

a C++ struct lmic_pinmap object. See README.md for more information.

2.2.3 void os_setCallback (osjob_t* job, osjobcb_t cb)

Prepare an immediately runnable job. This function can be called at any time, including from interrupt

handler contexts (e.g. if a new sensor value has become available).

2.2.4 void os_setTimedCallback (osjob_t* job, ostime_t time, osjobcb_t cb)

Schedule a timed job to run at the given timestamp (absolute system time). This function can be called

at any time, including from interrupt handler contexts.

2.2.5 void os_clearCallback (osjob_t* job)

Cancel a run-time job. A previously scheduled run-time job is removed from timer and run queues. The

job is identified by the address of the job struct. The function has no effect if the specified job is not yet

scheduled.

2.2.6 void os_runloop ()

Execute run-time jobs from the timer and from the run queues. This function is the main action

dispatcher. It does not return and must be run on the main thread. This routine is normally not used in

Arduino environments, as it disables the normal calling of the Arduino loop() function.

2.2.7 void os_runloop_once ()

Execute run-time jobs from the timer and from the run queues. This function is just like os_runloop(),

except that it returns after dispatching the first available job.

2.2.8 ostime_t os_getTime ()

Query absolute system time (in ticks).

2.2.9 ostime_t us2osticks(s4_t us)

Returns the ticks corresponding to the integer value us. This may be a function-like macro, so us may

be evaluated more than once. Any fractional part of the calculation is discarded.

Arduino LMIC Library. Version 4.1.0.

10 Arduino LoRaWAN MAC in C (LMIC) Technical Specification

2.2.10 ostime_t us2osticksCeil(s4_t us)

Returns the ticks corresponding to the integer value us. This may be a function-like macro, so us may

be evaluated more than once. If the fractional part of the calculation is non-zero, the result is increased

towards positive infinity.

2.2.11 ostime_t us2osticksRound(s4_t us)

Returns the ticks corresponding to the integer value us. This may be a function-like macro, so us may

be evaluated more than once. The result is rounded to the nearest tick.

2.2.12 ostime_t ms2osticks(s4_t ms)

Returns the ticks corresponding to the integer millisecond value ms. This may be a function-like macro,

so ms may be evaluated more than once. If the fractional part of the calculation is non-zero, the result is

increased towards positive infinity.

2.2.13 ostime_t ms2osticksCeil(s4_t ms)

Returns the ticks corresponding to the integer millisecond value ms. This may be a function-like macro,

so ms may be evaluated more than once.

2.2.14 ostime_t ms2osticksRound(s4_t ms)

Returns the ticks corresponding to the integer millisecond value ms. This may be a function-like macro,

so ms may be evaluated more than once. The result is rounded to the nearest tick.

2.2.15 ostime_t sec2osticks(s4_t sec)

Returns the ticks corresponding to the integer second value sec. This may be a function-like macro, so

sec may be evaluated more than once.

2.2.16 S4_t osticks2ms(ostime_t os)

Returns the milliseconds corresponding to the tick value os. This may be a function-like macro, so os

may be evaluated more than once.

2.2.17 S4_t osticks2us(ostime_t os)

Returns the microseconds corresponding to the tick value os. This may be a function-like macro, so os

may be evaluated more than once.

2.3 Application callbacks

The LMIC library requires the application to implement a few callback functions. These functions are

called by the state engine to query application-specific information and to deliver state events to the

application.

Upcalls by name from the LMIC to application code are deprecated and will be removed in future

versions of the LMIC. The provisioning APIs (os_getDevEui, os_getDevKey and os_getArtEui) will be

replaced by secure element APIs in version 4. The onEvent API will be disabled by default in version 4,

and removed in version 5.

Programming Model and API

Arduino LoRaWAN MAC in C (LMIC) Technical Specification 11

2.3.1 void os_getDevEui (u1_t* buf)

The implementation of this callback function has to provide the device EUI and copy it to the given buffer.

The device EUI is 8 bytes in length and is stored in little-endian format, that is, least-significant-byte-first

(LSBF).

2.3.2 void os_getDevKey (u1_t* buf)

The implementation of this callback function has to provide the device-specific cryptographic application

key and copy it to the given buffer. The device-specific application key is a 128-bit AES key (16 bytes in

length).

2.3.3 void os_getArtEui (u1_t* buf)

The implementation of this callback function has to provide the application EUI and copy it to the given

buffer. The application EUI is 8 bytes in length and is stored in little-endian format, that is, least-

significant-byte-first (LSBF).

2.3.4 void onEvent (ev_t ev)

This function, if provided, is called to report LMIC events (such as transmission complete or downlink

message received). It is a legacy function. In V3, if this name conflicts with a name in your application,

you can disable the use of this name by putting the following in your configuration file:

#define LMIC_ENABLE_onEvent 0

Upcalls by name from the LMIC to application code are deprecated and will be removed in future

versions of the LMIC. A suitable substitute is available. See the discussion of

LMIC_registerEventCb(), below.

2.4 The LMIC Struct

Instead of passing numerous parameters back and forth between API and callback functions,

information about the protocol state can be accessed via a global LMIC structure as shown below. All

fields besides the ones explicitly mentioned below are read-only and should not be modified.

struct lmic_t {

 u1_t frame[MAX_LEN_FRAME];

 u1_t dataLen; // 0 no data or zero length data, >0 byte count of data

 u1_t dataBeg; // 0 or start of data (dataBeg-1 is port)

 u1_t txCnt;

 u1_t txrxFlags; // transaction flags (TX-RX combo)

 u1_t pendTxPort;

 u1_t pendTxConf; // confirmed data

 u1_t pendTxLen;

 u1_t pendTxData[MAX_LEN_PAYLOAD];

 u1_t bcnChnl;

 u1_t bcnRxsyms;

 ostime_t bcnRxtime;

 bcninfo_t bcninfo; // Last received beacon info

Arduino LMIC Library. Version 4.1.0.

