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Moreover, we cannot derive the bias level 6 from theory. In 
such cases we can estimate u and especially 6 empirically by 
the analysis of reference materials with certified concentrations 
of an analyte n,. Then 

(6) 6 (9%) = - x 100 

where f ,  is an average result of the analysis of an RM (see 
details in ref 7).  

We can expect that information theory can be successfully 
used in the optimization and comparison of various analytical 
methods and procedures, in the evaluation of the results ob- 
tained in collaborative tests for the certification of new RMs, 
and in many other applications. 
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General Least-Squares Smoothing and Differentiation by the 
Convolution (Savitzky-Golay) Method 

Peter A. Gorry 
Department of Chemistry, University of Manchester, Manchester, England M13 9PL 

Sm- and d#ferentlatkn of large data sets by plecewlse 
least-squares polynomlal fffllng are now wklely used tech- 
nlques. The calculation speed Is very greatly enhanced H a 
convolution formalism is used to perform the calcuiatlons. 
Prevlously tables of convolution weights for the center-pdnt 
least-squares evaluatlon of 2m + 1 points have been pres- 
ented. A major drawback of the technique Is that the end 
polnts of the data sets are kot (2m pohts for a 2m + 1 point 
fllter). Convdutlon weights have also been presented In the 
speclal case of Inltlai-point values. I n  this paper a sknple 
general procedure for calculatlng the convolution weights at 
all podtlons, for all polynomial orders, all fitter lengths, and 
any derlvatlve Is presented. The method, based on the re- 
cursive properties of Gram polynomials, enables the convo- 
lutlon technique to be extended to cover all points In the 
spectrum. 

INTRODUCTION 
In 1964 Savitzky and Golay (1)  provided a simplified me- 

thod for calculating smoothing and differentiation of data by 
a least-squares technique. Since then the Savitzky-Golay 
approach has been widely used because it produces a signif- 
icant improvement in computational speed-replacing the 
traditional lengthy least-squares calculation by a simple, but 
equivalent, convolution. In this approach the least-squares 
value of a given point is calculated as a weighted combination 
of itself and m points on either side of it. This corresponds 
to performing a moving (2m + 1 point) least-squares fit across 
the data. The purpose of the original work was to provide 
a methodology for calculating the required weights and to 

provide tables of commonly used values. The original tables 
of convolution weights contained several errors however and 
were subsequently corrected by Steinier et al. (2) who recast 
the calculation in a matrix form. 

The Savitzky-Golay approach suffers from one major 
drawback it truncates the data by m points at each end. This 
occurs because the convolution requires m points to the left 
and right of a point in order to calculate the required least- 
squares value. The problem of data truncation is compounded 
if repeated smoothing/differentiation is applied since each 
application removes a further 2m points. For large spectra 
with zero values at  the ends this is not important, and indeed 
zero values can easily be reinserted. However for more limited 
data sets without base-line values at  both ends, the Savitz- 
ky-Golay algorithm is not applicable. 

In principle the above limitation is easy to overcome. The 
first 2m + 1 point least-squares fit can simply be used to 
evaluate least-squares values for the first m points as well as 
the m + 1. Similarly the last 2m + 1 point fit can be used 
to calculate the last m leasbsquares values. Indeed if a normal 
least-squares calculation has been performed, yielding the 
least-squares coefficients, evaluating the fit of any of the m 
values, rather than the middle, is a simple task. This approach 
has been adopted by Khan (3) in a matrix formulation of the 
full least-squares method. Unfortunately we now lose the main 
advantage of the convolution method-its greatly enhanced 
speed. 

Extending the convolution approach to accommodate “end 
points” requires calculating a different set of weights for each 
position. The special case of initial-point smoothing and slope 
evaluation has been considered by Leach, Carter, and Harris 
( 4 )  where the Savitzky-Golay approach was modified to 
provide quadratic convolution weights for smoothing and the 
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where (a)(*) is a generalized factorial function: (a)(a - 1 )  ... 
(a - b + 11, and (a)(o) = 1. Substitution of eq 5 into eq 4 and 
application of the least-squares criterion eq 2 yields an ex- 
pression of the form 

first derivative for the initial point. The tables were presented 
as real numbers and were later calculated to higher accuracy 
by Baedecker (5). 

