
Interferences. Methylene chloride 
or chloroform-soluble carboxylic acids 
(acetylsalicylic acid, salicylic acid, 
etc.) which inhibited 4 - , U P  response 
were readily extracted from these 
phases using 0.ln’ sodium hydroxide. 

Span-type excipients, which gave a 
slight response to the 4-AAP reagent, 
were eliminated by virtue of their insol- 
ubility in 10% aqueous sodium chloride; 
while interfering Tween-type excipients 
were precipitated (3)  using the Tween 
reagent. Propylene glycol, when formu- 
lated a t  a level of 5.25%, contributed ca. 
2 to 370 to the observed absorbance. 
This was minimized by a more favorable 
distribution of the interference within 
the aqueous phases used in the pro- 
cedure. 

Placebo analyses indicated that  no 

interference was obtained with such 
common excipients as stearic acid, 
stearyl alcohol, cetyl alcohol, petrola- 
tum, methyl or propyl-p-hydroxy- 
benzoates, sesame oil, or thimerosal. 
Lipotropic agents (betaine or choline), 
all the common vitamins, and neomycin 
sulfate failed to  interfere. 

Scope of Reaction. I n  addition t o  
the other types of steroids reported 
to  react with the 4-AAP reagent, the  
following steroids reacted a t  elevated 
temperature (boiling point of methanol) 
and a t  increased concentration (2.0 mg. 
per 10.0 ml. of reagent): 2a-hydroxy- 
methyl - 17p - hydroxy - 17a - methyl- 
5a-androst-%one (306 mp) ; and 2a- 
hydroxymethyl - 17p - hydroxy - 501- 
androst-3-one (306 mp). Steroids with- 
out a keto group failed to give any 

response. The quantitative aspects of 
the above responses to the 4-AAP 
reagent were not investigated. 

Correlations of Chromophore Wave- 
length with Structure. The additive 
effect of various ring A and B sub- 
stituents on the chromophore of the 
parent saturated-3-keto steroid is 
presented in Table 11. 
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Smoothing and Differentiation of Data 
by Simplified Least Squares Pro,cedures 
ABRAHAM SAVITZKY and MARCEL J. E. GOLAY 
The Perkin-Elmer Corp., Norwalk, Conn. 

b In attempting to analyze, on 
dig i ta I computers, data f rom basica II y 
continuous physical experiments, 
numerical methods of performing fa- 
miliar operations must be developed. 
The operations of differentiation and 
filtering are especially important both 
as an end in themselves, and as a pre- 
lude to further treatment of the data. 
Numerical counterparts of analog de- 
vices that perform these operations, 
such as RC filters, are often considered. 
However, the method of least squares 
may be used without additional com- 
putational complexity and with con- 
siderable improvement in the informo- 
tion obtained. The least squares cal- 
culations may be carried out in the 
computer by convolution of the data 
points with properly chosen sets of 
integers. These sets of integers and 
their normalizing factors are described 
and their use is  illustrated in spectro- 
scopic applications. The computer 
programs required are relatively sim- 
ple. Two examples are presented as 
subroutines in the FORTRAN language. 

H E  PRIMARY OUTPUT of any experi- 
T m e n t  in which quantitative 
information is to be extracted is infor- 
mation which measures the phenomenon 
under observation. Superimposed upon 
and indistinguishable from this informa- 
tion are random errors which, regardless 
of their source, are characteristically 
described as noise. Of fundamental 
importance to the esperimenter is the 

removal of as much of this noise as 
possible without, at the same time, 
unduly degrading the underlying in- 
formation. 

In  much experimental work, the infor- 
mation may be obtained in the form of 
a two-column table of numbers, A us.  B. 
Such a table is typically the result of 
digitizing a spectrum or digitizing other 
kinds of results obtained during the 
course of an experiment. If plotted, 
this table of numbers would give the 
familiar graphs of TOT us. wavelength, 
pH us. volume of titrant, polarographic 
current us.  applied voltage, S M R  or 
ESR spectrum, or chromatographic 
elution curve, etc. This paper is con- 
cerned with computational methods for 
the removal of the random noise from 
such information, and with the simple 
evaluation of the first few derivatives 
of the information with respect to  the 
graph abscissa. 

The bases for the methods to be dis- 
cussed have been reported previously, 
mostly in the mathematical literature 
(4 ,  6, 8,  9). The objective here is to 
present specific methods for handling 
current problems in the processing of 
such tables of analytical data. The 
methods apply as well to  the desk 
calculator, or to  simple paper and pencil 
operations for small amounts of data ,  as 
they do to  the digital computer for 
large amounts of data, since their major 
utility is to  simplify and speed up the 
processing of data. 

There are two important restrictions 
on the way in which the points in the 

table may be obtained. First, the points 
must be a t  a fixed, uniform interval in 
the chosen abscissa. If the independent 
variable is time, as in chromatography 
or NMR spectra with linear time sweep, 
each data  point must be obtained a t  the 
same time interval from each preceding 
point. If it is a spectrum, the intervals 
may be every drum division or every 
0.1 wavenumber, etc. Second, the 
curves formed by graphing the points 
must be continuous and more or less 
smooth-as in the various examples 
listed above. 

ALTERNATIVE METHODS 

One of the simplest ways to smooth 
fluctuating data is by a moving average. 
I n  this procedure one takes a fised 
number of points, adds their ordinates 
together, and divides by the number of 
points to  obtain the average ordinate a t  
the center abscissa of the group. S e s t ,  
the point a t  one end of the group is 
dropped, the next point a t  the other end 
added, and the process is repeated. 

Figure 1 illustrates how the moving 
average might be obtained. While 
there is a much simpler way to compute 
the moving average than the particular 
one described, the following description 
is correct and can be extended to more 
sophisticated methods as will be seen 
shortly. This description is based on 
the concept of a convolute and of a 
convolution function. The set of 
numbers a t  the right are the data  or 
ordinate values, those a t  the left, the 
abscissa information. The outlined 
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1800.0 705 

1799.8 712 
1799.6 7 17 

1799.4 718 

1799.2 721 

1799.0 ------/- -<I 722  

1798.8 1 x ~ - 2  ‘12 ’ 725 

1798.6 I xo-l c-l I 730 

1798.4 1 xo co I 735 

1798.2 xo+l C1 1 736 

1798.0 x0+2 c2 I 741 

, A , 
X O  

1 1  1797.8 , r 746 
-*--*--‘e 

17637.6 750 

...4 .. 
xo 

Figure 1 .  Convolution operation 

Abscissa points a t  left, tabular d a t a  a t  right. 
In box area  the convolution integers, c z .  O p e r a -  
tion is the multiplication of the d a t a  points b y  the 
corresponding C,, summation o f  the resulting 
products, and division by  a normalizer, resulting 
in a single convolute a t  the point Xo. The box 
is then moved down one line, and the process 
repeated  

block in the center may be considered 
to be a separate piece of paper on which 
are written a new set of abscissa 
numbers, ranging from - 2  thru zero to 
+2.  The C’s a t  the right represent the 
convoluting integers. For the moving 
average each C is numerically equal to 
one. To perform a convolution of the 
ordinate numbers in the table of data  
with a set of convoluting integers, C,, 
each number in the block is multiplied 
by the corresponding number in the 
table of data, the resulting products are 
added and this sum is divided by five. 
The set of ones is the convoluting 
function, and the number by which we 
divide, in this case, 5 ,  is the normalizing 
factor. To get the next point in the 
moving average, the center block is slid 
down one line and the process repeated. 

The concept of convolution can be 
generalized beyond the simple moving 
average. In  the general case the C’s 
represent any set of convoluting 
integers. There is an associated 
normalizing or scaling factor. The pro- 
cedure is to multiply C--? times the 
number opposite it,  then C-1 by its 
number, etc., sum the results, divide by 
the normalizing factor, if appropriate, 
and the result is the desired function 
evaluated a t  the point indicated by 
Co. For the next point, we move the set 
of convoluting integers down and repeat, 
etc. The mathematical description of 
this process is: 

The index j represents the running 
index of the ordinate data in the original 
data  table. 

For the moving average, each C, is 
equal to one and N is the number of 
convoluting integers. However, for 
many types of data the set of all l’s, 
which yields the average, is not 
particularly useful. For example, on 
going through a sharp peak, the average 
would tend to degrade the end of the 
peak. There are other types of smooth- 
ing functions which might be used, and 
a few of these are indicated in Figure 2. 

Figure 2A illustrates the set where all 
values have the same weight over the 
interval-essentially the moving 
average. 

The function in Figure 2B is an 
exponential set which simulates the 
familiar RC analog time constant- 
Le., the most recent point is given the 
greatest weight, and each preceding 
point gets a lesser weight determined by 
the law of exponential decay. Future 
points have no influence. Such a 
function treats fu ture  and past points 
differently and so will obviously intro- 
duce a unidirectional distortion into the 
numerical results, as does the RC 
filter in an actual instrument. 

When dealing with sets of numbers in 
hand, and not an actual run on an 
instrument where the data  is emerging 
in serial order, it is possible to look 
ahead as well as behind. Then we can 
convolute with a function that  treats 
past and f u ture  on an equal basis, such 
as the function in Figure 2 0 .  Here the 
most weight is given to the central 
point, and points on either side of the 
center are symmetrically weighed 
exponentially. This function acts like 
an idealized lead-lag network, which is 
not practical to make with resistors, 
capacitors, and so on. 

