
© 2024 Guglielmo Braguglia

A simple library to implement an RTC software using a GPT timer on Arduino UNO R4,
where, the built-in RTC using the LOCO oscillator, offers a poor accuracy.

The original code of how to use a timer on Arduino UNO R4 is taken from the following
article: https://www.pschatzmann.ch/home/2023/07/01/under-the-hood-arduino-uno-r4-
timers/ written by Phil Schatzmann.

© 2024 Guglielmo Braguglia

Arduino UNO R4 boards offer an RTC built into the MCU. Unfortunately, no crystal is
provided and the used oscillator is 'LOCO', which leads to an error of up to 3 seconds/hour.
The R4SwRTC library uses one of the GPT timers in the MCU (which also does not have a
crystal for the main clock), allowing accuracies in the order of ±1 second/day. This accuracy
is still much lower than that of a true DS3231-based external RTC, but still much higher than
that of the internal RTC.

If you want to have the timer clock signal on an Arduino pin (pin D7) for debugging purposes,
you have to remove the comment on the following line in the .h of the library (at the
beginning):

/* #define OUT_CLOCK */

and change it to:

#define OUT_CLOCK

This way, pin D7 will change state every clock cycle of the timer and you should have a
signal of exactly 50 Hz (10 ms HIGH and 10 ms LOW) on it. This can help in choosing the
value of the begin() method parameter (timer frequency).

R4SwRTC Library v1.0.0

Library usage and initialization

Customization/Debug

Initialization

file:///Users/gpb01/Desktop/ReadMe.md

To use this library first you have to add, at the beginning of your program:

#include <R4SwRTC.h>

... next you have to call the class constructor:

R4SwRTC myRTC();

In the setup() function, the begin() method must be called to start the timer. This method
takes an optional parameter which is the timer's operating frequency expressed as a 'float'
type value. The default, if nothing is passed, is 100.0 Hz. Small corrections of thousandths of
Hz allow to correct the frequency of the timer and achieve the above mentioned accuracy of
± 1 second/day.
Note: Just as information, on my R4 WiFi, I had to use the value 100.076 to achieve the
goal.

Example:

myRTC.begin(100.076);

Set the software RTC time using the passed 'unixTime' (It is the number of seconds that
have elapsed since the Unix epoch, minus leap seconds; the Unix epoch is 00:00:00 UTC on
1 January 1970; leap seconds are ignored,with a leap second having the same Unix time as
the second before it, and every day is treated as if it contains exactly 86400 seconds).

Example:

myRTC.setUnixTime (1707753000);

Retrive the 'unixTime' from the software RTC

Example:

ret = myRTC.getUnixTime ();

Library methods

⦁⦁ void setUnixTime (time_t settingTime);

⦁⦁ time_t getUnixTime (void);

Set the software RTC time using the passed pointer to a struct tm. Return the 'unixTime'
equivalent. The 'struct tm' is defined inside as:

Member Type Meaning Range
------ ---- ------------------------ -----
tm_sec int seconds after the minute 0-59
tm_min int minutes after the hour 0-59
tm_hour int hours since midnight 0-23
tm_mday int day of the month 1-31
tm_mon int months since January 0-11
tm_year int years since 1900
tm_wday int days since Sunday 0-6
tm_yday int days since January 1 0-365
tm_isdst int Daylight Saving Time flag

Example:

struct tm myTM;
...
...
myRTC.setTmTime (&myTM);

Fill a 'struct tm' with the date/time from software RTC and return a pointer to the struct (as
defined inside) .

Example:

Serial.println (asctime (myRTC.getTmTime()));

The following example uses the "R4SwRTC" to

/*
 A simple program to demonstrate the use of the R4SwRTC library.

 Copyright (C) 2024 Guglielmo Braguglia
*/

#include "R4swRTC.h"

⦁⦁ time_t setTmTime (struct tm *);

⦁⦁ struct tm * getTmTime (void);

Demo Program

#define TMR_FREQ_HZ 100.076 /* If swRTC goes forward, decrease the
frequency, if it lags, increase the frequency */
#define CLOCK_UPDT 900000 /* loop() dateTime display interval in
millisec. */

r4SwRTC myRTC;

bool ledState = false;
time_t T_Time;
uint32_t ledMillis;
uint32_t lastMillis;

/*
 -- setup()
*/

void setup() {
 bool retVal;
 //
 delay (500);
 pinMode (LED_BUILTIN, OUTPUT);
 //
 Serial.begin (115200);
 while (!Serial) delay (100);
 //
 lastMillis = millis();
 retVal = myRTC.begin (TMR_FREQ_HZ);
 if (!retVal) {
 Serial.println ("Unable to start a free timer.");
 while (true) delay (100);
 }
 //
 Serial.setTimeout (10000);
 while (true) {
 Serial.print ("Please enter the actual uinxTime: ");
 T_Time = Serial.parseInt();
 Serial.println (T_Time);
 Serial.println();
 if (0 != T_Time) break;
 }
 myRTC.setUnixTime (T_Time);
 Serial.println (asctime (myRTC.getTmTime()));
 Serial.println ();
}

/*
 -- loop()

*/

void loop() {
 if (millis() - ledMillis > 1000) {
 if (ledState == true) {
 digitalWrite (LED_BUILTIN, HIGH);
 } else {
 digitalWrite (LED_BUILTIN, LOW);
 }
 ledState = !ledState;
 ledMillis += 1000;
 }
 //
 if (millis() - lastMillis > CLOCK_UPDT) {
 T_Time = myRTC.getUnixTime();
 Serial.print ("Time from SwRTC:");
 Serial.println (T_Time);
 Serial.println (asctime (myRTC.getTmTime()));
 Serial.println ();
 lastMillis = millis();
 }
}