It would be very desirable to have a means of extending the 
convolution approach to performing least-squares calculations 
for any general position. We present here a simple method 
of calculating the least-squares convolution weights required 
for a general order polynomial fit, and all its derivatives, at  
all positions. 

METHOD 
(a) The  General Problem. First we must define the 

problem more fully. We assume a spectrum containing p 
evenly spaced data points, (yi) ,  which we wish to smooth, or 
differentiate (to order s), with a 2m + 1 point filter and 
polynomial of order n. Since this requires repetitively fitting 
a polynomial of order n to 2m + 1 consecutive points, we 
convert each group of points to a temporary coordinate system 
( I ,  2) in which the ordinate values range from i = -m to i = 
+m, i.e. the midpoint is i = 0. The least-squares polynomial 
then has the form 

k=O 

Application of the least-squares criterion 

( 2 )  
a m  

-[ C ( f n ( i )  - yiI2I = 0 abk i=-m 

leads to n + 1 simultaneous equations in the unknown 
coefficients bk. The Savitzky-Golay approach evaluates eq 
1 at  i = 0 and hence only requires an expression for bo. 
Equally, differentiation of eq 1 reveals that the sth derivative 
(evaluated at  i = 0) requires an expression for b, only. This 
allows eq 1 to be reduced to an expression of the form (1,2) 

m 

i=-m 
f,"(O) = ,C hfyi (3) 

where the n and s denote the polynomial and derivative order, 
hi" is the convolution weight of the ith point, and yi its value. 

In the Savitzky-Golay algorithm a 2m + 1 point 
smooth/differentiation requires one set (of 2m + 1 )  weights 
to calculate the midpoint values. If we wish to calculate 
least-squares values at  any of the 2m + 1 positions, then we 
require 2m + 1 sets of weights. Thus if we are to calculate 
the convolution weights required for all possible cases of or- 
ders, derivatives, and positions, it becomes impractical to 
produce general numerical tables of the weights and an al- 
ternative strategy must be pursued. The calculation tech- 
niques of Savitzky and Golay ( I ) ,  Steinier et al. (2), and Harris 
et al. (41, based on the direct solution of the simultaneous 
equations, are complex and unsuited for such a generalization. 
Instead we turn to an entirely different approach to the 
problem. 

(b) Gram Polynomials. It is well-known that the least- 
squares approximation to a function can equally well be cast 
in terms of a weighted expansion of discrete orthogonal 
polynomials, rather than a simple powers series (6, 7). Par- 
ticularly suitable for this application are the Gram polyno- 
mials, and we have, analogous to eq 1 

(4) 

where Pkm(t) is the Gram polynomial of order k ,  over 2m + 
1 points, evaluated at  point t. The Gram polynomials (6) are 
defined by 

We can generalize eq 6 for the sth derivative very simply and 
thus produce an expression in exactly the form required for 
a convolution calculation 

where 

Comparison of eq 3 and eq 7 provides the required expression 
for the convolution weight for data point i (-m I i I m), with 
polynomial order n, and sth derivative, evaluated at position 
t 

The tables of Savitzky and Golay are obtained from eq 8 by 
setting t = 0. Indeed this approach had been used previously 
by Ernst (8) to derive analytic expressions for the weights in 
the special case of smoothing (s = 0, t = 0) and small n (n = 
2 and 4), corresponding to Tables I and I1 of Savitzky and 
Golay. The tables of Harris (4) and Baedecker (5) correspond 

In the case of differentials (s > 0) where the original data 
points are separated by hz, rather than unity, we must modify 
eq 7 to take this into account (1) 

to t = -m and s = 0, s = 1. 

2 h;*yi 
(9) 

The division by Axs is easily carried out after the convolution 
calculation. 

Although eq 8 is a powerful way of expressing the weight 
values, the ordinary definition of the Gram polynomials, eq 
5 ,  is not very practical for calculation purposes, especially in 
the case of the derivatives. We thus need an alternative 
approach for actual calculation. Fortunately it is possible to 
derive a recursive relationship between the Gram polynomials 

Pkm(i) = 
2(2k - 1) 

k(2m - k + 1) 
(k - 1)(2m + k) 

iPk-lm(i)  - Pk-2" (10) k(2m - k + 1 )  
with Pom(i) = 1 and P-lm(i) = 0. 