The usual spectrum from a spectro- 
photometer is the resultant of two con- 
volutions of the actual spectrum of the 
material, first with a function represent- 
ing the slit function of the instrument, 
which is much like the triangular con- 
volute shown in Figure 2C, and then this 
first convolute spectrum is further 
convoluted with a function representing 
the time constant of the instrument. 
The triangular convoluting function 
could in many cases yield results not 
significantly different from the sym- 
metrical exponential function. 

Figure 3 illustrates the way in which 
each of these functions would act on a 
typical set of spectroscopic data. Curve 
3 A  is replotted directly from the instru- 
mental data. I t  is a single sharp band ’ 

recorded under conditions which yield a 
reasonable noise level. The isolated 
point just to the right of the band has 
the value of 666 on the scale of zero to 
1000 corresponding to approximately 0 
to 100% transmittance. This point is 
introduced to illustrate the effect on 
these operations of a single point which 
has a gross error. The numbers along 
the bottom are the digital value a t  the 

1 

E l  I ..4- 
I x. 

B 

I 
Figure 2. Various convolute functions 

A. Moving average.  B. Exponential func- 
tion. C. Symmetrical triangular function, rep-  
resenting idealized spectrometer slit function. 
3. Symmetrical exponential function 

lowest point of the plot, and one may 
consider that  the peak goes down to 
34.2% transmittance. The base line at  
the top is a t  about 797,. 

Curve 3B is a nine-point moving 
average of the data. As expected, the 
peak is considerably shortened by this 
process. Especially interesting is the 
step introduced by the isolated error. 
In effect, it has the shape of the bodike 
convolute in Figure 2d,  which is exactly 
what one would expect from the con- 
voluting process ( 3 ) .  

Curve 3C is for a triangular function 
which obviously forces both the peak it- 
self and the isolated error into a 
triangular mold. 

Curve 3 0  is the result of convoluting 
with the numerical equivalent of a 
conventional RC esponential time con- 
stant filter using only five points. The 
peak is not only shortened, but is also 
shifted to  the right by one data point, 
or 0.002 micron and the isolated data 
point is asymmetric in the same manner. 
The convolution with a symmetrical 
lead-lag exponential, as in Figure 3E, 
does not distort the peak but does still 
reduce its intensity. 

S o t e  that  while all of these functions 
have had the desired effect of reducing 
the noise level, they are clearly unde- 
sirable because of the accompanying 
degradation of the peak intensity. 

METHOD OF LEAST SQUARES 

The convoluting functions discussed 
so far are rather simple and do not 
extract as much information as is pos- 
sible. The experimenter, if presented 
with a plot of the data points, would 
tend to draw through these points a line 
which best fits them. Xumerically, 
this can also be done, provided one can 
adequately define what is meant by 
best fit. The most, common criterion is 
that of least squares which may be 
simply stated as follows: 

A set of points is to be fitted to some 
curve-for example, the curve a3x3 + 
a2x2  + alx + a. = y. The a’s are to be 
selected such that when each abscissa 
point, is substituted into this equation, 
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363 354 342 

368 3 56 342 

Figure 3. Spectral band convoluted 
by the various 9 point functions 

The number a t  the bottom o f  each p e a k  refers 
to the lowest recorded point, and is a measure 
o f  the ability to retain the shape o f  the peak.  
A. Raw d a t a  with single isolated error point. 
E .  Moving average .  C. Triangular func- 
tion. D. Normal  exponential function. E .  
Symmetrical exponential function. F. Least 
squares smoothing function 

the square of thr, differences between 
the computed nuniberr, y, and the 
obyerved numbers is a minimum for the 
total of the observations used in deter- 
mining the coefficients. A11 of the 
error is assumed to be in the ordinate 
and none in thr  atiscissa. 

Consider thr  block of seven data 
points enclosed by the left bracket in 
Figure 4. If these fall along a curve 
that  can be described approsiniately by 
the equation ;.hewn, thrn there are 
specific procedures-which are described 
in most books on numerical analysis- 
to find the a's. One then substitutes 
back into the resulting equation the 
abscisha a t  the central point indicated 
by the circle. The value which is 
obtained by this procedure is the best 
value at  that  point based on the least 
squares criterion, on the function which 
was chohrn. and on the group of points 
esamined. 

This procedure can be repeated for 
I 

ap x) + a1 x2 + a, x + ao=y I 
Figure 4. 
moving polynomial smooth 

Representation of a 7-point 

each group of seven points, dropping one 
a t  the left and picking up one a t  the 
right each time. A somewhat later 
block is indicated a t  the right. I n  the 
usual case, there is found a different set 
of coefficients for each group of seven 
points. Even with a high-speed com- 
puter this is a tedious proposition at 
best. 

Sote ,  however, that  finding the a 
coefficients is required only &s a means 
for determining the final best value at 
just one point, the central point of the 
set. A careful study of the least squares 
procedure using these constraints, leads 
to  the derivation of a set of integers 
which provide a weighting function. 
K i t h  this set of integers the central 
point can be evaluated by the con- 
voluting procedure discussed above. 
This procedure is esactly equivalent to  
the least squares. I t  is not approximate. 

The derivation is presented in 
Appendis I. For either a cubic or a 
quadratic function, the set of integers 
is the same, and the set for up  to  25 
points is shown in Table I of Appendix 
I1 with the appropriate normalizing 
factors. X most instructive exercise is 
to tabulate a simple function such as 
y = z3 over any interval, apply these 
smoot,hing convolutes and compare 
these new values with the original. 
The answers will be found to  be exact. 

In  Figure 3F this least squares con- 
voluting procedure has been applied to 
the data  of Figure 3A, using a 9-point 
cubic convolute. The value at the peak 
and the shape of the peak are es- 
sentially undistorted. As always, the 
isolated point assumes the shape of the 
convoluting function. The FORTRAY 
language comput'er program for per- 
forming this operation is presented in 
Program I of Appendix 111. 

Going beyond simple curve fitting, 
one can find in the literature on numeri- 
cal analysis a variety of least squares 
procedures for det,ermining the first de- 
rivative. These procedures are usually 
based on interpolation formulas and are 
for data  at any arbitrary interval. 
Again, if we restrict ourselves to evaluat- 
ing the function only a t  the center point 
of a set of equally spaced observations, 
then there esist sets of convoluting 
integers for the first derivative as well. 
(These actually evaluate the derivative 
of the least squares best function.) 
h complete set of tables for 

derivatives up to the fifth order for 
polynomials up to the fifth degree, using 
from 5 to 25 points, is presented in 
.ippendis 11. These are more than 
adequate for most work, since, if the 
points are taken sufficiently close to- 
gether, then practically any smooth 
curve will look more or less like a 
quadratic in the vicinity of a peak, or 
like a cubic in the vicinity of a shoulder. 
More complete tables can be found in 
the statistical literature (b, 4 ,  6, 9 ) .  

SMOOTHING-C~~~. 1 y'-Ouodrotic I ' y'-Cubic 

*+ . .  ?,- 
Figure 5. 9-Point convoluting functions 
(orthogonal polynomial) for smoothing 
and first, second, and third derivative 

Program I1 of Appendis 111 shows the 
use of these tables to obtain the coef- 
ficients of a polynomial for finding the 
precise center of an infrared band. 

The shapes of the 9-point con- 
volutes for a few of the functions are 
illustrated in Figure 5.  Of special 
interest is the linear relation of the first 
derivative convolute for a quadratic. 
This is quite unique operationally be- 
cause in processing a table of data, only 
one multiplication is necessary for each 
convolution. The remainder of the 
points are found from the set calculated 
for the previous point by simple subtrac- 
tion. In  Figure 6B is shown the first 
derivative of the spectrum in Figure 6A, 
obtained using a 9-point convolute. 

The derivatives are useful in cases 
such as our methods of band finding on 
a computer (Y), in studies of derivative 
spectra, in derivative therniogravimet- 
ric analysis, derivative polarography, 
etc. 

CONCLUSIONS 

With the increase in the application of 
computers to the analysis of digit,ized 
data, the convolution methods described 
are certain to gain wider usage. With 
these methods, the sole function of the 
computer is to act as a filter to smooth 
the noise fluctuations and hopefully to 
introduce no distortions into the re- 
corded data  ( 3 ) .  

This problem of distortion is difficult, 
to  assess. In  any of the curves of Figure 
3, there remain small fluctuations in the 

Figure 6. 
volute 

17-Point first derivative con- 

A. Original  spectrum. B .  First derivative 
spectrum. 
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Figure 7. Square root relation be- 
tween number of points and degree of 
smoothing 

A. Raw doto. 8 .  5-Point smooth. C. 9 -  
Point smooth. D. 17-Point smooth 

data. Are these fluctuations real, or, as 
is more likely, are they just a low 
frequency component of the noise level 
which could not be smoothed? The 
question cannot be answered by taking 
just the data from a single run. How- 
ever, if one were to take more than one 
run, average these and then smooth, or 
smooth and then average, the computer- 
plus-instrument system could decide, 
since even low frequency noise will not 
recur in exactly the same place in 
different runs. Computer time is most 
efficiently used if the averaging is done 
prior to smoothing. 

