
Jan 2016 V 0.1.0 beta. Doug Johnson (finson@whidbey.com)

Firmata Feature: DeviceFeature and Device Drivers
Proposed for addition in Firmata 2.6 or later.

The purpose of this feature is to facilitate arbitrary additions to Firmata capabilities without requiring a central registration or causing frequent
command code conflicts. The feature is implemented with a new FirmataFeature module DeviceFeature , a pair of new Sysex commands
(DEVICE_QUERY and DEVICE_RESPONSE), and the concept of a DeviceDriver abstract class with well defined method signatures.

In effect, DeviceFeature uses Firmata as a remote procedure call mechanism.

The DeviceFeature module receives, decodes, and dispatches incoming DEVICE_QUERY messages to the appropriate device driver. The concrete
sub-classes of DeviceDriver implement the various capabilities and make them available to callers through the API documented below. After a
request has been processed by the device driver, the DeviceFeature module captures the result, encodes, and sends the outgoing
DEVICE_RESPONSE messages back to the host.

Also note that any other module on the server can use the device driver API directly to access any device capabilities it might require. In this case,
there is no reformatting, encoding, transmission, or other involvement by Firmata, it's just one module calling another directly.

Introduction
Device Drivers are designed to allow a client-side application to control remote devices attached to a Firmata server. This is similar to the function
of the existing Firmata command set, but at a somewhat higher level of abstraction.

Terminology

Some terms with specific meanings for this feature are device, logical unit and handle.

Device. A device driver can control one or more instances of a specific device type. The capabilities of the driver are determined by the device
type, and are equally available to all the instances of the device. Each driver is given a simple name to identify the device type. For example,
MCP9808 is the name of a device driver for the MCP9808 temperature sensor. Hello is the name of a virtual device driver that deals with
"Hello World" type messaging.
Logical Unit. Each instance of a device is a logical unit. A device driver can handle one or more logical units, depending on device capabilities
and device driver implementation. Each logical unit is given a name based on the device name. For example, if there are two MCP9808
boards connected to a single server, then they are referred to as MCP9808:0 and MCP9808:1.
Handle. When a logical unit is first opened, a handle that uniquely identifies the device and logical unit of interest is returned to the caller for
use in future operations. The handle is valid until the logical unit is closed.

Device Driver API

The Device Driver API includes six methods documented below. The API is intended to be implemented by a device driver module on the server
side (Firmata micro) exactly as written. On the client side (client host), the same API calls should be implemented, but there will be small changes
dictated by the syntax of the language used for the client. Client-side proxy device drivers and server-side device drivers always use this API and
never compose Firmata messages themselves, instead they rely on Firmata to do that.

In the most common architecture, the device driver implements the main device control code on the server and provides access using the specified
API. A proxy on the client also implements the API signatures, and acts as a bridge to the actual device driver and uses the Device Driver Sysex
messages DEVICE_QUERY and DEVICE_RESPONSE to control the server side device driver, which in turn controls the component(s) using local
capabilities. In this scenario, the server side device driver receives the same calls and parameters as were provided to the proxy on the client.

On the other hand, it is also possible for a device driver to implement the main control code on the client and provide access there using the same
API. In this case the client device driver uses existing Firmata Features and commands as necessary to control the remote component(s) directly
and according to the data sheet. In this scenario, the server side Firmata responds to standard Firmata commands as received and there is no
specific device driver needed on the server.

Device Status and Control Registers

The status and control methods operate based on register numbers. On an actual device, physical register numbers usually start at 0 and max out
at a relatively low value like 16 or 32, depending on the device. This DeviceDriver API uses a 16-bit signed integer to identify the register of
interest, so virtual quantities and actions can be implemented in addition to the actual physical device capabilities.

Status Return from Methods

Each of the device driver methods returns an int value to the caller. If the value is negative, then the call failed and the value is an error code. If
the value is greater than or equal to 0, then the call succeeded. The meaning of the non-negative value depends on the call. For example, the
open method returns a handle for future use and the read method returns the number of bytes read. The details for each method are documented
below.

