
leOS

little embedded Operating System

User's guide

Written by Leonardo Miliani
www.leonardomiliani.com

(Ɔ) Copyleft 2012-2013

Index:

1. What's leOS?

2. How to use leOS – methods

3. 32-/64-bit math

4. How leOS works

5. Supported microcontrollers

6. Limitations

7. Version history

8. License

9. Document revision

Pag. 1

1. What's leOS?

leOS (little embedded Operating System) is not a complete OS (operating system)
nor an RTOS (Real-time operating system) in the meaning of this therm but it's a
simple scheduler that can manage the execution of little routines in background, so
that you can forget about them. It's designed for Arduino boards and other common
Atmel microcontrollers (for the complete list of supported MCUs, please read below).
leOS is useful if you want to get out of the main loop your little and annoying
routines like the ones that blink LEDs, or those that read the status of a pin or
increment a system variable. leOS can not be used to create heavy computational
tasks because they could slow down your sketch too much due to the fact that it's
based on interrupts.

A task in leOS is an user function (or routine) that has to be simple, can be executed
quickly and is repetitive, i.e. the following task changes the status of a pin:

void flashLed() {
 status ^= 1;
 digitalWrite(ledPin, status);
}

The function must return a void value, so it can not return datas to the main code.
Anyway, the task can interact with the main code by manipulating global variables,
i.e. the following task modifies a variable to inform the main code that a pin has
changed its value:

void checkSignal() {
 byte temp statusPin = digitalRead(signalPin);
 if (statusPin != previousStatus) {
 previousStatus = statusPin;
 statusHasChanged = true;
 }
}

Pag. 2

2. How to use leOS – methods

2.1 leOS
Unpack the library and copy it into your /libraries folder, that usually is in
your sketchs' folder (check where the folder is located by opening File/Preferences).
Then include the library and create a new istance of leOS
by adding the following code at the top of your sketch:

#include "leOS.h"
leOS myOS;

Then you have to initialize the library in the setup() routine:

void setup() {
 myOS.begin();
 …
}

Note: the method .begin() must be called before any interaction with the scheduler.
Now you can add a task by simply call the method .addTask():

void setup() {
 myOS.begin();
 myOS.addTask(yourFunction, scheduleTime[, status]);
 …
}

yourFunction is the routine to be scheduled, and it has to be into your sketch.
scheduleTime is the scheduled interval in milliseconds at which you want your
routine to be executed. By default, the maximum interval that you can set is limited
to 1 hour (3,600,000 ms) but you can change this value by editing the global
settings at the beginning of the leOS.cpp file.

Starting with version 0.1.3, the user can choose the status of the task to be added to
the scheduler. status can be:

• PAUSED, for a task that doesn't have to start immediately;
• SCHEDULED (default option), for a normal task that has to start after its

scheduling;
• ONETIME, for a task that has to run only once.
• SCHEDULED_IMMEDIATESTART or IMMEDIATESTART, for a task that has to be

executed once it has been added to the scheduler.

With SCHEDULED_IMMEDIATESTART or IMMEDIATESTART, a user can add a task that
has to be executed once the task has been added to the scheduler. Instead, using
the default keyword SCHEDULED, the task will be executed for the first time after the
time set by scheduleTime.

An interesting feature is the ability to run the so called one-time tasks. A one-time
task is a task that will be run only once: the scheduler, once it has executed the task,
will remove it from the running tasks (it won't be paused, it will be permanently
deleted).

To pause a task, just call the following method:

Pag. 3

myOS.pauseTask(yourFunction);

You can restart it with:

myOS.restartTask(yourFunction);

To remove a task from the scheduler call this method:

myOS.removeTask(yourFunction);

To modify a running task, simply call the method .modifyTask with the new time
interval and/or the status of the task, i.e. a normal or a one-time task:

myOS.modifyTask(yourFunction, newInterval [, newTaskStatus]);

newTaskStatus can be ONETIME if you decide to transform a normal task into a one-
time task, or SCHEDULED if you want to transform a one-time task into a normal task
(of course, the one-time task has to be executed yet...).

To check if a task is running, you have to use the .getTaskStatus() method:

myOS.getTaskStatus(yourFunction);

This function will return a 255 if there was an error (task not found) or the current
status:
PAUSED (equal to 0) - task is paused/not running
SCHEDULED (equal to 1) - task is running
ONETIME (equal to 2) - task is scheduled to run in a near future.