12 Arduino LoRaWAN MAC in C (LMIC) Technical Specification

 …

 …

};

This document does not describe the full struct in detail since most of the fields of the LMIC struct are

used internally only. The most important fields to examine on reception (event EV_RXCOMPLETE or

EV_TXCOMPLETE) are the txrxFlags for status information and frame[] and dataLen / dataBeg for the

received application payload data. For data transmission the most important fields are pendTxData[],

pendTxLen, pendTxPort and pendTxConf, which are used as input to the LMIC_setTxData() API

function (see 2.5.13).

For the EV_RXCOMPLETE and EV_TXCOMPLETE events, the txrxFlags field should be evaluated. The

following flags are defined:

• TXRX_ACK: confirmed UP frame was acked (mutually exclusive with TXRX_NACK)

• TXRX_NACK: confirmed UP frame was not acked (mutually exclusive with TXRX_ACK)

• TXRX_PORT: a port byte is contained in the received frame at offset LMIC.dataBeg – 1.

• TXRX_NOPORT: no port byte is available.

• TXRX_DNW1: received in first DOWN slot (mutually exclusive with TXRX_DNW2)

• TXRX_DNW2: received in second DOWN slot (mutually exclusive with TXRX_DNW1)

• TXRX_PING: received in a scheduled RX slot

• TXRX_LENERR: the transmitted message was abandoned because it was longer than the

established data rate.

For the EV_TXCOMPLETE event the fields have the following values:

Received

frame

LMIC.txrxFlags LMIC.dataLe

n

LMIC.dataBe

g
AC

K

NAC

K

POR

T

NOPOR

T

DNW

1

DNW

2

PIN

G

LENER

R

nothing 0 0 0 1 0 0 0 0 0 0

empty frame x x 0 1 x x 0 0 0 x

port only x x 1 0 x x 0 0 0 x

port+payloa

d
x x 1 0 x x 0 0 x X

No message

received,

transmit

message

too long

0 0 0 1 x x x 1 0 0

For the EV_RXCOMPLETE event the fields have the following values:

Received

frame

LMIC.txrxFlags
LMIC.dataLen LMIC.dataBeg

ACK NACK PORT NOPORT DNW1 DNW2 PING

empty frame 0 0 0 1 0 0 1 0 x

port only 0 0 1 0 0 0 1 0 x

port+payload 0 0 1 0 0 0 1 x x

2.5 API Functions

The LMIC library offers a set of API functions to control the MAC state and to trigger protocol actions.

Programming Model and API

Arduino LoRaWAN MAC in C (LMIC) Technical Specification 13

2.5.1 void LMIC_reset ()

Reset the MAC state. Session and pending data transfers will be discarded.

2.5.2 bit_t LMIC_startJoining ()

Immediately start joining the network. Will be called implicitly by other API functions if no session has

been established yet. The events EV_JOINING and EV_JOINED or EV_JOIN_FAILED will be generated.

2.5.3 void LMIC_tryRejoin ()

Check if other networks are around which can be joined. The session to the current network is kept if no

new network is found. The events EV_JOINED or EV_REJOIN_FAILED will be generated.

2.5.4 void LMIC_setSession (u4_t netid, devaddr_t devaddr, u1_t* nwkKey, u1_t* artKey)

Set static session parameters. Instead of dynamically establishing a session by joining the network,

precomputed session parameters can be provided. To resume a session with precomputed parameters,

the frame sequence counters (LMIC.seqnoUp and LMIC.seqnoDn) must be restored to their latest

values.

2.5.5 bit_t LMIC_setupBand (u1_t bandidx, s1_t txpow, u2_t txcap)

Initialize a specific duty-cycle band with the specified transmit power and duty cycle (1/txcap)

properties. Returns non-zero for success, zero for failure. Some regions don’t allow you to define duty

cycle bands, and in that case this function will always return zero.

The argument bandidx selects the band; it must be in the range 0 ≤ bandidx < MAX_BANDS. For EU-

like regions, the following band names are defined: BAND_MILLI, intended to be used for channels with

a duty cycle of 0.1%; BAND_CENTI, intended to be used by channels with a duty cycle of 1%; and

BAND_DECI, intended to be used by channels with a duty cycle of 10%. A fourth band, BAND_AUX, is

available for use by custom code.

2.5.6 bit_t LMIC_setupChannel (u1_t channel, u4_t freq, u2_t drmap, s1_t band)

Create a new channel, or modify an existing channel. If freq is non-zero, the channel is enabled;

otherwise it’s disabled. The argument drmap is a bitmap indicating which data rates (0 through 15) are

enabled for this channel. Band, if in the range 0..3, assigns the channel to the specified duty-cycle band

– the meaning of this is region-specific. If set to -1, then the appropriate duty-cycle band is selected

based on the value of freq.

The result is non-zero if the channel was successfully set up; zero otherwise.

For any region, there are some channels that cannot be modified (the “default channels”). You can’t

disable or change these, but it’s not an error to try to set a default channel to its default value.

Some regions (such as US915 or AU915) do not allow any channels to be set up.

2.5.7 void LMIC_disableChannel (u1_t channel)

Disable specified channel. Default channels cannot be disabled.

Arduino LMIC Library. Version 4.1.0.

14 Arduino LoRaWAN MAC in C (LMIC) Technical Specification

2.5.8 u1_t LMIC_queryNumDefaultChannels ()

Return the number of default channels defined by this region. In the EU868, KR920 and IN866 regions,

the result is 3; in the AS923 region, the result is 2; in the US and AU regions, the result is 72.