Recent work (1 )  has shown the utility 
of simple averaging of a large number of 
runs in the enhancement, of signa-to- 
noise ratios. The use of combined 
smoothing and averaging can con- 
siderably reduce the instrument time 
required, throwing the burden onto the 
computer which operates in a wholly 
different time domain. A character- 
istic of both procedures is that the noise 
is reduced approximately as the square 
root of the number of points used. This 
is illustrated for the smoothing case by 
Figure 7. At the upper left is the raw 
data, a t  the upper right a &point 
smooth, lower left 9 points, and lower 
right 17 points. If it is desired to 
improve the signal-to-noise ratio by a 
factor of 10, simple averaging would 
require a total of 100 runs. Similar 
improvement could be achieved by 
making only 16 runs plus a 9-point 
least squares smooth (average of 16 
runs g 4 X improvement, and 9-point 
smooth s 3 X improvement) or only 
4 runs plus a 25-point smooth (average 
of 4 runs 2 X improvement plur 25- 
point smooth s 5 X improvement). 
The distribution between the number 
of runs required and the number of 
points which may be used for the 
smoothing is a function of the experi- 
mental curve under esamination. The 
minimum distortion will occur when the 
polynomial accurately describes the 

analytical data, and will deviate as the 
polynomial departs from the true curve. 
The best results are obtained when the 
data are digitized at  high densities- 
i.e., points very close together-and the 
number of points used in the convolute 
is chosen to be small enough so that no 
more than one inflection in the observed 
data is included in any convolution 
interval. Our results should be com- 
pared with those achievable using con- 
vent,ional instrument filtering. In  a 
sense, we are substituting idealized 
filters and filter-networks for electronic 
hardware such as resitztors, condensers, 
servos, etc. If one examines the time 
relationships, it probably takes longer 
to get the information using the digitizer 
and then the computer than with the 
analogous electronic network. There is, 
very definitely, the advantage in the 
computer of being able to vary the proc- 
essing completely unfettered by the 
practical restriction of real circuitry and 
servo loops. r o t e  too, that this proc- 
essing can be done after the fact of data 
collection, and indeed several different 
procedures may be applied in order to 
assess the optimum. This is a real 
advantage in itself, and provides ample 
justification for use of the computer 
solely as a noise filter. However, the 
great,est utility of these methods comes 
in the pretreatment of data to be 
further processed, as in our bandfinding 
procedures, in any curvefitting opera- 
tions, in quantitative analyses, etc. 

This type of data processing, so far as 
computers are concerned, requires a 
relatively small amount of programming 
and relatively little use of the computer 
memory or of the computer's processing 
capability. Therefore, even accounting- 
type computers, such as the IBM 1401 
can be used to process data in this way. 
Furthermore, on such computers there 
is generally a high-speed line printer 
which can be turned into a relatively 
crude point plotter. On each line an X 
can be placed at' the appropriate 
position to 1% of value, and the actual 
value is printed at  the edge of the paper. 
The rate can be on the order of 10 lines, 
or points, per second. 
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APPENDIX I 

The general problem is formulated as 
follows : 

A set of 2m + 1 consecutive values 
are to be used in the determination of 

the be\t mean square fit through these 
value> of a polynomial of degree n 
(n lesi than 2711 + 1). This polynomial 
is of the form(: 

k = n  

j t  = b,i;ik = I 
k-0 

bnO + bnl' + bn2i2 + + b,,i" Ia 

The derivatives of this polynomial are: 

!& = bnl + 2bn2i + 3bn3i2 + d i  
+ nbnnin-l  I b  

d 2 f ,  
- = 2bn2 + 3 X 2b,& + d i 2  

+ (n - l)nb,,,i"-? IC 

Id 

S o t e  that, in the coordinate system 
being considered, the value of i ranges 
from -m to +m, and that i = 0  a t  
the central point of the qet of 2m +1 
values. Hence, the value of the 8th 
deriTatite a t  that point is given by:  

where 

dfo 
- = bnl = aril di 

I Ib  

IIC 

The least squarer criterion requires that  
the sum of the square  of the differences 
between the observed values, y,, and 
the calculated, f t >  be a minimum oT-er 
the interval being considered. 

Minimizing with respect to brio, we have 

+ ( b d  - y.1'1 = I I Ia  

2 '2 (bna + b , , i  + 
t = - m  

+ b,,,i" - = 0 

and with respect to b,,,, we have 

J 2 3 - m  

+ b,,P - y,) i = 0 I I I b  
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and with respect to the general b,,, we 
obtain 

IIIc  

or 
i = m  k = n  i - m  C b n k i k +  = C y i i r  I y a  

I =  - m  k = O  i- -?n 

Where r is the index representing the 
equation number which runs from 0 to 
n (there are n + 1 equations). The 
summation indeses on the left side may 
be interchanged-i.e., 
a=m k = n  k = n  2-m 

b,kik" = b,kik" 
$3 - m  k = O  k = O  2--m 

IT'b 

and finally, since b,k is independent of i, 

Va 

or 

where 

i- - m  
and 

Note that  S r + k  = 0 for odd values of 
r + k .  Sine e ST+k exists for even 
values of r + k only, the set of n + 1 
equations can 1- )e separated into two sets, 
one for even v: dues of k and one for odd 
values. Thus , for a 5th degree poly- 
nomial, where n = 5 

Sobso + )12b52 + S4b54 = Fo 
SIbw j S4bb2 + &bj4 = F 2  VIa 

S4ho + S~bsz + SA4 = Fa 
which can b e used to solve for baa, b62, 
and bS4, whi le: 

Snbal f S4b53 + Sob56 F1 

S4bs1 -t . S6bj3 + Ssb5j Fa VIb 

Ssba 4 - Ssbs3 + S ~ O ~ S S  = F5 

b60, b42 = b j 2 ,  arid b41 = bj4 while the 
set VIb has the same form for n=6, so 
that  bS1 = bel, bS3 = b63, and bss  = be6. 
In  other words, b,, = b,+l,, for n and s 
both even or for n and s both odd. For 
example, t o  determine the third deriva- 
tive for the best fit to a curve of third 
(or fourth) order, we would have: 

Szb31 + S4b33 = Fi  

S4b31 + S6b33 = F3 

SzF3 - S4Fi 
SZSS - S42 

from which b33 = 

When, for instance, rn = 4 (2m + 1 = 9 
points), we have from Vc that 

Sz = 60 ,  84 = 708, 86 = 9780 

and 

F3 - 7F1 -~ 6OF3 - 708F1 - 
7128 

b33 ___ 60 (9780) - (708)2 

which reduces to: 

which cai 1 be used to solve for b51, bas, The coefficients of yl. constitute the 
and bss.  ' The set of equations in VIa has convoluting integers (Table T'III) for 
the same form for n = 4, so that b40 = the third derivative of a cubic poly- 

CONV OL UT E S S M O O T H I N G  

P O I N T S  2 5  2 3  

-12 
- 1 1  
-10 
- 0 9  
-08  
-07 
-06  
-05  
- 0 4  
-03  
-02 
-0 1 

00  
01 
0 2  
03 
0 4  
0 5  
0 6  
07 
0 8  
09  
10  
11 
12 

- 2 5 3  
- 1 3 8  

- 3 3  
6 2  

1 4 7  
222 
287 
322 
387 
422 
4 4 7  
462 
46 7 
462 
4 4 7  
422 
387 
3 2  2 
287 
222 
1 4 7  

62  
- 3 3  

- 1 3 8  
- 2 5 3  

- 4 2  
-2  1 

- 2  
15 
30 
43 
5 4  
6 3  
7 0  
7 5  
7 8  
7 9  
7 8  
7 5  
7 0  
6 3  
5 4  
43 
30 
15 
- 2  

- 2  1 
- 4 2  

N O R M  5175 8 0 5 9  

TABLE I 

Q U A D R A T I C  C U B I C  

ZL 19 17 15 

-171  
-76 I 

C) 
8'B 

14 9 
20 4 
2 4  9 
2e i4 
3c )9  
32 ! 4  
3; ! 9  
3; ! 4  
31 39 
2 8 4  
2 49 
2 . 0 4  
1.49 

9 
- 7 6  - 1 7 1  

a4  

-136 
- 5 1  - 2 2  

2 4  -6 
89  7 

1 4 4  18 
189 27 
2 2 4  34 
2 4 9  3 9  
2 6 4  4 2  
269 43 
264 42 
249 3 9  
2 2 4  3 4  
189,  27 
1 4 4  18 

8 9  7 
2 4  -6 

- 5 1  -2 1 
- 1 3 6  

-78 
-1 3 
42 
87 

1.22 
1 4 7  
1 6 2  
1 6 7  
162 
147 
122 

87 
42 

-13  
-78  

:3059 2 2 6 1  323 1105 

~ ~~ 

A20 

13 

-1 1 
0 
9 

16 
2 1  
2 4  
25 
2 4  
21  
16 

9 
0 

- 1 1  

143 

A30 

11 9 7 5  

-3 6 
9 - 2 1  

4 4  1 4  - 2  
69  39  3 - 3  
8 4  5 4  6 12 
8 9  59 7 17 
84  54 6 1 2  
69  39 3 - 3  
44 14 - 2  

9 - 2 1  
-36 

429 231 21 35 
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-~ 
T A B L E  1 ’ 1  