Firmata Messages

Two Sysex sub-commands are used by this feature: DEVICE_QUERY and DEVICE_RESPONSE .

There is a small set of action codes that specify what the driver is to do after it receives the message.

The first action is always OPEN . The caller supplies a logical unit name that can be recognized by a device driver, and upon success, a handle is
returned for use in future calls. After the handle has been received, the caller can read status (STATUS), write control (CONTROL), read data stream
(READ), and write data stream (WRITE). Once the caller has completed its operations on a device, it can use CLOSE to make the logical unit available
for another client.

The detailed message formats for each action are provided at the end of this document.

Method Prototypes
The method prototypes shown below are the primary interface to each Device Driver on the server and, with suitable modifications for language
syntax, on the client.

The type identifier int is used to indicate a signed integer value of at least 16 bits. Only the low order 16 bits (the two low order bytes) are
transmitted for these values by Firmata. The type identifier byte is used to indicate an integer value of at least 8 bits. Only the low order 8 bits
(one byte) are transmitted for these values by Firmata.

To the extent practical, the error code values and meanings are taken directly from the Linux/C error codes documented in errno.h and errno-
base.h, except that the actual values are negated for use in this application.

There are a few parameters whose values are constrained to 14-bit or 7-bit limits because of the way they are transmitted by Firmata. However,
they are always presented to the caller as fully sign-extended 16-bit or 8-bit values as documented below. The actual data values being
read/written are never constrained because they are always encoded for transmission.

Open

int open(const char* name)
int open(const char* name, int flags)

param (in) name Name of the logical unit to open. UTF-8 encoded, null terminated.

param (in) flags Flags associated with the open. Default: 0.

return Success: The newly assigned handle value. The handle is used in future calls to indicate the device driver and specific device being
addressed. Error: error code.

Status

Read information from a register (or virtual register) in the device or device driver.

The method and its parameters are as follows.

int status(int handle, int reg, int count, byte *buf)

param (in) handle The device driver selector value returned by Open in a previous call.

param (in) reg The register address at which to start reading.

param (in) count The number of bytes to read.

param (out) buf Pointer to the buffer to receive the data read. Must be large enough to hold count bytes.

return Success: The number of bytes actually read. A short count does not in itself cause an error, since the caller can determine that not
everything requested was read which may not actually be an error. Error: error code.

Control

int control(int handle, int reg, int count, byte *buf)

param (in) handle The device driver selector value returned by Open in a previous call.

param (in) reg The register address at which to start writing.

param (in) count The number of bytes to write.

param (in) buf Pointer to the buffer containing the data to write.

return Success: The number of bytes actually written. Ordinarily, this will be equal to the requested number of bytes to write. If it is short due to
some device error (eg, physical write failure), then the driver will return an error code (eg, EIO). However, under some unique circumstances for
some drivers, it may be reasonable for a short count to occur in which case the driver will return the short count and no error code. Error: error
code.

Read

int read(int handle, int count, byte *buf)

param (in) handle The device driver selector value returned by Open in a previous call.

param (in) count The number of bytes to read.

param (out) buf Pointer to the buffer to receive the data read. Must be large enough to hold count bytes.

return Success: The number of bytes actually read. A short count does not in itself cause an error, since the caller can determine that not
everything requested was read which may not actually be an error. Error: error code.

Write

int write(int handle, int count, byte *buf)

param (in) handle The device driver selector value returned by Open in a previous call.

param (in) count The number of bytes to write.

param (in) buf Pointer to the buffer containing the data to write. Must contain at least count bytes.

return Success: The number of bytes actually written. Ordinarily, this will be equal to the requested number of bytes to write. If it is short due to
some device error (eg, physical write failure), then the driver will return an error code (eg, EIO). However, under some unique circumstances for
some drivers, it may be reasonable for a short count to occur in which case the driver will return the short count and no error code. Error: error
code.