2.5.9 void LMIC_setAdrMode (bit_t enabled)

Enable or disable data rate adaptation. Should be turned off if the device is mobile.

2.5.10 void LMIC_setLinkCheckMode (bit_t enabled)

Enable/disable link check validation. Link check mode is enabled by default and is used to periodically

verify network connectivity. Must be called only if a session is established.

2.5.11 void LMIC_setDrTxpow (dr_t dr, s1_t txpow)

Set data rate and transmit power. Should only be used if data rate adaptation is disabled.

2.5.12 bit_t LMIC_queryTxReady ()

Return non-zero if the LMIC is ready to accept transmitted data, zero if an attempt to transmit will be

rejected.

2.5.13 void LMIC_setTxData ()

Prepare upstream data transmission at the next possible time. It is assumed, that pendTxData,

pendTxLen, pendTxPort and pendTxConf have already been set. Data of length LMIC.pendTxLen from

the array LMIC.pendTxData[] will be sent to port LMIC.pendTxPort. If LMIC.pendTxConf is true,

confirmation by the server will be requested. The event EV_TXCOMPLETE will be generated when the

transaction is complete, i.e. after the data has been sent and eventual down data or a requested

acknowledgement has been received.

If data rate adaptation is enabled, this function will check whether the message being transmitted is

feasible with the current data rate. If not, the data rate will be increased, if possible. This is to provide

maximum software compatibility with older applications that do not comprehend the side-effects of rate

changes on longer messages. However, it is not guaranteed always to be possible to send a message

of a given size, due to regional plan restrictions and current network operating requirements (as provided

by downlinks). Prior to V3.2, the LMIC would transmit anyway; as of V3.2, it will report an error. Thus,

applications may need to be modified.

Because of the numerous post-conditions that must be checked after calling LMIC_setTxData, we

strongly recommend using LMIC_setTxData2() instead.

2.5.14 void LMIC_setTxData_strict ()

Prepare upstream data transmission at the next possible time. The caller must first initialize

LMIC.pendTxData[], LMIC.pendTxLen, LMIC.pendTxPort and LMIC.pendTxConf. Data of length

LMIC.pendTxLen from the array LMIC.pendTxData[] will be sent to port LMIC.pendTxPort. If

LMIC.pendTxConf is true, confirmation by the network server will be requested. The event

EV_TXCOMPLETE will be generated when the transaction is complete, i.e. after the data has been sent

and eventual down data or a requested acknowledgement has been received.

Unlike LMIC_setTxData(), this API will not try to adjust data rate if the message is too long for the

current data rate. See 2.5.13 for a complete discussion.

Programming Model and API

Arduino LoRaWAN MAC in C (LMIC) Technical Specification 15

This API is preferred for new applications, for two reasons. First, automatically increasing data rates is

arguably not compliant. Second, it isn’t always possible. It’s better for applications to be designed to

control operation in the face of slow data rates themselves.

Because of the numerous post-conditions that must be checked after calling

LMIC_setTxData_strict(), we strongly recommend using LMIC_setTxData2_strict() or

LMIC_sendWithCallback_strict() instead.

2.5.15 lmic_tx_error_t LMIC_setTxData2 (u1_t port, xref2u1_t data, u1_t dlen, u1_t

confirmed)

Prepare upstream data transmission at the next possible time. Convenience function for

LMIC_setTxData(). If data is NULL, the data in LMIC.pendTxData[] will be used.

For compatibility with existing applications, if data rate adaptation is enabled, this function will check

whether the message being transmitted is feasible with the current data rate. If not, the data rate will be

increased, if possible. See 2.5.13 for a complete discussion.

The result type lmic_tx_error_t is a synonym for int. The following values may be returned.

Name Value Description

LMIC_ERROR_SUCCESS 0 No error occurred, EV_TXCOMPLETE will be posted.

LMIC_ERROR_TX_BUSY -1

The LMIC was busy sending another message. This

message was not sent. EV_TXCOMPLETE will not be posted

for this message.

LMIC_ERROR_TX_TOO_LARGE -2

The queued message is too large for the any data rate for

this region. This message was not sent. EV_TXCOMPLETE

will not be posted for this message.

LMIC_ERROR_TX_NOT_FEASIBLE -3

The queued message is not feasible for any enabled data

rate. This message was not sent. EV_TXCOMPLETE will not

be posted for this message.

LMIC_ERROR_TX_FAILED -4

The queued message failed for some other reason than

data length, during the initial call to the LMIC to transmit

it. This message was not sent. EV_TXCOMPLETE will not be

posted for this message.

2.5.16 lmic_tx_error_t LMIC_setTxData2_strict (u1_t port, xref2u1_t data, u1_t dlen, u1_t

confirmed)

Prepare upstream data transmission at the next possible time. This function is identical to

LMIC_setTxData2(), except that the current data rate will never be changed. Thus, the error return

LMIC_ERROR_TX_NOT_FEASIBLE has a slightly different meaning. See 2.5.13 for a complete discussion.

Name Value Description

LMIC_ERROR_TX_NOT_FEASIBLE -3

The queued message is not feasible for the current data

rate. This message was not sent. EV_TXCOMPLETE will not

be posted for this message.

Arduino LMIC Library. Version 4.1.0.

16 Arduino LoRaWAN MAC in C (LMIC) Technical Specification

2.5.17 lmic_tx_error_t LMIC_sendWithCallback (u1_t port, u1_t *data, u1_t dlen, u1_t

confirmed, lmic_txmessage_cb_t *pCb, void *pUserData)

Prepare upstream data transmission at the next possible time, and call a specified function when the

transmission completes. Convenience function for LMIC_setTxData(). If data is NULL, the data in

LMIC.pendTxData[] will be used. The arguments dlen, confirmed, and port have the same meaning

as they do for LMIC_setTxData2().