This provides an easy method of calculating the Gram 
polynomial values, but more importantly, it  also provides a 
straightforward method of evaluating the general sth deriv- 
ative, simply by differentiating eq 10 

2(2k - 1 )  
k(2m - k + 1) 

P k m q i )  = [iPk-lm(i) + S P ~ - ~ " + - ' ( ~ ) ]  - 
(k - 1)(2m + k) 
k(2m - k + 1) P&2m7s(i) ( 1 1 )  

with Poma(i) = 0 and Rlm"(i) = 0. 
In fact eq 11 alone can be used to generate both the Gram 

polynomials (s = 0) and their derivatives (s > 0) providing 
account is taken of the different starting values in these two 
cases. Thus eq 8 and eq 11 together provide a simple and 
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Table I. Convolution Weights for Quadratic Smoothing 
and Differentiation 

5 pt, quadratic, 7 pt, quadratic, 
smooth smooth 

i - 2 - 1 0  1 2 - 3 - 2 - 1 0  1 2  3 

-3 32 5 1 -2 -2 -1 5 
-2 31 9 -3 -5 3 15 4 3 3 1 0 -3 
-1 9 1 3 1 2  6 - 5  3 3 4 6 3 1 - 6  
0 -3 12 17 12 -3 -4 2 4 7 4 2 -4 
1 - 5  6 1 2 1 3  9 - 6  1 3  6 4 3 3 
2 3 - 5 - 3  9 3 1 - 3  0 1 3  3 4 1 5  
3 5 -1 -2 -2 1 5 32 

norm 35 35 35 35 35 42 14 14 21 14 14 42 

5 pt, quadratic, 7 pt, quadratic, 
1st deriv 1st deriv 

i - 2 - 1 0  1 2  - 3 - 2 - 1 0 1  2 3 

-3 -13 -29 -19 -3 1 11 7 
-2 -54 -34 -2 6 26 -2 -6 -6 -2 -6 -6 -2 
-1 13 3 -1 -17 -27 5 9 3 -1 -9 -15 -7 

0 40 20 0 -20 -40 8 16 8 0 -8 -16 -8 
1 27 17 1 -3 -13 7 15 9 1 -3 -9 -5 
2 - 2 6 - 6 2 3 4 5 4  2 6 6 2 6  6 2  
3 -7 -11 -1 3 19 29 13 

norm 70 70 10 70 70 28 84 84 28 84 84 28 

practical method for calculating the required weights. 
(c) Implementation. We are now in a position to calculate 

the convolution weights by using the recursive definition of 
the Gram polynomials and their derivatives eq 11. A function 
to calculate the general convolution weight eq 8, as a real 
number, can be achieved in just a few lines of PASCAL code 
as shown in Figure 1. PASCAL was chosen since recursion 
is a standard feature of the language. However many modern 
implementations of more traditional languages (e.g. FOR- 
TRAN, BASIC) also now provide this facility and conversion 
is straightforward. The code in Figure 1 has been made to 
resemble the expressions in eq 8 and eq 11 as closely as 
possible with no attempt to optimize speed. If only low-order 
smoothing is required it is easy to avoid recursion simply by 
providing explicit expressions for the Gram polynomials (e.g. 

1)) etc.). 
P,m(i) = 1, Pl"(i) = i /m ,  P p ( i )  = ( 3 i 2 -  m(m + l))/(m(2m - 

function GramPoly(i,lak,s : integer) : real; 
1 Calculates the Gram Polynomial (~4). 01 its s'? 1 
1 derivative evaluated at i, order k, over 2 m t l  pomu 1 
hedn -- 

i?k>o then 
Grampoly := (4*k-Z)/&*(Z*m-k+l))*(i *Gra"oly(i,m,k-1,s) t 
s'GratnPoly(i,mk-l,s-l)) - ((k-l)*(2*m+k))/(k*(2*m-ktl))*GramPoly(i,m,k-2,s) 

else 
if (k4) and (sa) then G d o l y : = l  else GramPoly:.$), 

end; 

function GenFact(a,b: integer) : real: 
( Calculates the generalised factorial (a)(a-l) ... (a-btl) ] 

var 
j : integec 

begin 
gf:=l; for j:=(a-b+l) to a do g f : = g f  * j: GenFact:=gf; 

end: 

function Weight(i,t,qn,s : integer) : real; 

gf . :  real: 