C O N V O L U T E S  S M O O T H I N G  Q U A R T  IC Q U I N T I C  A40 A50 

P O I N T S  25  2 3  21  1 9  17  15 13 11 9 7 5  

-12 
-1 1 
-10  - 09 
-08 
-07 
-06  
-0 5 
-04  
-03 
-02 
- 0 1  

00 
01 
0 2  
0 3  
0 4  
0 5  
0 6  
0 7  
08 
09 
10 
11 
1 2  

1265 
-345 

-1122 
-1255 

-915 
-255  

5 9 0  
1503 
2385 
3155 
3750 
4125 
4253 
4125 
3750 
3155 
2385 
1503 

590 
-255 
-915 

-1255 
-1122 

-345 
1265 

285 
- 1 1 4  
-285 
-285 - 165 

30 
2 6  1 
495 
7 0 5  
8 70 
975 

1 0 1 1  
975 
8 70 
705 
495 
2 6 1  

30  
-165 
- 2 8 5  
-285 
-1 1 4  

285 

1 1 6 2 8  
-b460 - 13005 

-1 1220 
-3940 

6378 
17655 
28190 
36660 
42120 
44003 
42120 
36660 
28190 
17655 

6378 - 3940 
-11220 
-13005 

-6460 
11628 

340 
-255 
-420 
-290 

1 8  
405 
7 9 0  

1 1 1 0  
1320 
1 3 9 3  
1320 
1110 

790 
40 5 

18 
- 2 9 0  
-420 
-255 

340 

I \ 9 5  
-1 9 5  
-2 60 
-1 1 7  
1 35 
4 ,  15 
61 $0 
82 ’5  
8 8  3 
82 5 
661 0 
41! 5 
135 i 

- 1 1 7  ’ 
-260 
-195 

1 9 5  

2145 
-2860 
-2937 

-165 
3755 
7500 

10125 
11053 
10125 

7500 
3755 
-165 

-2937 
-2860 

2145 

1 1 0  
-1 9 8  
- 160 

1 1 0  
3 9 0  
600 
677 
600 
390 
110 

-160 
-198 

1 1 0  

18 
-45 15 
-10 -55 5 

6 0  30 - 3 0  
120 1 3 5  75 
143 173 1 3 1  
120 1 3 5  75 

30 -30  
-10 - 5 5  5 
-45 15 

60 

1 8  

N O R M  30015 6555 260015 7 4 2 9  4199 461891 2 4 3 1  429 429 2 3 1  

T A B L E  1 1 1  

CONVOLUTES 1 S T  D E R I V A T I V E  Q U A D R A T I  C A21 

POINTS 2 5  2 3  2 1  1 9  17 15 13  11 9 7 5  

-12 
-11 
-10 
-09  
-08 
-0 7 
-06 
-0 5 
-04  
-03  
-02 
-0 1 

00 
01 
02  
0 3  
0 4  
05 
0 6  
0 7  
08 
0 9  
1 0  
11 
1 2  

-12  
-1 1 
- 1 0  

-9 
-8  
-7 
- 6  
-5  
- 4  
- 3  
-2 
-1 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

1 0  
11 
1 2  

-11 
-10 
-9 
-8  
- 7  
- 6  
-5 
- 4  
-3 
-2 
-1 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

1 0  
11 

-10 
-9  
- 8  
-7 
- 6  
-5 
-4 
-3  
- 2  
-1 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

-9 
-8 
-7  
- 6  
-5 
- 4  
-3 
-2 
-1 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

-8  
-7  
-6  
-5 
-4 
-3  
-2 
-1 

0 
1 
.2 
3 
4 
5 
6 
7 
8 

- 7  
-6  
-- 5 
- 4  
- 3  
-2 
-1 
0 
1 
2 
3 
4 
5 
6 
7 

-6  
-5 -5 
-4 -4 -4 
-3 -3  -3 - 3  
-2 -2  -2 - 2  -2 
-1 -1 -1 -1 -1 
0 0 0 0 0  
1 1 1 1 1  
2 .2 2 2 2  
3 3 3 3  
4 4 4 
5 5 
6 

NORM 1300 1012 770  570 408 28t3 182 110 60 2 8  10 
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TABLE I V  

CONVOLUTES 1ST D E R I V A T I V E  C U B I C  Q U A R T  IC A31 A41 

POINTS 2 5  

-12  30866 
- 1 1  8602 
-10 - 8 5 2 5  
- 0 9  - 2 0 9 8 2  
-08  - 2 9 2 3 6  
-07 - 3 3 7 5 4  
- 0 6  - 3 5 0 0 3  
-05  - 3 3 4 5 0  
- 0 4  - 2 9 5 6 2  
- 0 3  - 2 3 8 0 6  
-02 - 16649 
-0 1 - 8 5 5 8  

0 0  0 
0 1  8558 
0 2  1 6 6 4 9  
0 3  2 3 8 0 6  
0 4  29562 
05  33450 
0 6  3 5 0 0 3  
07 33754 
0 8  29236 
0 9  20982 
1 0  8 5 2 5  
1 1  - 8 6 0 2  
1 2  - 3 0 8 6 6  

NORM 1 7 7 6 0 6 0  

23 

3 9 3 8  
815 

- 1 5 1 8  
- 3 1 4 0  
- 4 1 3 0  
-4567 
- 4 5 3 0  
- 4 0 9 8  
- 3 3 5 0  
- 2 3 6 5  
- 1 2 2 2  

0 
1 2 2 2  
2365 
3350 
4 0 9 8  
4 5 3 0  
4567 
4 1 3 0  
3140 
1 5 1 8  
- 8 1 5  

-3938 

1 9 7 3 4 0  

22 1 9  17 15 1 3  11 9 7 5  

84075 
10032 

- 4 3 2 8 4  
- 7 8 1 7 6  
-96947 - 1 0 1  900 
-95338 
- 7 9 5 6 4  
- 5 6 8 8 1  
-29592 

0 
29592 
5 6 8 8 1  
7 9 5 0 4  
9 5 3 3 8  

1 0 1 9 0 0  
96947 
78  1 7 6  
4 3 2 8 4  

-10032 
84075 

6 9 3 6  
6 8  

- 4 6 4 8  
- 7 4 8 1  
- 8 7 0 0  
- 8 5 7 4  
-8 1 7 9  
- 5 3 6 3  
- 2 8 1 6  

0 
2816 
5363 
8 1 7 9  
8 5 7 4  
8 7 0 0  
748 1 
4648 

-68  
-6936 

748 
-98  

- 6 4 3  
-9  30 

-1002 
-902 
- 6 7 3  
- 3 5 8  

0 
3 5 8  
6 7 3  
902 

1002 
9 30 
6 4 3  

98 
-748 

1 2 9 2 2  
- 4 1 2 1  

-14150 
- 1 8 3 3 4  
-17842 
- 1 3 8 4 3  

- 7 5 0 6  
0 

7 5 0 6  
1 3 8 4 3  
17842 
1 8 3 3 4  
1 4 1 5 0  

4 1 2 1  
-12922 

1 1 3 3  
-660 

-1578 
- 1 7 9 6  
- 1 4 8 9  

-832 
0 

832 
1 4 8 9  
1 7 9 6  
1 5 7 8  

6 6 0  
- 1 1 3 3  

300 
- 2 9 4  8 6  
-532 -142 2 2  
-503 - 1 9 3  - 6 7  1 
-296 -126 - 5 8  -8 

0 0 0 0  
296 123 58 8 
503 1 9 3  67 -1 
532 142 - 2 2  
2 9 4  -86  

-300 

3634092 2 5 5 8 1 6  2 3 2 5 6  3 3 4 1 5 2  2 4 0 2 4  5148 1188 252 1 2  

TABLE v 
CONVOLUTES 1 S T  DERIVATIVE QU I N T I  C SEXlC A 5 1  A61 

POINTS 25 2 3  2 1  1 9  17 15  1 3  11 9 7 5  

- 1 2  
-1 1 - 10 
- 0 9  
-08  
-07 
-0 6 
-05 
- 0 4  
- 0 3  
- 0 2  
-0 1 

00  
0 1  
02 
0 3  
0 4  
0 5  
06  
07  
0 8  
0 9  
1 0  
1 1  
12 

- 6 3 5 6 6 2 5  
- 1 1 8 2 0 6 7 5  
- 1 5 5 9 3 1 4 1  
- 1 7 0 6 2 1 4 6  
- 1 5 8 9 6 5 1  1 
- 1 2 1 3 9 3 2 1  

- 6 3 0 1 4 9 1  
5 4 4 6 6 8  

6 6 7 1 8 8 3  
9 6 0 4 3 5 3  
6 0 2 4 1 8 3  

- 8 3 2 2 1 8 2  
0 

8 3 2 2 1 8 2  
- 6 0 2 4 1  8 3 
- 9 6 0 4 3 5 3  
- 6 6 7 1 8 8 3  

- 5 4 4 6 6 8  
6 3 0 1 4 9 1  

1 2 1 3 9 3 2  1 
1 5 8 9 6 5 1  1 
1 7 0 6 2 1 4 6  
1 5 5 9 3  1 4 1  
1 1  8 206 75  