If the initial call succeeds, the callback will be called, and the event EV_TXCOMPLETE will also be

issued. See section 2.5.21 for a complete discussion.

For compatibility with existing applications, if data rate adaptation is enabled, this function will check

whether the message being transmitted is feasible with the current data rate. If not, the data rate will be

increased, if possible. See 2.5.13 for a complete discussion.

The callback function has the prototype:

typedef void (lmic_txmessage_cb_t)(void *pUserData, int fSuccess);

It is called by the LMIC when transmission of the message is completed. fSuccess will be non-zero for

a transmission that’s judged to be successful, or zero if the transmission is judged to have failed.

pUserData is set to the value passed in the corresponding LMIC_sendWithCallback() invocation.

See section 2.5.15 for a list of the possible result codes. In all cases, if the result is other than

LMIC_ERROR_SUCCESS, the user’s callback function has not been called, and will not be called, and

EV_TXCOMPLETE will not be reported.

2.5.18 lmic_tx_error_t LMIC_sendWithCallback_strict (u1_t port, u1_t *data, u1_t dlen,

u1_t confirmed, lmic_txmessage_cb_t *pCb, void *pUserData)

Prepare upstream data transmission at the next possible time, and call a specified function when the

transmission completes. This function is identical to LMIC_sendWithCallback(), except that it will not

attempt to change the current data rate if the current transmission is not feasible. (See 2.5.13 for a

complete discussion.) Thus, the error return LMIC_ERROR_TX_NOT_FEASIBLE has a slightly different

meaning, as described in section 2.5.16.

2.5.19 void LMIC_clrTxData ()

Remove data previously prepared for upstream transmission. If LMIC_sendWithCallback() or

LMIC_sendWithCallback_strict() operations are pending, the callback function will be called with

fSuccess set to zero. If transmit messages are pending, the event EV_TXCOMPLETE will be reported.

2.5.20 void LMIC_registerRxMessageCb (lmic_rxmessage_cb_t *pRxMessageCb, void *pUserData)

This function registers a callback function to be called when the LMIC detects the reception of a

message.

The callback function has the prototype:

typedef void (lmic_rxmessage_cb_t)(

 void *pUserData, u1_t port, const u1_t *pMessage, size_t nMessage

);

Programming Model and API

Arduino LoRaWAN MAC in C (LMIC) Technical Specification 17

This function is called from within the LMIC; it should avoid calling LMIC APIs, and avoid time-critical

operations.

The argument pUserData is set to the value passed to LMIC_registerRxMessageCb(). The argument

port is set to the port number of the message. If zero, then a MAC message was received, and nMessage

will be zero. The argument pMessage is set to point to the first byte of the message, in the LMIC’s internal

buffers, and nMessage is set to the number of bytes of data.

The following conditions can be distinguished.

port nMessage Meaning

0 ≠ 0

A MAC message was received on port zero. It has already been processed, but

it’s delivered to the client for inspection. The LMIC will discard any messages with

piggy-backed MAC data targeting port 0.

0 0
An empty payload (no port, no frame) was received. Most likely there is

piggybacked MAC data. See below.

≠ 0 0
An empty payload was received for a specific port. It’s up to the application to

interpret this.

≠ 0 ≠ 0
A non-empty payload was received for a specific port. It’s up to the application to

interpret this.

If port is zero and nMessage is zero, piggybacked MAC data can be detected and inspected by checking

the value of LMIC.dataBeg. If non-zero, there are LMIC.dataBeg bytes of piggybacked data, and the

data can be found at LMIC.frame[0] through LMIC.frame[LMIC.dataBeg-1].

If port is non-zero, piggybacked MAC data can also be checked using the value of LMIC.dataBeg. If

greater than 1, there are (LMIC.dataBeg-1) bytes of piggybacked data, and the data can be found at

LMIC.frame[0] through LMIC.frame[LMIC.dataBeg-2].

Be aware that if you are also using event callbacks, events will also be reported to the event listening

functions. See section 2.5.21 for a complete discussion.

2.5.21 void LMIC_registerEventCb (lmic_event_cb_t *pEventCb, void *pUserData)

This function registers a callback function to be called when the LMIC detects an event.

The callback function has the prototype:

typedef void (lmic_event_cb_t)(void *pUserData, ev_t ev);

The argument ev is set to a numeric code indicating the type of event that has occurred. The argument

pUserData is set according to the value passed to LMIC_registerEventCb().

The implementation of this callback function may react on certain events and trigger new actions based

on the event and the LMIC state. Typically, an implementation processes the events it is interested in

and schedules further protocol actions using the LMIC API. The following events will be reported:

• EV_JOINING

The node has started joining the network.

• EV_JOINED

The node has successfully joined the network and is now ready for data exchanges.

Arduino LMIC Library. Version 4.1.0.

18 Arduino LoRaWAN MAC in C (LMIC) Technical Specification

• EV_JOIN_FAILED

The node could not join the network (after retrying).

• EV_REJOIN_FAILED

The node did not join a new network but might still be connected to the old network. This feature

(trying to join a new network while connected to an old one) is deprecated and will be removed

in future versions.

• EV_TXCOMPLETE

The data prepared via LMIC_setTxData() has been sent, and the receive window for

downstream data is complete. If confirmation was requested, the acknowledgement has been

received. When handling this event, the code can also check for data reception. See 2.5.21.1

for details. If using LMIC_registerRxMessageCb(), it’s best to leave that to the LMIC, which

will call the client’s receive-message function as appropriate.