Calculates the weight of the i'th data point for thc t'th Least-Square 1 
I 

var 

begin 

[ point of the s'th derviative, over 2mtl  points, order n , 

k : integer, 
sum : rcal; 

sum:&, 
for k : 4  to n do sum := sum + (2*k+1)*(GenFact(2*m,k)/GenFact(2*mtktl,ktl)) 

Weight:=sum: 
*GramPoly(i,m,k,O)*GramPoly(t,m,k,s): 

end: 

Flgtire 1. Pascal code to perform the calculation of a general weight 
value h/* ' .  Function Weight corresponds to eq 8, function GramPoly 
to eq 11, and function &Fact to the generalized factorial defined after 
eq 5. 

A program to produce integer weights over a common 
normalizing factor requires the code to be modified to accu- 
mulate the numerator and denominator separately and to 
provide for common factor cancellations. Both versions of 
the program are available from the author. 

Tables I and I1 give examples of the complete tables re- 
quired for smoothing and calculating the first derivative for 
some small values of m and n. The column heading is the 
position a t  which the least-squares value is to be evaluated 
( t )  and the row heading is the data point index (i). The center 
column (t  = 0) values are the weights provided in the original 
work of Savitzky and Golay and Steinier et al. So, for instance, 
if we wish to calculate the least-squares fit to the first point 
( t  = -2) in a five-point quadratic smooth, we have from Table 
I 

31y-2 + 9y-1 - 3Yo - 5yl + 33'2 
(12) 

Equation 12 is an example of the weights provided by Harris 
35 

Y-2 = 

Table 11. Convolution Weights for Cubic Smoothing and Differentiation 

5 pt, cubic, 7 pt, cubic, 
smooth smooth 

i -2 -1 0 1 2 -3 -2 -1 0 1 2 3 

-3 
-2 69 2 -3 2 -1 
-1 4 27 12 -8 4 
0 -6 1 2  17 12 -6 
1 4 -8 12 27 4 
2 -1 2 -3 2 69 
3 

norm 70 35 35 35 70 

5 pt, cubic, 
1st deriv 

39 
8 

-4 
-4 
1 
4 

-2 

42 

i 

-3 
-2 
-1 

0 
1 
2 
3 

norm 

-2 -1 0 1 2 -3 

-257 
-125 -19 1 5 -29 122 

136 -1 -8 -13 88 185 
48 12 0 -12 -48 72 

-88 13 8 1 -136 -77 
29 -5 -1 19 125 -122 

77 

84 42 12 42 84 252 

8 
19 
16 
6 

-4 
-7 

4 

42 

-4 
16 
19 
12 
2 

-4 
1 

42 

-2 
3 
6 
7 
6 
3 

-2 

21 

7 pt, cubic, 
1st deriv 

1 
-4 

2 
12  
19 
16 
-4 

42 

4 -2 
-7 4 
-4 1 

6 -4 
16 -4 
19 8 
8 39 

42 42 

-2 -1 0 1 

-122 -29 22 31 
17 -46 -67 -46 
62 -19 -58 -55 
48 24 0 -24 
10 55 58 19 

-17 46 67 46 
2 -3 1 -22 29 

252 252 252 252 

2 3 

-2 -77 
17 122 

-10 77 
-48 -72 
-62 -185 
-17 -122 
122 257 

252 252 
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Table 111. Convolution Weights for Quadratic Initial-Point 
Smoothing: Polynomial Order = 2, Derivative = 0 

h (2m + 1) 
i 21 19 17 15 13 11 9 7 5 

-10 631 
-9 513 257 
-8 405 204 409 
-7 307 156 315 158 

-5 141 75 157 81 33 83 
-4 73 42 93 50 21 54 109 
-3 15 14 39 24 11 30 63 32 
-2 -33 -9 -5 3 3 11 27 15 31 
-1 -71 -27 -39 -13 -3 -3 1 3 9 
0 -99 -40 -63 -24 -7 -12 -15 -4 -3 
1 -117 -48 -77 -30 -9 -16 -21 -6 -5 
2 -125 -51 -81 -31 -9 -15 -17 -3 3 
3 -123 -49 -75 -27 -7 -9 -3 5 
4 -111 -42 -59 -18 -3 2 21 
5 -89 -30 -33 -4 3 18 
6 -57 -13 3 15 11 
7 -15 9 49 39 