6 3  5662 5 

- 3 5 7 0 4 5  
- 6 5 4 6 8 7  - 1 5 9 7 7 3 6 4  
- 8 4 0 9 3 7  - 2 8 7 5 4 1 5 4  - 3 3 2 6 8 4  
- 8 7 8 6 3 4  - 3 5 6 1 3 8 2 9  - 5 8 3 5 4 9  - 2 3 9 4 5  
- 7 5 2 8 5 9  - 3 4 8 0 7 9 1 4  - 6 8 6 0 9 9  - 4 0 4 8 3  - 1 7 5 1 2 5  
- 4 7 8 3 4 9  - 2 6 0 4 0 0 3 3  - 6 0 4 4 8 4  - 4 3 9 7 3  -279975 - 3 1 3 8 0  
- 1 0 6 9 1 1  - 1 0 9 4 9 9 4 2  - 3 4 8 8 2 3  - 3 2 3 0 6  - 2 6 6 4 0 1  - 4 5 7 4 1  - 3 0 8 4  

2 6 5 1 6 4  6402438 9 4 7 3  - 8 6 7 1  - 1 3 0 5 0 6  - 3 3 5 1 1  - 3 7 7 6  - 5 7 5 8  
489687 19052988 322378 1 6 6 7 9  6 5 2 2 9  -12 - 1 2 4 4  -4538 - 9 0  
359157 1 6 6 4 9 3 5 8  349928 2 4 6 6 1  1 6 9 8 1 9  2 7 0 9 3  2166 2762 1 8  

- 4 0 0 6 5 3  - 1 5 0 3 3 0 6 6  - 2 5 5 1 0 2  - 1 4 4 0 4  - 7 8 3 5 1  -14647 -573 -505 - 2  
0 0 0 0 0 0 0 0 0  

4 0 0 6 5 3  1 5 0 3 3 0 6 6  2 5 5 1 0 2  1 4 4 0 4  7 8 3 5 1  14647 573 508 2 
- 3 5 9 1 5 7  - 1 6 6 4 9 3 5 8  - 3 4 9 9 2 8  - 2 4 6 6 1  - 1 6 9 8 1 9  - 2 7 0 9 3  -2166 -2762 -18 
- 4 8 9 6 8 7  - 1 9 0 5 2 9 8 8  - 3 2 2 3 7 8  - 1 6 6 7 9  - 6 5 2 2 9  12 1 2 4 4  4 5 3 8  9 0  
- 2 6 5 1 6 4  -6402438 -9473 8 6 7 1  1 3 0 5 0 6  33511 3776 5758 

1 0 6 9 1 1  1 0 9 4 9 9 4 2  3 4 8 8 2 3  32306 2 6 6 4 0 1  45741 3 0 8 4  
4 7 8 3 4 9  2 6 0 4 0 0 3 3  6 0 4 4 8 4  4 3 9 7 3  2 7 9 9 7 5  31380 
7 5 2 8 5 9  3 4 8 0 7 9 1 4  6 8 6 0 9 9  4 0 4 8 3  175125 
8 7 8 6 3 4  35613829 5 8 3 5 4 9  2 3 9 4 5  
840937 2 8 7 5 4 1 5 4  3 3 2 6 8 4  
6 5 4 6 8 7  1 5 9 7 7 3 6 4  
357045 

NORM 7 1 5 3 5 7 5  3 1 2 4 5 5  5 3 1 1 7 3 5  81719 4 1 9 9 0  2 0 9 9 5  2 4 3 1  143 1 4 3  1 
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TABLE V I  

CONVOLUTES 2 N D  D E R I V A T I V E  

P O I N T S  2 5  23  2 1  

- 12 
- 1  1 
-10  
- 0 9  
-08 
-07 
-06  
-05 
- 0 4  
- 0 3  
-02 
- 0 1  

00  
0 1  
0 2  
0 3  
0 4  
0 5  
0 6  
07 
0 8  
0 9  
10 
1 1  
1 2  

92 
6 9  
48 
2 9  
12 
- 3  

- 1 6  
-27 
- 3 6  
-43 
-48  
-5  1 
-52  
- 5 1  
- 4 8  
- 4 3  
- 3 6  
-27  
- 1 6  

- 3  
12 
2 9  
4 8  
6 9  
92 

77 
5 6  
37 
20  

5 
-8  

- 1 9  
-28  
-35 
- 4 0  
- 4 3  
- 4 4  
- 4 3  
-40  - 35 
-28 
- 1 9  

- 8  
5 

2 0  
37 
5 6  
7 7  

190 
1 3 3  

82 
37 
-2 

-35 
-62 
-8 3 
-98 

-107 
-110 
-107 

-98 
-83  
-62 
-35 

-2 
37 
82 

1 3 3  
190 

NORM 26910 1 7 7 1 0  3 3 649 

Q U A D R A T I C  C U B I C  

1 9  17 15  

5 1  
3 4  40 
1 9  25 

6 1 2  
-5 1 

- 1 4  - 8  
- 2  1 - 15 
-26  -20  
- 2 9  - 2 3  
- 3 0  - 2 4  
-29  - 2 3  
-2 6 -20  
- 2  1 -15 
- 1 4  -8 

- 5  1 
6 12 

1 9  25 
3 4  40 
5 1  

9 1  
52 
1 9  
-8 

- 2 9  
-48 
-53  
-56 
-53  
-48  
-29  

-8 
1 9  
5 2  
9 L  

6 7 8 3  3876 6168 

A22 

13 

22 
1 1  

2 
-5  

-10  
- 1 3  
- 1 4  
-13  - 10 

- 5  
2 

1 1  
2 2  

1001 

A32 

It. 

1 5  
6 

-1 
-6  
-9 

-10  
-9  
-6  
- 1  

6 
15  

42 9 

9 7 5  

2 8  
7 5  

-8  0 2 
-17 - 3  -L 
-20  - 4  - 2  
-17 - 3  -1 

- 8  0 -2  
7 5  

28 

462 42 7. 

TABLE V I 1  

CONVOLUTES 2 N D  D E R I V A T I V E  Q U A R T I C  Q U I N T I C  A42 A52 

POINTS 2 5  23 21 1 9  17  15. 13 11 9 7 5  

-12 
-11  - 10 
- 0 9  
-08 
-07 
-06  
- 0 5  
- 0 4  
- 0 3  
- 0 2  
-0 1 

0 0  
0 1  
02 
0 3  
0 4  
05  
06 
07 
08 
0 9  
10 
1 1  
12 

NOKM 

- 4 2 9 5 9 4  
3 1 1 1 9  - 3 4 6 7 3 1  

298155 61845 
4 1 3 4 0 9  2 8 1 9 7 9  
4 1 4 7 8 6  358530 
3 3 6 2 0 1  331635 
2 0 7 5 7 9  2 3 6 7 0 9  

54855 104445 
- 1 0 0 0 2 6  - 3 9 1 8 6  
- 2 3 9 1 0 9  -172935 
- 3 4 8 4 2 9  -280275 
-41801 1 - 3 4 9 4 0 1  
- 4 4 1 8 7 0  - 3 7 3 2 3 0  
- 4 1 8 0 1 1  - 3 4 9 4 0 1  
- 3 4 8 4 2 9  -280275 
- 7 3 9 1 0 9  - 1 7 2 9 3 5  
- 1 0 0 0 2 6  - 3 9 1 8 6  

54855 104445 
2 0 7 5 7 9  2 3 6 7 0 9  
3 3 6 2 0 1  331635 
4 1 4 7 8 6  358530 
4 1 3 4 0 9  2 8 1 9 7 9  
2 9 8 1 5 5  61845 

31119 - 3 4 6 7 3 1  
4 2 9 5 9 4  

4292145 2812095 

-37791 
11628 
35802 
41412 
34353 
1 9 7 3 4  

1878 
-15678 
-30183 
-39.672 
-42966 
-39672 
-30183 
-15678 

1878 
1 9 7 3 4  
34353 
41412 
38802 
11628 

-37791 

- 9 6 0 8 4  
45084-121524 

1 0 5 4 4 4  8 2 2 5 1  
1 0 9 0 7 1  153387 

7 6 8 3 0  137085 
26376 71592 

- 2 7 8 4 6  - 1 1 7 9 9  
- 7 4 6 0 1  -88749 

-105864-141873 
-116820-160740 - 105864-  14 18 7 3 

- 7 4 6 0 1  -88749 
- 2 7 8 4 6  - 1 1 7 9 9  

26376 7 1 5 9 2  
7 6 8 3 0  137085 

1 0 9 0 7 1  153387 
1 0 5 4 4 4  8 2 2 5 1  

4 5 0 8 4  1 2 1 5 2 4  
- 9 6 0 8 4  

-93093 

133485 98010-10530 
88803 -72963 

95568 115532 20358 -4158 
19737 53262 17082 12243-117 

-59253 -32043 117 4983 603 -3 
-116577 -99528-15912 -6763-171 48 
-137340-124740-22230-12210-630-90 
-116577 -99528-15912 -6963-171 48 

-59253 -32043 117 4983 603 - 3  
19737 53262 17082 12243-117 
9 5 5 6 8  115632 20358 -4158 

88803 -72963 
133485 98010-10530 

-93093 

245157 490314 478686 277134 160446 16731 4719 9 9  3 
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TABLE V C f . 1  

C O N V O L U T E S  3R0 D E R I V A T I V E  

P O I N T S  2 5  2 3  2 1  

-12  
- 1 1  
-10 
- 0 9  
-08 
-07 
-06 
-0 5 
- 0 4  
-0 3 
- 0 2  
-0 1 
00 
0 1  
02 
03 
04 
05 
0 6  
07  
08  
0 9  
1 0  
1 1  
1 2  