• EV_RXCOMPLETE

A downlink has been received, either in a Class A RX slot, in a Class B ping slot, or (in the

future) in a Class C receive window. The code should check the received data. See 2.5.21.1 for

details. If using LMIC_sendWithCallback() and LMIC_registerRxMessageCb(), ignore

EV_RXCOMPLETE in your event processing function.

• EV_SCAN_TIMEOUT

After a call to LMIC_enableTracking() no beacon was received within the beacon interval.

Tracking needs to be restarted.

• EV_BEACON_FOUND

After a call to LMIC_enableTracking() the first beacon has been received within the beacon

interval.

• EV_BEACON_TRACKED

The next beacon has been received at the expected time.

• EV_BEACON_MISSED

No beacon was received at the expected time.

• EV_LOST_TSYNC

Beacon was missed repeatedly, and time synchronization has been lost. Tracking or pinging

needs to be restarted.

• EV_RESET

Session reset due to rollover of sequence counters. Network will be rejoined automatically to

acquire new session.

• EV_LINK_DEAD

No confirmation has been received from the network server for an extended period of time.

Transmissions are still possible, but their reception is uncertain.

• EV_LINK_ALIVE

The link was dead, but now is alive again.

• EV_SCAN_FOUND

This event is reserved for future use, and is never reported.

• EV_TXSTART

This event is reported just before telling the radio driver to start transmission.

• EV_TXCANCELED

A pending transmission was canceled, either because of a request to cancel, or as a side effect

of an API request, or as a side-effect of a change at the MAC layer (such as frame count

overflow).

Programming Model and API

Arduino LoRaWAN MAC in C (LMIC) Technical Specification 19

• EV_RXSTART

The LMIC is about to open a receive window. It’s very important that the event processing

routine do as little work as possible – no more than one millisecond of real time should be

consumed, otherwise downlinks may not work properly. Don’t print anything out while

processing this event; save data to be printed later. This event is not sent to the onEvent()

subroutine, section 2.3.4; it’s only sent to event handlers registered via

LMIC_registerEventCb(), section 2.5.21.

• EV_JOIN_TXCOMPLETE

This event indicates the end of a transmission cycle for JOINs. It indicates that both receive

windows of the join have been processed without receiving a JoinAccept message from the

network.

Information about the LMIC state for specific events can be obtained from the global LMIC structure

described in section 2.4.

Events functions and the transmit/receive call back functions are orthogonal. Multiple routines may be

called for a given event.

The sequence is as follows.

1. If using an onEvent() function (the LMIC is configured to use onEvent, and a function named

onEvent is provided when using compilers that support weak references), the onEvent()

function is called. (For compatibility, the event EV_RXSTART is never sent to the onEvent()

function.)

2. If the event indicates that a message was received, and a receive callback is registered, the

receive callback is called.

3. If the event indicates that a transmission has completed, and the message was sent with one of

the callback APIs, the client callback is invoked.

4. Finally, if the client has registered an event callback, the registered callback is invoked.

2.5.21.1 Receiving Downlink Data with an Event Function

When EV_TXCOMPLETE or EV_RXCOMPLETE is received, the event-processing code should check for

downlink data, and pass it to the application. To do this, use code like the following.

 // Any data to be received?

 if (LMIC.dataLen != 0) {

 // Data was received. Extract port number if any.

 u1_t bPort = 0;

 if (LMIC.txrxFlags & TXRX_PORT)

 bPort = LMIC.frame[LMIC.dataBeg – 1];

 // Call user-supplied function with port #, pMessage, nMessage

 receiveMessage(

 bPort, LMIC.frame + LMIC.dataBeg, LMIC.dataLen

);

 }

If you wish to support alerting the client for zero-length messages, slightly-more complex code must be

used.

 // Any data to be received?

 if (LMIC.dataLen != 0 || LMIC.dataBeg != 0) {

Arduino LMIC Library. Version 4.1.0.

20 Arduino LoRaWAN MAC in C (LMIC) Technical Specification

 // Data was received. Extract port number if any.

 u1_t bPort = 0;

 if (LMIC.txrxFlags & TXRX_PORT)

 bPort = LMIC.frame[LMIC.dataBeg – 1];

 // Call user-supplied function with port #, pMessage, nMessage;

 // nMessage might be zero.

 receiveMessage(

 bPort, LMIC.frame + LMIC.dataBeg, LMIC.dataLen

);

 }

2.5.22 bit_t LMIC_enableTracking (u1_t tryBcnInfo)

Enable beacon tracking. A value of 0 for tryBcnInfo indicates to start scanning for the beacon

immediately. A non-zero value specifies the number of attempts to query the server for the exact beacon

arrival time. The query requests will be sent within the next upstream frames (no frame will be

generated). If no answer is received scanning will be started. The events EV_BEACON_FOUND or

EV_SCAN_TIMEOUT will be generated for the first beacon, and the events EV_BEACON_TRACKED,

EV_BEACON_MISSED or EV_LOST_TSYNC will be generated for subsequent beacons.

2.5.23 void LMIC_disableTracking ()

Disable beacon tracking. The beacon will be no longer tracked and, therefore, also pinging will be

disabled.

2.5.24 void LMIC_setPingable (u1_t intvExp)

Enable pinging and set the downstream listen interval. Pinging will be enabled with the next upstream

frame (no frame will be generated). The listen interval is 2^intvExp seconds, valid values for intvExp

are 0-7. This API function requires a valid session established with the network server either via

LMIC_startJoining() or LMIC_setSession() functions (see sections 2.5.2 and 2.5.4). If beacon

tracking is not yet enabled, scanning will be started immediately. In order to avoid scanning, the beacon

can be located more efficiently by a preceding call to LMIC_enableTracking() with a non-zero

parameter. Additionally to the events mentioned for LMIC_enableTracking(), the event

EV_RXCOMPLETE will be generated whenever downstream data has been received in a ping slot.