The last versions of the scheduler introduce 2 new methods that permit to
stop/restart the scheduler, useful if you need to stop all the running tasks at the
same time:

myOS.haltScheduler();
stops the scheduler and freezes all the tasks preserving their current
intervals;

myOS.restartScheduler();
restarts the scheduler resuming all the tasks that were running.

Be careful : it is the user that has to check his code to avoid strange situations when
he pauses/modifies/removes a task. I.e.: if the task that has been paused alternated
the output of a pin and that pin drove an external circuit, the user should check if the
status of the pin after the task has been paused is safe and compatible with his
needs.

The examples that come with the library explain very well the usage of leOS.

Pag. 4

2.1 leOS2
leOS2 is derivated from leOS from which it differs for the mechanism used to
manage the scheduler: for that reason, the periods must be at least 16 ms long or
multiplies of this value (i.e. 32, 64, 512, etc.. ms). The value of 16 ms represents a
“tick”, the smallest interval that can be used. Keep in mind that in leOS2 all the
methods now work with ticks.
To convert a time in ticks you can divide the value by 16, using the bit operations too
(ms>>4), or you can use the new method .convertMs(). The code below shows two
ways to call the method: the first one uses the function convertMs(), the second one
uses the interval in ticks.

void setup() {
 myOS.begin();
 myOS.addTask1(yourFunct1, myOS.convertMs(ms)[, status]);
 myOS.addTask2(yourFunct2, interval_in_ticks[, status]);
 …
}

Moreover, leOS2 is now able to reset the microcontroller if a task freezes during its
execution: to take advantage by this feature, just call the method .begin() passing a
value that represents the timeout (in ticks) that the scheduler has to wait before to
reset the MCU.

void setup() {
 myOS.begin(myOS.convertMs(2000));
 …
}
The example above will set the scheduler to wait 2000 ms (125 ticks) if a task
freezes. If this happens, the scheduler will instruct the WDT to reset the MCU after
the timeout has expired.

In leOS2, the method .modifyTask() has been changed too, and now it wants to
receive an interval specified in ticks, so please pass the right value using this unit.

myOS.modifyTask(yourFunction, newInterval_in_ticks [, newTaskStatus]);

Pag. 5

3. 32-/64-bits math

Starting with version 0.1.1, the user can choose between 32-bits and 64-bits math.
When using 32-bits math, the maximum interval that can be choosed is limited to
49.7 days (read above). Using 64-bits math the maximum interval that the user can
set is limited only by the fantasy, due to the fact that the 64-bits counter will
overflow after 584,942,417 years .

To switch between 32-bits and 64-bits math just comment/uncomment the line

#define SIXTYFOUR_MATH

that is at the beginning of the leOS.h and leOS2.h files. Remember that the use of
64-bits math increases the Flash usage of a huge amount of bytes.

Update:
the overflow of the 32-bits counter has been fixed since version 1.0.1 of leOS and in
leOS2, so when using 32-bits math the scheduler will not experience any overflow
issues. Moreover, the use of 32-bits variables is reccomended because it generate
code that is smaller than the code generated using 64-bits math. So 64-bits math is
deprecated.

Pag. 6

4. How leOS works

4.1 leOS
leOS uses an internal timer of the microcontroller to manage its scheduler. A timer is
a peripheral that constantly updates the content of a counter. The timer is clocked
by a clock source that usually is the system clock. Timers have different operating
modes: for leOS we chose the CTR Mode, Counter Mode, in which the counter is
incremented at every clock tick until it reaches the maximum available value and
overflows. Due to the fact that we prefer to use an 8-bits timer, its counter would
overflow too often. For this reason, we also set the prescaler of the timer: the
prescaler is a circuit that divides the input clock using a selectable divider so we can
obtain a clock frequency that is reasonably low to get widers intervals between two
overflows. The algorithm that makes this calculations takes account of the working
frequency of the microcontroller to obtain an interval that is exactly 1 ms.

When an overflow occurs, an interrupt signal is raised and the corresponding ISR
(Internet Service Routine) is called. Inside the ISR we have put our scheduler that
manages the user's tasks, that execute the tasks when they have to be run.

4.2 leOS2
The new leOS2 uses a different method to manage the scheduler: the WatchDog
Timer (WDT). The WatchDog is a peripheral that has a timer that is clocked by an
oscillator clocked at 128 kHz, a separated source of clock installed into the Atmel
microcontrollers. This oscillator can run even if the system clock has been halted.

The WatchDog is what its name suggests: a circuit used to control if the CPU halts for
some reasons during the execution of the user's code. This can happen for
neverending loops or for coding errors. To inform that the code is not freezed, the
user has asked to reset the WDT before the timeout that he chose has expired. If this
happens, regardless the reason that blocked the code, the WatchDog resets the
microcontroller.