- 5 0 6  
- 2 5 3  

- 5 5  
9 3  

1 9 6  
2 59  
2 8 7  
2 8 5  
2 5 8  
2 1 1  
145 

77  
0 

-77  
- 1 4 9  
- 2 1 1  
- 2 5 8  
- 2 8 5  
- 2 8 7  
- 2 5 9  
- 1 9 6  

- 9 3  
5 5  

2 5 3  
5 0 6  

- 7 7  
-35  

- 3  
2 0  
35 
4 3  
4 5  
4 2  
35 
2 5  
1 3  

0 - 1 3  
- 2 5  
-35 
- 4 2  
- 4 5  
- 4 3  
- 3 5  
- 2 0  

3 
3 5  
7 7  

- 2 8 5  
-114 

1 2  
9 8  

149 
1 7 0  
1 6 6  
142 
1 0 3  

5 4  
0 

- 5 4  
- 1 0 3  
- 1 4 2  
- 1 6 6  
-170 
-149 

- 9 8  
-12 
114 
2 8 5  

NORM 2 9 6 0 1 0  3 2 8 9 0  8 6 5 2 6  

C U B I C  QUART IC A33 

1 9  lt 15 13 

-204  
-68  

28 
8 9  

120 
1 2 6  
1 1 2  

8 3  
4 4  

0 
-44 
- 8 3  

- 1 1 2  
- 1 2 6  
- 1 2 0  

- 8 9  
- 2 6  

6 8  
2 0 4  

-28 
-7 

7 
1 5  
18 
17  
1 3  

7 
0 
7 

13 
17 
18 
15 
7 

-7  
28 

-91  
- 1 3  -1 1 

35 0 
5 8  6 
6 1  8 
4 9  7 
2 7  4 

0 0 
-27 -4 
- 4 9  -7 
-61  -8 
-58 -6 
-35  0 

13 11 
91 

4 2 6 3 6  3876 7 9 5 6  5 7 2  

A43 

11 9 7 5  

-3 0 
6 -14  

22 7 -1 
23 13 1 -1 
1 4  9 1 2  

0 0 0 
- 1 4  -9 ,-1 -2 
-23 - 1 3  -1  1 
-2  2 -7 t 

-6  14  
30 

858 198 6 2 

TABLE I X  

CONVOLUTES 3K0 D E R I V A T I V E  Q U I N T  IC SEXIC A53 A63 

P O I N T S  2 5  23 

- 1 2  
- 1 1  
-10 
- 0 9  
-08 
-07 
-06  
- 0 5  
- 0 4  
- 0 3  
-02 
- 0  L 

0 0  
01 
02 
0 3  
0 4  
0 5  
0 6  
07 
0 8  
0 9  
10 
11 
12 

N O R M  

1 1 8 7 4 5  
2 1 7 6 4 0  
2 7 9 1 0 L  
2 9 0 0 7 6  
2 4 4 3  11 
1 4 4 6 1 6  

5 1 3 1  - 1 4 6 4 0 8  
- 2 6 6 4 0 3  
- 2 9 3 1 2 8  - 14446 3 

2 8 4 3 7 2  
0 

- 2 8 4 3 7 2  
1 4 4 4 6 3  
293 128 
2 6 6 4 0 3  
1 4 6 4 0 8  

- 5 1 3 1  - 1 4 4 6 1  6 
- 2 4 4 3  I 1  
- 2 9 0 0 7 6  
- 2  7910 1 
- 2 1 7 6 4 0  
- 1 1 8 7 4 5  

5 7 2 2 8 6 0  

2 3 6 9 9  
4 2 7 0 4  
52959 
5 1 6 8 4  
38013 
136 32 

- 16583 
- 4 3 9 2 8  
- 5 5 2 3 3  
- 3 2 2 2 4  

49115 
0 

- 4 9 1  15 
32224 
552 33 
43928 
16583 

- 13632 
- 3 8 0 1 3  
- 5 1 6 8 4  
- 5 2 9 5 9  
- 4 2 7 0 4  
- 2 3 6 9 9  

7 4 9 8 9 2  

2 L  1 9  17 15 13  1 1  9 7 5  

425412 
749372 317655 
887137 1 1 1 3 2 4 0  
7 8 7 3 8 2  1 2 3 1 5 0 0  
4 4 8 9 0 9  9 3 2 7 6 0  
- 6 2 6 4 4  2 5 9 7 4 0  

- 5 9 8 0 9 4  - 5 8 9 0 8 0  
- 9 0 8 0 0 4 - 1 2 2 0 5 2 0  
- 6 2 5 9 7 4 - 1 0 0 7 7 6 0  

7 4 8 0 6 8  9 4 8 6 0 0  
0 0 

- 7 4 8 0 6 8  - 9 4 8 6 0 0  
6 2 5 9 7 4  1 0 0 7 7 6 0  
9 0 8 0 0 4  1 2 2 0 5 2 0  
5 9 8 0 9 4  5 8 9 0 8 0  

6 2 6 4 4  - 2 5 9 7 4 0  
- 4 4 8 9 0 9  - 9 3 2 7 6 0  
- 7 8 7 3 8 2 - 1 2 3 1 5 0 0  
- 8 8 7 1 3 7 - 1 1 1 3 2 4 0  
-749372 - 3 1 7 6 5 5  
- 4 2 5 4 1 2  

4 9 1 5  
8020 9 3 1 3 5  
7 9 7 5  1 4 1 3 2 0  
4380 113065 

- 1 7 5 5  3800 
- 7 5 4 0  -150665 
- 7 7 3 5  - 2 6 0 6 8 0  

5 7 2 0  -169295 
0 0 

- 5 7 2 0  -169295 
7 7 3 5  260680 
7 5 4 0  150665 
1755 - 3 8 0 0  

- 4 3 8 0  -113065 
-7975 -141320 
- 8 0 2 0  - 9 3 1 3 5  
- 4 9 1 5  

1 1 2 6 0  
1 5 2 5 0  1580 

8165 1700 
-6870 - 5 5  

-16335 -2010 
7 1 5 0  645 

0 0 
- 7 1 5 0  -645 
16335 2010 

6 8 7 0  55 
-8165 -1700 

- 1 5 2 5 0  -1580 
- 1 1 2 6 0  

2295 
1280 6 5  

- 2 2 8 5  - 4 0  
500 5 

0 0  
- 5 0 0  - 5  
2285 40 

- 1 2 8 0  - 6 5  
-2295 

4 2 4 9 3 8 8  4 2 4 7 0 1 2  1 6 7 9 6  2 1 4 4 8 0 9  9 7 2 4  572 2 8 6  2 
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CONVOLUTES 4T" DER1VAtIVE 

POINTS 2 5  

-12  8 5 8  
- 1 1  8 0 3  
-10  6 4 3  
- 0 9  3 9 3  
-08  7 8  
-07 -267 
-06  -597 
-05  -857 
- 0 4  -982 
- 0 3  -897 
-02  -517 
- 0 1  2 5 3  

00 1 5 1 8  
0 1  2 5 3  
0 2  -517 
0 3  -897 
0 4  - 9 8 2  
05 -857 
0 6  -597 
07 -267 
08 7 8  
09 393 
1 0  6 4 3  
1 1  8 0 3  
1 2  8 5 8  

NORM 1 4 3 0 7 1 5  

23 

858 
793 
605 
3 1 5  
-42 

-417 
-747 
-955 
- 9 5 0  
-62 7 

1 3 3  
1 4 6 3  

1 3 3  
-627 
- 9 5 0  
- 9 5 5  
-747 
-417 

-42  
315 
6 0 5  
7 9 3  
8 5 8  

9 3 7 3 6 5  

21 

594 
540 
385 
1 5 0  

-130 
-406 
-615 
-680 
- 5 1 0  

0 
96 9 

0 
- 5 1 0  
-680 
-615 
-406 
-130 

150 
385 
540 
5 9 4  

408595 

TABLE X 

Q U A R T I C  QUINTIC A44 A 5 4  

19 

396 
3 5 2  
2 2 7  

4 2  
-168 
- 3 5 4  
-453 
-388 

-68 
612 
-6 8 

-388 
-453 
- 3 5 4  
-168 

42 
227 
3 5 2  
3 9 6  

163438 

I7 1§ 13 11 9 7 s  

36 
3 1  
17  
-3  

- 2 4  
-39  
- 3 9  
- 1 3  

52 
- 1 3  
- 3 9  
- 3 9  
- 2 4  

- 3  
17 
31  
36 

6 2  1 
2 5 1  

- 2 4 9  
-704 
- 8 6 9  
- 4 2 9  
1 0 0 1  
- 4 2 9  
-869 
-704 
- 2 4 9  

2 5 1  
62  1 
7 5 6  

84  
6 4  6 
11 4 1 6  

-5 4 - 1  9 6  
-9 6 -6  -11 1 
-66 -6 -21  -7 

9 9  6 14 -3  
-66 -6 - 2 1  -7 
-96 -6  -11  1 
- 5 4  -1 9 6  

11 4 18 
6 4  6 
8 4  

CONVOLUTES 5TH D E R I V A T I V E  

P O I N T S  2 5  

-12  -275 
- 1 1  -500 
-10 - 6 3 1  
-09  -636 
-08 - 5 0 1  
-07 - 2 3 6  
-06  1 1 9  
-05  488 
-04  7 5 3  
- 0 3  7 4  8 
-02 2 5 3  
-0 1 -1012 
00 0 
01 1012 
0 2  -253 
0 3  -748 
0 4  - 7 5 3  
05  - 4 8 8  
06 - 1 1 9  
0 7  2 3 6  
08 5 0 1  
09  6 3 6  
1 0  6 3  1 
1 1  5 0 0  
12  275 