2.5.25 void LMIC_stopPingable ()

Stop listening for downstream data. Periodical reception is disabled, but beacons will still be tracked. In

order to stop tracking, the beacon a call to LMIC_disableTracking() is required.

2.5.26 void LMIC_sendAlive ()

Send one empty upstream MAC frame as soon as possible. Might be used to signal liveness or to

transport pending MAC options, and to open a receive window.

2.5.27 void LMIC_shutdown ()

Stop all MAC activity. Subsequently, the MAC needs to be reset via a call to LMIC_reset() and new

protocol actions need to be initiated.

Programming Model and API

Arduino LoRaWAN MAC in C (LMIC) Technical Specification 21

2.5.28 void LMIC_requestNetworkTime (lmic_request_network_time_cb_t *, void *pUserData)

Register a network time MAC request to be forwarded with the next uplink frame. The first argument is

a pointer to a function, with the following signature.

typedef void LMIC_ABI_STD lmic_request_network_time_cb_t (void * pUserData, int

flagSuccess);

This function is called after processing is complete. flagSuccess will be non-zero if time was

successfully obtained, zero otherwise. pUserData in the callback will be set according to the value of

pUserData in the original call to LMIC_requestNetworkTime(). If not used, please use a NULL pointer.

2.5.29 int LMIC_getNetworkTimeReference (lmic_time_reference_t *pReference)

Fetch a time reference for the most-recently obtained network time. The lmic_time_reference_t

structure at pReference is updated with the relevant information. The result of this call is a Boolean

indicating whether a valid time was returned if non-zero, a valid time was returned, otherwise no valid

time was available (or pReference was NULL). If unsuccessful, *pReference is not modified.

The structure lmic_time_reference_t has the following fields.

typedef struct {

 ostime_t tLocal;

 lmic_gpstime_t tNetwork;

} lmic_time_reference_t;

tNetwork is set to the GPS time transmitted by the network in the DeviceTimeAns message. tLocal is

calculated, by converting the fractional part of the DeviceTimeAns message into OS ticks, and

subtracting that from the completion time of the DeviceTimeReq message.

The two fields establish a relationship between a given OS time tLocal and a given GPS time

tNetwork. From this, you can work out the current OS time corresponding to a given GPS time, using

a formula like ostime = ref.tLocal + sec2osticks(gpstime – ref.tNetwork).

2.5.30 uint8_t LMIC_setBatteryLevel (uint8_t uBattLevel)

Set the battery level that will be returned to the network server by the MAC in DevStatusAns messages.

The result of this call is the previous value. The internal value is initialized by LMIC_init() to

MCMD_DEVS_NOINFO. The internal value is not changed by LMIC_reset().

The possible values of uBattLevel are:

Value Name Meaning

0 MCMD_DEVS_EXT_POWER Device is operating on external power.

0x01 MCMD_DEVS_BATT_MIN
Device is operating on battery power; battery is at minimum

value.

…

0xFE MCMD_DEVS_BATT_MAX
Device is operating on battery power; battery is at maximum

value

0xFF MCMD_DEVS_BATT_NOINFO
The device doesn’t know its battery / power state, and was

unable to measure the battery level.

Arduino LMIC Library. Version 4.1.0.

22 Arduino LoRaWAN MAC in C (LMIC) Technical Specification

If the application knows the battery level as a % of capacity (from 0% to 100%, inclusive), it should

calculate as follows.

uBattLevel = (MCMD_DEVS_BAT_MAX – MCMD_DEVS_BAT_MIN253 + 50) * uBatteryPercent / 100;

uBattLevel += MCMD_DEVS_BAT_MIN;

LMIC_setBatteryLevel(uBattLevel);

2.5.31 uint8_t LMIC_getBatteryLevel (void)

This function returns the battery level currently stored for use by the MAC. The value is as described in

LMIC_setBatteryLevel().

Hardware Abstraction Layer

Arduino LoRaWAN MAC in C (LMIC) Technical Specification 23

3. Hardware Abstraction Layer

The LMIC library is separated into a large portion of portable code and a small platform-specific part. By

implementing the functions of this hardware abstraction layer with the specified semantics, the library

can be easily ported to new hardware platforms.

3.1 HAL Interface

The following groups of hardware components must be supported:

• Up to four digital I/O lines are needed in output mode to drive the radio’s antenna switch (RX

and TX), the SPI chip select (NSS), and the reset line (RST).

• Three digital I/O lines are needed in input mode to sense the radio’s transmitter and receiver

states (DIO0, DIO1 and DIO2).

• A SPI unit is needed to read and write the radio’s registers.

• A timer unit is needed to precisely record events and to schedule new protocol actions.

• An interrupt controller cab be used to forward interrupts generated by the digital input lines.

This section describes the function interface required to access these hardware components:

3.1.1 void hal_init ()

Initialize the hardware abstraction layer. Configure all components (IO, SPI, TIMER, IRQ) for further use

with the hal_xxx() functions. This function is deprecated and obsolete. The LMIC library calls

hal_init_ex() instead. The client cannot call hal_init() or hal_init_ex() directly,as they are

called from os_init()/os_init_ex(), and they must only be called once.

3.1.2 void hal_init_ex (const void *pHalData)

Initialize the hardware abstraction layer. Configure all components (IO, SPI, TIMER, IRQ) for further use

with the hal_xxx() functions. pHalData is a pointer to HAL-specific data. When running with the

Arduino HAL, this must be a pointer to a lmic_pinmap structure. The LMIC library calls hal_init_ex().