-6 219 113 231 117 47 

8 37 36 105 
9 99 68 

10 171 

norm 1771 665 969 340 91 143 165 42 35 

Table IV. Convolution Weights for Quadratic Initial-Point 
First Derivative: Polynomial Order = 2, Derivative = 1 

h (2m t 1) 
i 21 19 17 15 13 11 9 7 5 

-10 -23370 
-9 -17233 -5661 
-8 -11696 -4012 -792 
-7 -6759 -2543 -533 -7917 
-6 -2422 -1254 -306 -4966 -330 
-5 1315 -145 -111 -2435 -187 -945 
-4 4452 784 52 -324 -68 -456 -1428 
-3 6989 1533 183 1367 27 -67 -511 -13 
-2 8926 2102 282 2638 98 222 166 -2 -54 
-1 10263 2491 349 3489 145 411 603 5 13 

0 11000 2700 384 3920 168 500 800 8 40 
1 11137 2729 387 3931 167 489 757 7 27 
2 10674 2578 358 3522 142 378 474 2 -26 
3 9611 2247 297 2693 93 167 -49 -7 
4 7948 1736 204 1444 20 -144 -812 
5 5685 1045 79 -225 -77 -555 
6 2822 174 -78 -2314 -198 
I -641 -877 -267 -4823 
8 -4704 -2108 -488 
9 -9367 -3519 

10 -14630 

norm 336490 67830 7752 61880 2002 4290 4620 28 70 

( 4 )  and Baedecker (5)-but in integer format-so that they 
can be evaluated to the full accuracy of the computer. Since 
these initial-point values are so important for initial slope 
evaluations (4 ,5 ,9 )  we present their integer values in Tables 
I11 and IV. 

Such tables can be used to write programs to perform the 
smoothing/differentiation for particular cases. However, the 
ease of calculation of weights from eq 8 and eq 11 means that 
they can be generated "in situ" to provide a completely general 
smoothing/differentiation routine for all m, n, and s. Such 
a routine first calculates a weight table, h[t,i], for all positions 
t (-m 5 t 5 m) and all filter points i (-m 5 i 5 m) for a given 
m, n, and s (see Table I for examples). The table is then used 
to evaluate the least-squares smooth/differentiation for every 

0 
$ 0  
0'. 

0'' 
01 

\ 
9 
1 
10 
1 

0 

0 

Flgure 2. Least-squares smoothing using convolution weights for all 
points in the spectrum. The circles are the original data points. The 
dashed line joins the values from an 11 point cubic smooth. The 
correct smoothing of the end point values is clearly shown. 

point in the spectrum. The first m points and the last m 
points are calculated by using the appropriate columns in h 
( t  = -m to -1, and t = 1 to m, respectively). The rest of the 
spectrum uses the center point weighting h[O,i]. The ad- 
vantage of constructing a weight table is that it only needs 
calculating once providing the m, n, and s values are not 
changed. 

Figure 2 shows an example of smoothing (11 point cubic) 
using the algorithm described above. The data were chosen 
to provide an example of where the end-point information is 
particularly important. Whereas the traditional Savitzky- 
Golay smooth would have truncated the results by five points 
a t  each end, the current method correctly smooths the end 
points. 

CONCLUSIONS 
The convolution approach to least-squares smoothing and 

differentiation has been extended to remove the data trun- 
cation problem of the original Savitzky and Golay algorithm. 
A formalism based on the recursive properties of Gram pol- 
ynomials provides a simple and direct means of calculating 
the convolution weights for all cases and thus enables a short 
but completely general routine to be written. 
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