NORM 1 3 0 0 6 5 0  

2 3  

- 6 5  
-1 1 6  
-141 
-132 

-87  
-12  

7 7  
1 5 2  
1 7 1  

76  
- 2 0 9  

0 
2 09  
- 7 6  

- 1 7 1  
-152 

-77 
12 
87 

132 
1 4 1  
116 

6 5  

1 7 0 4 3 0  

21 

- 1404 
- 2 4 4 4  
- 2 8 1 9  
- 2 3 5 4  
-1063 

7 8 8  
2 6 1 8  
3 4 6 8  
1938 

-3876 
0 

3876 
-1938 
-3468 
-2618 

-788 
1063 
2 3 5 4  
2 8 1 9  
2 4 4 4  
1 4 0 4  

1 9 3 1  540 

TABLE X I  

Q U I N T I C  S E X I C  A55 A65 

1 9  

-44 
- 7 4  
- 7 9  
-54  

- 3  
58 
98  
6 8  

-102 
0 

102 
-68 
-98  
-58 

3 
5 4  
7 9  
7 4  
44 

2 9 7 1 6  

17 1s 13 11 9 7 5  

-55  
-88  
- 8 3  - 36 

39 
1 0 4  

9 1  
- 1 0 4  

0 
1 0 4  
- 9 1  

-1 0 4  
- 3 9  

36 
8 3  
8 8  
55  

-675 
-1000 

-751 
44  

9 7 9  
1 1 4 4  

-1001 
0 

1 0 0 1  
-1144 

-979 
- 4 4  
7 5  1 

1000 
675 

-20 
-26 -4  
-11 - 4  -9 

18 1 -4  -3 
33 6 11 4 

-2 2 -3  -4  -1 
0 0 0 0  

22 3 4 1  
- 3 3  -6  -11  -4 
-18 -1 4 5  

1 1  4 9 
26 4 
20 

1 6 7 9 6  8 3 9 8 0  8 8 4  52 26 2 
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PROGRAM’ 1 

* SUBROUTINE SMOOTH -9 P O I N T  
c 

C 
C I N P U T S  
C N NUMBER OF R A W  DATA P O I N T S  
C NDATA ARRAY 3F N RAW DATA P O I N T S  S T O R E D  I N  M A I N  PROGRAM 
C DUMMY D I M E N S I O N  
C OUTPUTS 
C M NUMBER OF SMOOTHED DATA P O I N T S  = N-8 
C MDATA ARRAY 3F M SMOOTHED P O I N T S  STORED I N  M A I N  PROGRAM 
C MAY BE SAME R E G I O N  I N  M A I N  PROGRAM AS NDATA 
C DUMMY D I M E N S I O N  
C 

C 
C I N I T I A L I Z A T I O N  SEGMENT 
C 

SUBROUTINE SMOOTH ( N t N D A T A t M t M D A T A l  

D I M E N S I O Y  Y D A T A ~ 1 0 0 0 ~ ~ M D A T A ~ l O O O ~ ~ N P [ 9 ~  

M=N-8 

J = I - 1  
DO 10 1 ~ 2 ~ 9  

10 N P ( I )  = N D A T A ( J 1  
C 

C 
C SMOOTHING L o o p  

DO 2 0 0  1 r l . M  

DO 11 K = l t 8  
J= I +8 

KA = K + 1  
Tf N P ( K ) = N P ( K A )  

N P ( 9 )  = V D A T A ( J )  
N S U M = 5 9 * N P ( 5 ) + 5 4 * ( Y P 1 4 ) + N P ( 6 ) ~ t 3 9 * ( N P ( 3 ) t N P ( 7 ) ) t l 4 * ( N P ( 2 ) + N P ( 8 ) ) ~  

1 2 1 * ( N P ( l ) + N P ( 9 )  1 
M D A T A ( 1 )  = N S U M / 2 3 L  

200 CONTINUE 
C 

C 
* END 

9999 RETURN 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
1 3  
1 4  
1 5  
16 
17 
18 
19 
2 0  
2 1  
2 2  
2 3  
2 4  
2 5  
2 6  
27 
2 8  
29 
30 
3 1  
32 
3 3  
34 
35 
36 
37 
38 
39 

nomial determined from a least squares 
fit to 9 points. Since the value of a33 
is 3 ! b Z 3 ,  the denominator in the above 
expression must be divided by 6 to  get 
the normalizer of 198 found in Table 111. 

In  all of the above derivations, it  has 
been assumed that  the sampling interval 
is the same as the absolute abscissa 
interval-Le., Ax=1. If not, the 
value of Ax must be included in the 
normalization procedure. Hence, to  
evaluate the sth derivative at the central 
point of a set of m values, based on an 
a t h  degree polynomial fit, we must 
evaluate 

i = m  

Note that since Axo=l ,  the interval is 
of no concern in the case of smoothing. 

Repeated Convolution. The proc- 
ess of convolutian can be repeated 
if desired. For  example, one might 
wish to further smooth a set of pre- 
viously smoothed points, or t o  obtain 
the derivative only after the raw 

data  has been smoothed. Thus,  if 
we convolute using p points the first 
time, and m points the  second, 

i - m  i - n  

i - m  i - n  

where h = i + j 

Equation XI shows that  one need not 
go through the convolution procedure 
twice, but can do a single convolution, 
using 2(m+p)+l  points, and a table of 
new integers formed by combining the 
c’s . 

For the case where a cubic smooth is 
to  be followed by obtaining the quad- 
ratic first derivative using m = 2  and 
p = 2 :  
C, = -2, -1, 0, 1, 2, N ,  = 10 
C’, = -3, 12, 17, 12, -3, N, = 35 
d - 4  = C-zC’-z = 6 
d - 3  = c-2C‘-1 + C-,C’-2 = 

d - 2  = C-2C‘O + COC’2 + 
d - 1  = C-2C‘l + C1C’-2 + 

do = C-2C12 + C2CI-2 + ClC‘4 - 

dl = By symmetry = 

-36 + 3 = -33 

C-iC’-i = -34 - 12 = -46 

c-IC‘O + COC’-l = 
-24 - 3 - 17 = -44 

c-IC’l + COC’O = 0 
44 

d2 = 46 
d3 = 33 
d a =  -6 
n ’ h  = 350Ax 
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P R O G R A M  2 

u. SUBROUTINE CENTEQ L 3 R E N Z  
C 

C 
C COMPUTATIOY OF P R E C I S E  PEAK P O S I T I O N  AND I N T E N S I T Y  U S I N G  9 P O I N T S  
C TO A QUADRATIC*Y=A20+A21X+A22XSQ* X = ( - A 2 1 / 2 A 2 2 ) o  I N  ORDER T O  
C APPROXIMATE A LORENTZ C O N T n U R t  VALUES ARE COYVERTED T O  ABSORBAVCE 

SUBROUTINE C E N T E ~ ( N P O I V T I X ~ Y ~ T Q A N S * D E N S )  

C AND THE R E C I P H O C 4 L S  ARE USED I N  D E T E R M I N I N G  THE C O E F F I C I E N T S  B Y  
C ORTHOGONAL POLYNOMIALS 
C 

D I M E N S I O N  N P O I N T ( 2 5 I * D Y S ( 9 )  
60 DO 61  Is199 

I P = I + 8  

P 4 = O N S ( l ) + O N S ( 9 )  
P 3 = D N S ( 2 l + D N S ( 8 )  
P 2 = D N S ( 3 ) + D N S 1 7 )  
P l = D N S ( 4 ) + D N S ( 6 )  

6 1  D N S ( I ) = ~ , / A L O G ~ O F ( ~ ~ O O ~ / N P O I N T ( I P ) )  

A 2 0 = ( - 2 1 e * P 4 ) + ( 1 4 o . P 3 ) t ( 3 9 o ~ P ~ ) + ~ 5 4 e t P l ) t ( 5 9 e * D N S ( 5 ) )  
A 2 0 = A 2 0 / 2 3 1 o  
A21=14o*(DNS(91-DNSIl)I)t(3o*(DNS(8)-DNS(2)))t(2.~(DNS~7)-DNS(3)) 

l + I D N S ( 6 ) - D Y S f 4 ) )  
A 2 1 = A 2 1 / 6 0 0  
A 2 2 = ( 2 8 . . P 4 ) + ( 7 o * P 3 ) - ( 8 o ~ P 2 ) - ( 1 7 o P l 2 0 0 ~ D ~ S ( S ) ~  
A 2 2 = A 2 2 / 9 2 4 .  
X = ( - A 2 1 / ( 2 o O * A 2 2 ) )  
Y = A 2 0 + X * ( A 2 1 + X * A 2 2 )  
D E N S = l o O / Y  
TRANS=lOOOo/(lOoO**DENS) 

1000 RETURN 
* END 

2 
3 
4 
5 
6 
7 
8 
9 

1 0  
11 
1 2  
13 
14 
15  
16 
17 
18 
19 
20 
2 1  
22  
2 3  
2 4  
2 5  
2 6  
2 7  
28 
29  
30 
3 1  

APPENDIX I1 

The following eleven tables contain 
the convoluting integers for smoothing 
(zeroth derivative) through the fifth 
derivative for polynomials of degree two 
through five. They are in the form of 
tables of A , , ,  where i is the degree of the 
polynomial and j is the order of the 
derivative. Thus, to obtain the third 
derivative over 17 points, assuming a 
fourth degree polynomial ( A d 3 ) ,  one 
would use the integers in the column 
headed 17 of Table VIII. 