The client cannot call hal_init() or hal_init_ex() directly, as they are called from

os_init()/os_init_ex(), and they must only be called once.

3.1.3 void hal_failed ()

Perform “fatal failure” action. This function will be called by code assertions on fatal conditions. Possible

actions could be HALT or reboot.

3.1.4 void hal_pin_rxtx (u1_t val)

Drive the digital output pins RX and TX (0=receive, 1=transmit).

3.1.5 void hal_pin_rst (u1_t val)

Control the radio RST pin (0=low, 1=high, 2=floating)

Arduino LMIC Library. Version 4.1.0.

24 Arduino LoRaWAN MAC in C (LMIC) Technical Specification

3.1.6 void radio_irq_handler (u1_t dio)

When the HAL detects a rising edge on any of the three input lines DIO0, DIO1 and DIO2, it must notify

the LMIC. It may do this by calling the function radio_irq_handler(). It must set dio to indicate the

line which generated the interrupt (0, 1, 2). This routine is a wrapper for radio_irq_handler_v2(),

and just calls os_getTime() to get the current time. If your hardware can capture the interrupt time more

accurately, your HAL should use radio_irq_handler_v2().

3.1.7 void radio_irq_handler_v2 (u1_t dio, os_time_t tIrq)

When the HAL detects a rising edge on any of the three input lines DIO0, DIO1 and DIO2, it must notify

the LMIC. If the HAL has a high-accuracy time-stamp for when the line changed state, it should call the

function radio_irq_handler_v2(). Set dio to indicate the line which changed (0, 1, 2). Set tIrq

to the time-stamp of when the line changed state.

3.1.8 void hal_spi_read(u1_t cmd, u1_t* buf, size_t len)

Perform a SPI read. Write the command byte cmd, then read len bytes into the buffer starting at buf.

3.1.9 void hal_spi_write(u1_t cmd, const u1_t* buf, size_t len)

Perform a SPI write. Write the command byte cmd, followed len bytes from buffer starting at buf.

3.1.10 u4_t hal_ticks ()

Return 32-bit system time in ticks (same units as ostime_t) – but note that this is unsigned, whereas

ostime_t is signed.

3.1.11 void hal_waitUntil (u4_t time)

Busy-wait until specified timestamp (in ticks) is reached.

3.1.12 u1_t hal_checkTimer (u4_t targettime)

Check and rewind timer for given targettime. Return 1 if targettime is close (not worthwhile

programming the timer). Otherwise rewind timer for exact targettime or for full timer period and return

0. The only action required when targettime is reached is that the CPU wakes up from possible sleep

states.

3.1.13 void hal_disableIRQs ()

Disable all CPU interrupts. Might be invoked nested. But will always be followed by matching call to

hal_enableIRQs().

3.1.14 void hal_enableIRQs ()

Enable CPU interrupts. When invoked nested, only the outmost invocation actually must enable the

interrupts.

3.1.15 void hal_sleep ()

Sleep until interrupt occurs. Preferably system components can be put in low-power mode before sleep,

and be re-initialized after sleep. When using the Arduino reference implementation, this is a no-op; the

LMIC returns to the caller, who is responsible for arranging to sleep.

Hardware Abstraction Layer

Arduino LoRaWAN MAC in C (LMIC) Technical Specification 25

3.1.16 s1_t hal_getRssiCal ()

Get the RSSI calibration for the radio, in dB. The radio driver adds this to the indicated RSSI to convert

to absolute dB, for doing listen-before-talk computations. Not used unless listen-before-talk is configured

for this region.

3.1.17 ostime_t hal_setModulePower (bool val)

Request that the module be powered up or down. If true, TCXO power should be activated, and any

normally high-Z control lines should be activated. This function returns the number of ticks of delay that

must be inserted before using the radio. If module-level power control is not implemented, or if the radio

is already in the desired state, this routine can just return zero. Normally a delay of a few milliseconds

is needed when turning power on, but no delay is needed if power is already on or if turning power off.

3.2 HAL Reference Implementation for Arduino

The Arduino LMIC library includes a reference implementation of the HAL for the Arduino. Please refer

to README.md for information about the implementation.

Arduino LMIC Library. Version 4.1.0.

26 Arduino LoRaWAN MAC in C (LMIC) Technical Specification

4. Examples

A set of examples is provided to demonstrate how typical node applications can be implemented with

only a few lines of code using the LMIC library.

Release History

Arduino LoRaWAN MAC in C (LMIC) Technical Specification 27

5. Release History

The Arduino LMIC release history is in the README.md file at https://github.com/mcci-catena/arduino-

lmic.

5.1 IBM Release History

Version and date Description

V 1.0

November 2014

Initial version.

V 1.1

January 2015

Added API LMIC_setSession(). Minor internal fixes.

V 1.2

February 2015

Added APIs LMIC_setupBand(), LMIC_setupChannel(),

LMIC_disableChannel(), LMIC_setLinkCheckMode(). Minor internal fixes.

V 1.4

March 2015

Changed API: port indicator flag in LMIC.txrxFlags has been inverted

(now TXRX_PORT, previously TXRX_NOPORT). Internal bug fixes. Document

formatting.

V 1.5

May 2015

Bug fixes and documentation update.

