
NVSRAM Library
© 2020 Guglielmo Braguglia - Version 1.0.0

This library enables you to read and write into Microchip NVSRAM 23LCV512 (64K x 8 bit)
and 23LCV1024 (128K x 8 bit), battery-backed SPI RAM.

The NVSRAM is great for moving data in and out for applications, without worrying about
read-write cycles, wear and power consumption. By simply adding a battery, the NVSRAM
can retain data even after power loss and data retention is limited only by the battery
capacity.

Microchip's battery-backed SRAM devices 23LCVxxxx have true unlimited read and write
cycles, lower standby current (about 4µA), a wider voltage range and can be accessed via
an SPI (or SDI) serial bus for fast data transfers.

Library usage and initialization
Memory selection

Firts of all, you have to choose if the library should compile for 23LCV512 (64K x 8 bit -
default) or for 23LCV1024 (128K x 8 bit). To do this, it is necessary to remove / insert a
comment in front of the two-line that you can found at the beginning of the NVSRAM.h file
of the library.

By default you have:

#define NVSRAM_512
// #define NVSRAM_1024

which is the configuration for the 23LCV512 (64K x 8 bit). If you want to compile for the
23LCV1024 (128K x 8 bit) you have to move the comment from the second line to the first
line to have:

// #define NVSRAM_512
#define NVSRAM_1024

To use this library you have to add, at the beginning of your program:

#include <NVSRAM.h>

To instantiate the classe you have to use the NVSRAM constructor that takes two
parameters: the first one is the CS pin number that you have chosen and is mandatory,
the second one is a boolean to indicate if you want to initialize the SPI bus (and configure
the chip) or not, it is optional and its default value is true.

Example:

NVSRAM myNVSRAM(10);

... or, if you don't want to initialize the SPI bus (since you do this manually in your
program) :

NVSRAM myNVSRAM(10, false);

... but, in this case (and only in this case), before using the NVSRAM, you MUST call the
begin() method to configure the chip:

myNVSRAM.begin();

Library methods
erase()

Write 0x00 into all cells of the NVSRAM erasing the memory.

Example:

myNVSRAM.erase();

length()

Return the address of the last memory byte or the size of the memory.

e.g. myLong = myNVSRAM.length();

read()

Read a byte from NVSRAM. Requires the address of byte to read.

Example:

myByte = myNVSRAM.read(myAddress);

write()

Write a byte into NVSRAM. Requires the address and the value to write.

Example:

myNVSRAM.write(myAddress, myByte);

update()

Only for compatibility with the methods of the EEPROM library; does the same thing as
write() and have the same syntax.

Example:

myNVSRAM.update(myAddress, myByte);

get()

Read any data type or object from the NVSRAM. Requires the address and return the read
data or object.

Example:

myData = myNVSRAM.get(myAddress);

put()

Write any data type or object to the NVSRAM. Requires the address and the data to write.

Example:

myNVSRAM.put(myAddress, myData);

crc()

Compute and return the crc16 (uint16_t) of a block of bytes in NVSRAM. Requires the
starting address of the block and the number of bytes to include in the computation.

Example:

myCRC16 = myNVSRAM.crc(myAddress, myLength);

NVSRAM []

This operator allows you using your instance, to the class NVSRAM, like an array to read
a byte.

Example:

myByte = myNVSRAM[myAddress];