APPENDIX 111. COMPUTER PROGRAMS 

The programming of today’s high 
speed digital computers is still an ar t  
rather than a science. Different pro- 
grammers presented with the same 
problem will, in general, write quite 
different programs to satisfactorily 
accomplish the calculation. Two pro- 
grams are presented here as esamples 
of the techniques discussed in this paper. 
They are written in the F O R T R A S  
language, since this is one of the most 
widespread of the computer pro- 
gramming languages. Programmers 
using other languages should be able to 
follow the logic quite readily and make 
the appropriate translations. Each is 

written as a subroutine for incorporation 
into a larger program as required. 

Program 1 is a 9-point least squares 
smooth of spectroscopic data. The raw 
data has previously been stored by the 
main program in the region NDXTA. 

Lines 1 through 25 are evplanatoryand 
housekeeping to set up the initial con- 
ditions. The 9-point array NP contains 
the current set of data points to be 
smoothed. The main loop consists of 
lines26through 35. Theinner loop, lines 
28 through 30, moves the previous set of 
points up one position. The next point 
is added by line 31. In  lines 32 and 33 
the convoluting integers are multiplied 
by the corresponding data, and the 
products wmmed. In  line 34, the sum 
is divided by the normalizing constant 
and the resulting smoothed point is 
stored. 

Program 2 computes the precise peak 
position and intensity of a set of points 
which is known to contain a spectro- 
scopic peak. In order to approsimate a 
Lorentz contour ( 5 ) ,  values are con- 
verted to absorbance and the reciprocals 
are used in determining the coefficients 
of a polynomial (6) having the form: 

Y = am + u21z +a22z2 

The center is a t  the point where z = 
- a21/2a22. 

The data points to be used are points 
9 through l7stored inthearray S P O I K T  
and may have any value from 30 through 
999. In  the loop lines 12 through 14, each 
of these points is converted to absorb- 
ance, the reciprocal taken, and the re- 
sult stored in the array DNS. 

Since for azo and u22, the convolute 
function is symmetric about the origin, 
forming the sums P 4  through P1 in lines 
15 through 18 shortens the computation. 
The first constant, azo is found in line 
19, using the values of the 9-point 
convolute from Table I, and normalized 
in line 20. 

The value of uZ1 is computed in lines 
21-22 using the convolute from Table 
I11 (first derivative-quadratic). Xote 
that this is an antisymmetric function. 
Table VI furnished the constants for the 
computation of in line 24. Kote 
that the normalizing factor of 924 is 2! 
times the value given in the table. X 
is computed in line 26 and the corre- 
sponding value of y is computed in line 
27 by substituting the appropriate 
values into the polynomial. The 
absorbance or optical density (DEXS) 
is, of course, the reciprocal of y (line 28). 
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Control led -Potential Cou Io metric Ana lysis 
of N-Substituted Phenothiazine Derivatives 
F. HENRY MERKLE and CLARENCE A. DISCHER 

College o f  Pharmacy, Rutgers-The State University, Newark 4, N. 1. 

b Controlled-potential electrolysis is 
suitable for the coulometric deter- 
mination of several pharmaceutically 
important N-substituted phenothiazines. 
The concentration of sulfuric acid, used 
as the supporting electrolyte, has a 
differentiating effect on the half-wave 
potentials of the compounds studied. 
Polarographic measurements obtained 
with a rotating platinum microelec- 
trode established current-voltage 
curves. The compounds could be 
quantitatively oxidized to a free 
radical or to a sulfoxide by selection 
of suitable acid concentrations and 
applied potentials. Electroreduction 
of the free radicals occurs at approxi- 
mately +0.25 volt vs. S.C.E. on a 
platinum electrode. In the case of the 
sulfoxides, a single 2-electron reduc- 
tion step occurred at ca. -0.95 volt 
vs. S.C.E. on a mercury pool cathode. 
The determinations showed good re- 
producibility and an accuracy of ca. 
1% was obtained with sample con- 
centrations of 1 0-3 M or greater. 

HE establishment of an oxidation T mechanism for the various N -  
amino-substituted phenothiazines is a 
subject of considerable biological 
significance ( 2 ) .  The character of this 
oxidation has been investigated by 
using a variety of analytical methods 
(1, 4 ,  7 ,  8). However, because of the 
transient nature of a free radical inter- 
mediate, relatively little has been done 
to demonstrate the quantitative aspects 
of this reaction. 

The application of controlled- 
potential electrolysis to  the analysis of 
phenothiazine derivatives is an 
extension of previous work by the 
authors on the electro-oxidation of 
chlorpromazine (6). Since these com- 
pounds are electrolytically active a t  
moderate applied potentials, con- 
trolled-potential coulometry offers a 
rapid and absolute approach for their 

quantitative determination. Moreover, 
this technique makes possible the direct 
determination of the individual species 
involved in the oxidation sequence. 

The oxidation reactions for pheno- 
thiazine derivatives are, in general, 
represented by: 

(1) 

(2) 

(3) 

R :  +. R.  + e -  

and 

R .  + HzO + S + 2H+ + e -  

in 12N sulfuric acid, and 

R: +. R .  + e -  

and 
spontaneous 

2 R .  + H20 -- R: + S + 2H+ 
(4) 

in 1 N  sulfuric acid (2 ,  6 ) ,  where R: 
represents the initial reduced form of 
the compound, R .  represents the free 
radical obtained upon 1-electron oxida- 
tion, and S represents the corresponding 
sulfoxide. 

EXPERIMENTAL 

Instrumentation. Polarograms were 
obtained on a Sargent Model XXI re- 
cording polarograph. An H-type cell 
was used, with a sintered-glass disk of 
medium porosity separating the  two 
electrode compartments. A rotating 
platinum microelectrode served as  the 
working electrode us. S.C.E. as  refer- 
ence. To  obtain well defined reproduci- 
ble S-shaped curves it was necessary 
to pretreat the microelectrode by anodic 
polarization for 10 minutes in 1N or 
12N sulfuric acid at f1.0 volt vs .  S.C.E., 
followed immediately by a brief 2- to 3- 
minute electrolysis with the platinum 
microelectrode as the cathode. 

The controlled-potential electrolyses 
were performed with an electronic con- 
trolled-potential coulometric titrator, 
Model Q-2005 ORNL (5) .  Readout 
voltages were measured with a ?Jon- 
Linear Systems Model 484 A digital 
voltmeter. 

Electrolysis Cells and Electrodes. 
Two closed cells with operating capaci- 
ties of 100 and 20 ml., respectively, 
were used for oxidations. They were 
constructed to  accommodate large 
cylindrical, wire mesh, rotating plati- 
num electrodes, 2.5 cm. in diameter 
and  5 cm. in height for the large cell, 
and 1 cm. in diameter and 3 cm. in 
height for the small cell. The reference 
electrode (S.C.E.) and auxiliary plati- 
num cathode were isolated from the 
sample compartment by sintered-glass 
diaphragms and agar plugs. 

The sample compartment of the 
reduction cell consisted of a 125-m1. 
wide-mouthed Erlenmeyer flask with a 
standard-taper neck and fitted. cover. 
Approximately 30 ml. of mercury was 
used as the cathode pool. A glass 
propeller-type stirrer served to agitate 
the mercury pool. The reference elec- 
trode (S.C.E.) and auxiliary electrode 
(platinum anode) chambers mere sepa- 
rated from the cathode compartment by 
glass side-arms fitted with sintered-glass 
diaphragms and agar plugs. 

The three cells were constructed so 
that  nitrogen gas could be bubbled 
through the solution before and during 
electrolysis. The platinum gauze elec- 
trodes and the glass stirrer were rotated 
a t  600 r.p.m. using a Sargent Syn- 
chronous Rotator. 

Materials. REAGENTS. The  acid 
solutions were prepared using sulfuric 
acid, Baker analyzed reagent, distilled 
water, and ethanol U.S.P. grade. 

PHENOTHIAZINE DhRIVATIVES. The 
compounds studied were provided in 
powdered form by the suppliers in- 
dicated: chlorpromazine hydrochloride, 
chlorpromazine sulfoxide hydrochloride, 
prochlorperazine ethanedisulfonate, and 
trifluoperazine dihydrochloride, Smith, 
Kline & French Laboratories; pro- 
methazine hydrochloride and promazine 
hydrochloride, Wyeth Laboratories; tri- 
flupromazine hydrochloride, E. R .  
Squibb Laboratories; thioridazine hy- 
drochloride, SandDz Laboratories. The 
structural formulas and generic names 
of the compounds used in this work are 
shown in Figure 1. 
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