The WDT can not only be set to reset the micro but also to raise an interrupt. leOS2
normally sets the WDT to raise only an interrupt so the micro won't be reset. The
ticks and tasks management is archived intercepting the corresponding ISR (Internet
Service Routine).
The WatchDog makes use of a counter incremented by a prescaler, a circuit used to
divide the oscillator clock to obtain different incrementing speeds. The maximum
prescaler that can be used is /2048 so, with the 128 kHz oscillator, the minimum
period that it's possible to archive is 16 ms (128,000/2,048=62.5 Hz → 1/62.5 =
0.016 s → 16 ms), that is 1 tick.
Thanks to this new method, leOS2 doesn't interfere with other libraries that make
use of the timers of the microcontroller.

Starting with version 2.0.90 leOS2 can be initialized to set the WDT in “interrupt and
system reset” mode. In this modality, WDT first raises an interrupt and then, at the
next timeout, it resets the microcontroller. The sequence can be halted by setting to
“1” the bit flag WDIE just after the interrupt has been raised so that the next timeout
the WDT will raise an interrupt again. This is done inside the scheduler. The user can
pass to leOS2 a timeout value during the initialization of the scheduler: leOS2 will
use that value to monitor if a task has freezed during its execution. Every time that

Pag. 7

the scheduler is called, it checks if a task is running: if yes, a counter, that has been
initiliazed with the timeout value set by the user, is decremented. If its value if
greater than zero, the WDIE bit is set to “1”; when it reaches zero, the scheduler
does set the WDIE bit to “0”. This is intercepted by WDT the next time that its timer
will expire: if the WDT sees that the WDIE bit is at “0”, it will reset the
microcontroller.

This feature is useful to be sure that the code won't freeze: this is essential in critical
applications, i.e. a circuit that monitors a tank of water that has to switch on a pump
when the level is too high.

N.B.:

• The user has to remember that he has to create the simplest tasks that he can,
so that they don't make too much use of the CPU time, otherwise the whole
system will be slew down. He also has to keep in mind that, because an ISR is
atomic, he has to write tasks that don't use interrupt-driven functions: i.e., the
code doesn't have to use delay() or millis() because they are based on timer 0
and timer 0 is halted during the execution of the scheduler.

• If the user thinks to use leOS, he also has to remember to not use PWM
functionalities on the corresponding pins of the timer (see list below).

Pag. 8

5. Supported microcontrollers

5.1 leOS
Actually leOS has been successfully tested on the following Arduino boards: UNO,
MEGA2560 and Leonardo. Moreover, leOS can run on several Atmel MCUs:

• Attiny2313/4313
• Attiny24/44/84
• Attiny25/45/85
• Atmega344/644/1284
• Atmega8
• Atmega48/88/168/328
• Atmega640/1280/1281/2560/2561
• Atmega32U4 (only at 16 Mhz)

Supported clocks are: 1, 4, 8, and 16 MHz.

NOTE:
To use leOS on Attiny 24/44/84 microcontrollers you have to modify a file of the Tiny
core to move the millis() and delay() functions from timer 0 to timer 1. To do that,
open the file

/arduino-your_version/hardware/tiny/cores/tiny/core_build_options.c

and look for the section "Build options for the ATtiny84 processor". A couple of rows
below, change this line

#define TIMER_TO_USE_FOR_MILLIS 1

to

#define TIMER_TO_USE_FOR_MILLIS 0

then save the file and reload the Arduino IDE.

5.2 leOS2
leOS2 can now run on almost any microcontroller supported by the Arduino IDE (with
the default core or using separated cores, i.e. the Tiny core and the 1284P core). The
only MCU that is not compatible with leOS2 under the Arduino IDE is the Atmega8/A
(read below), so with this microcontroller you have to use leOS.

Almost every clock is supported since the WDT circuit is clocked with a separated
128 kHz oscillator so that it will always run at its own fixed speed.