V 1.6

Jul 2016

Changed license to BSD. Included modem application (see

examples/modem and LMIC-Modem.pdf). Added STM32 hardware

drivers and Blipper board-specific peripheral code.

https://github.com/mcci-catena/arduino-lmic
https://github.com/mcci-catena/arduino-lmic

	1. Introduction
	1.1 LoRaWAN Versions and Features Supported
	1.2 Class A and Class B Support

	2. Programming Model and API
	2.1 Programming Model
	2.1.1 Application jobs
	2.1.2 Main event loop
	2.1.3 OS time

	2.2 Run-time Functions
	2.2.1 void os_init ()
	2.2.2 void os_init_ex (const void * pHalData)
	2.2.3 void os_setCallback (osjob_t* job, osjobcb_t cb)
	2.2.4 void os_setTimedCallback (osjob_t* job, ostime_t time, osjobcb_t cb)
	2.2.5 void os_clearCallback (osjob_t* job)
	2.2.6 void os_runloop ()
	2.2.7 void os_runloop_once ()
	2.2.8 ostime_t os_getTime ()
	2.2.9 ostime_t us2osticks(s4_t us)
	2.2.10 ostime_t us2osticksCeil(s4_t us)
	2.2.11 ostime_t us2osticksRound(s4_t us)
	2.2.12 ostime_t ms2osticks(s4_t ms)
	2.2.13 ostime_t ms2osticksCeil(s4_t ms)
	2.2.14 ostime_t ms2osticksRound(s4_t ms)
	2.2.15 ostime_t sec2osticks(s4_t sec)
	2.2.16 S4_t osticks2ms(ostime_t os)
	2.2.17 S4_t osticks2us(ostime_t os)

	2.3 Application callbacks
	2.3.1 void os_getDevEui (u1_t* buf)
	2.3.2 void os_getDevKey (u1_t* buf)
	2.3.3 void os_getArtEui (u1_t* buf)
	2.3.4 void onEvent (ev_t ev)

	2.4 The LMIC Struct
	2.5 API Functions
	2.5.1 void LMIC_reset ()
	2.5.2 bit_t LMIC_startJoining ()
	2.5.3 void LMIC_tryRejoin ()
	2.5.4 void LMIC_setSession (u4_t netid, devaddr_t devaddr, u1_t* nwkKey, u1_t* artKey)
	2.5.5 bit_t LMIC_setupBand (u1_t bandidx, s1_t txpow, u2_t txcap)
	2.5.6 bit_t LMIC_setupChannel (u1_t channel, u4_t freq, u2_t drmap, s1_t band)
	2.5.7 void LMIC_disableChannel (u1_t channel)
	2.5.8 u1_t LMIC_queryNumDefaultChannels ()
	2.5.9 void LMIC_setAdrMode (bit_t enabled)
	2.5.10 void LMIC_setLinkCheckMode (bit_t enabled)
	2.5.11 void LMIC_setDrTxpow (dr_t dr, s1_t txpow)
	2.5.12 bit_t LMIC_queryTxReady ()
	2.5.13 void LMIC_setTxData ()

	2.5.14 void LMIC_setTxData_strict ()
	2.5.15 lmic_tx_error_t LMIC_setTxData2 (u1_t port, xref2u1_t data, u1_t dlen, u1_t confirmed)
	2.5.16 lmic_tx_error_t LMIC_setTxData2_strict (u1_t port, xref2u1_t data, u1_t dlen, u1_t confirmed)
	2.5.17 lmic_tx_error_t LMIC_sendWithCallback (u1_t port, u1_t *data, u1_t dlen, u1_t confirmed, lmic_txmessage_cb_t *pCb, void *pUserData)
	2.5.18 lmic_tx_error_t LMIC_sendWithCallback_strict (u1_t port, u1_t *data, u1_t dlen, u1_t confirmed, lmic_txmessage_cb_t *pCb, void *pUserData)
	2.5.19 void LMIC_clrTxData ()
	2.5.20 void LMIC_registerRxMessageCb (lmic_rxmessage_cb_t *pRxMessageCb, void *pUserData)
	2.5.21 void LMIC_registerEventCb (lmic_event_cb_t *pEventCb, void *pUserData)
	2.5.21.1 Receiving Downlink Data with an Event Function

	2.5.22 bit_t LMIC_enableTracking (u1_t tryBcnInfo)
	2.5.23 void LMIC_disableTracking ()
	2.5.24 void LMIC_setPingable (u1_t intvExp)
	2.5.25 void LMIC_stopPingable ()
	2.5.26 void LMIC_sendAlive ()
	2.5.27 void LMIC_shutdown ()
	2.5.28 void LMIC_requestNetworkTime (lmic_request_network_time_cb_t *, void *pUserData)
	2.5.29 int LMIC_getNetworkTimeReference (lmic_time_reference_t *pReference)
	2.5.30 uint8_t LMIC_setBatteryLevel (uint8_t uBattLevel)
	2.5.31 uint8_t LMIC_getBatteryLevel (void)

	3. Hardware Abstraction Layer
	3.1 HAL Interface
	3.1.1 void hal_init ()
	3.1.2 void hal_init_ex (const void *pHalData)
	3.1.3 void hal_failed ()
	3.1.4 void hal_pin_rxtx (u1_t val)
	3.1.5 void hal_pin_rst (u1_t val)
	3.1.6 void radio_irq_handler (u1_t dio)
	3.1.7 void radio_irq_handler_v2 (u1_t dio, os_time_t tIrq)
	3.1.8 void hal_spi_read(u1_t cmd, u1_t* buf, size_t len)
	3.1.9 void hal_spi_write(u1_t cmd, const u1_t* buf, size_t len)
	3.1.10 u4_t hal_ticks ()
	3.1.11 void hal_waitUntil (u4_t time)
	3.1.12 u1_t hal_checkTimer (u4_t targettime)
	3.1.13 void hal_disableIRQs ()
	3.1.14 void hal_enableIRQs ()
	3.1.15 void hal_sleep ()
	3.1.16 s1_t hal_getRssiCal ()
	3.1.17 ostime_t hal_setModulePower (bool val)

	3.2 HAL Reference Implementation for Arduino

	4. Examples
	5. Release History
	5.1 IBM Release History