Pag. 9

6. Limitations

6.1 leOS
The scheduler makes use of an 8-bits timer of the microcontroller to schedule the
user's tasks, so you'll loose PWM functionalities on those pins that are phisically
connected to the timer. Here is a list of the timers used on each microcontroller and
the corresponding pins that you cannot use as PWM pins anymore:

• Atmega48/88/168/328 (Arduino UNO/2009)
◦ timer 2 - pins 5 & 17 (pins D3 & D11 on Arduino UNO)

• Atmega344/644/1284
◦ timer 2 - pins 20 & 21 (pins D14 & D15 on Maniacbug core)

• Atmega640/1280/1281/2560/2561
◦ timer 2 - pins 18 & 23 (pins D9 & D10 on Arduino MEGA)

• Attiny25/45/85
◦ timer 0 - pins 5 & 6 (pins D0 & D1 on Tiny core)

• Attiny2313/4313
◦ timer 0 - pins 9 & 14 (pins D7 & D11 on Tiny core)

• Attiny24/44/84
◦ timer 0 - pins 5 & 6 (pins D2 & D3 on Tiny core)

• Atmega8
◦ timer 2 - pins 17 (pin D11 on older Arduino boards)

• Atmega32U4 (Arduino Leonardo)
◦ timer 3 - pin 32 (pin D5 on Arduino Leonardo)

6.2 leOS2
Almost every microcontroller that is supported by the Arduino IDE, with the original
core or with third-party cores (i.e. Tiny core), is supported by leOS2 because Atmel
did a good job using the same WDT circuit on its AVR8 chips.

The only microcontroller that is not supported by leOS2 is the Atmega8/A because
this chip has a WDT that doesn't have the ability to raise an interrupt: it can only
reset the microcontroller. So, with Atmega8/A you have to use the first version of
leOS.

WARNING - IMPORTANT ADVICE FOR ARDUINO MEGA/MEGA2560 OWNERS
WHEN USING leOS2:
the original bootloader flashed most of the Arduino MEGA and MEGA2560 boards
doesn’t deactivate the watchdog at the microcontroller’s startup so the board will
freeze itself in a neverending loop caused by eternal resets. To solve this problem,
users that want to use leOS2 have to change the bootloader with one that it isn’t
affected by this issue. The bootloader can be downloaded by this page:
https://github.com/arduino/Arduino-stk500v2-bootloader/tree/master/goodHexFiles

Pag. 10

https://github.com/arduino/Arduino-stk500v2-bootloader/tree/master/goodHexFiles

7 . Version history

7.1 leOS
• 0.0.1: early release - user can only add tasks
• 0.0.2: user can now delete scheduled tasks
• 0.0.3: added the methods to pause and restart a task
• 0.0.4: use of a 64-bit counter so the scheduler will overflow after 584,942,417

years
• 0.0.5: fixed some bugs and optimized code & memory consumption
• 0.0.6: (preliminary) support for Arduino Leonardo/Atmega32U4
• 0.0.7: introduced one-time tasks
• 0.0.8: now the user can modify running tasks
• 0.1.0: leOS now works correcty on Arduino Leonardo/Atmega32U4
• 0.1.1: now the user can choose between 32-bits & 64-bits math
• 0.1.2: fixed a bug in the management of one-time pads
• 0.1.3: now a task can be added in "paused mode"; new example sketches
• 0.1.4: core code rewriting (now it uses Structs)
• 0.1.5: added support for Atmega344
• 1.0.0: added a method to check if a task is running - first stable release
• 1.0.1: code cleaning & 32-bit overflow fixing
• 1.0.1a: functions taskIsRunning renamed to getTaskStatus
• 1.0.2: code cleaning
• 1.0.3: now a task can be executed once it has been added to the scheduler
• 1.1.0: new methods to stop/restart the scheduler
• 1.1.1: minor changes
• 1.1.2: fixed an issue in modifyTask

7.2 leOS
• 2.0.1: first release of leOS2 based on WatchDog Timer
• 2.0.2: removed support for Atmega8/A
• 2.0.90: beta release – preliminary support for “interrupt & system reset” mode

of the WDT
• 2.1.0: first stable release – fixed a bug in the management of freezing tasks
• 2.1.1: now a task can be executed once it has been added to the scheduler
• 2.2.0: new methods to stop/restart the scheduler
• 2.2.1: fixed an issue in modifyTask

Pag. 11

8 . License s

The leOS and leOS2 libraries are free software; you can redistribute and/or modify
them under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3.0 of the License, or (at your option) any later
version. You should have received a copy of the license with this software: if you
didn't, you can get your copy from the Free Software Foundation at www.fsf.org.

The libraries are distributed in the hope that they will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE.

This document is released under the terms of the Creative Commons Attribution-Non
Commercial-Share Alike 3.0.

The leOS and leOS2 names and the leOS logo (the “da Vinci” profile) have been
created by Leonardo Miliani and therefore they are his own intellectual properties. To
use, copy, replicate or redistribuite them, please contact the author through his web
site at <www.leonardomiliani.com>.

Pag. 12

http://www.leonardomiliani.com/

9 . Document revision

24th revision: 2013/04/11

Pag. 13