Close

int close(int handle)

param (in) handle The device driver selector value returned by Open in a previous call. The selected device driver is responsible for deciding
what actions if any are needed to "close" the connection. After a close, the only valid action on the device is another open.

return Success: 0. Error: error code.

Message Formats
The arguments provided by the caller of an API method are formatted into a DEVICE_QUERY message on the client side by the proxy device driver,
then transmitted to the server. Firmata dispatches the Sysex message to the DeviceFeature module, which decodes it and dispatches the API call
to the proper device driver. After processing by the device driver, DeviceFeature captures the results and formats them as a DEVICE_RESPONSE
message, and transmits the message back to the client host where the proxy device driver decodes the message and returns the result to the
original caller.

In the case of header values, the high order bit in a byte must be 0 since these values are transmitted without any encoding. In the case of
parameter blocks (the actual values that are read/written from/to the devices) there is no restriction on the values because these values are
encoded in Base-64 before transmission.

Header

The DEVICE_QUERY and DEVICE_RESPONSE message headers are Sysex message bytes 0 to 7.

DEVICE_QUERY header

0 START_SYSEX byte (0xF0).
1 Sysex command byte DEVICE_QUERY (0x30).
2 Device Action byte, with values as described below.
3 Reserved (0)
4 LSB of the 14-bit flags or handle value. The highest order bit is 0.
5 MSB of the 14-bit flags or handle value. The highest order bit is 0.
6 Reserved (0)
7 Reserved (0)

DEVICE_RESPONSE header

0 START_SYSEX byte (0xF0).
1 Sysex command byte DEVICE_RESPONSE (0x31).
2 Device Action byte that was provided in the associated DEVICE_QUERY.
3 Reserved (0)
4 LSB of the 14-bit handle value. The highest order bit is 0.
5 MSB of the 14-bit handle value. The highest order bit is 0.
6 LSB of the 14-bit return/status value. The highest order bit is 0.
7 MSB of the 14-bit return/status value. The highest order bit is 0.

Device Action Types

These are 7-bit values, stored in Firmata DEVICE_QUERY and DEVICE_RESPONSE messages at offset 2.

OPEN (0x00)
STATUS (0x01)
CONTROL (0x02)
READ (0x03)
WRITE (0x04)
CLOSE (0x05)

Flags or Handle

These are signed 14-bit values, stored in the Firmata DEVICE_QUERY and DEVICE_QUERY messages at offsets 4 and 5. The values are stored on the
client in a single, wider integer variable (int16_t , int32_t , etc).

4 flags (LSB, bit 7 = 0)
5 flags (MSB, bit 7 = 0)

or

4 handle (LSB, bit 7 = 0)
5 handle (MSB, bit 7 = 0, bit 6 = 0 (sign bit))

Status / Return Value from Methods

Each of the device driver methods returns an int value to the caller. The meaning of the returned int varies depending on the method called.
Handles, byte counts, and error status returns are all handled by Firmata the same way. Handle values and byte counts are always positive, to
distinguish them from error return values.

For transmission by Firmata, the int being returned is considered to be a 14-bit signed integer. The low-order 7 bits are put in the LSB, and bit 7
is set to 0. The higher-order 6 bits and the sign bit are put in the MSB, and bit 7 is set to 0. The resulting two bytes are stored in the header at
offsets 6 and 7. The value is reassembled and sign extended by Firmata on the client side before passing it back to the original caller.

Note that the byte count returned by the various methods is the number of actual bytes read or written, it is not the length of the encoded message
body. Once the message body is decoded back to the raw values on the client, the two lengths will again be equal. The encode/decode should all
happen outside the view of the caller, so this won't be a problem except as something to remember when debugging and looking at the messages
as they are transmitted.

Parameter Block

The parameter block contains the extra information needed to complete a request such as register numbers, byte counts, and the actual data read
or written.

The parameter block is transmitted in the body of the message (all bytes after offset 7 except the final END_SYSEX). This block is encoded before
transmission using an 8-bit to 7-bit encoder. The standard encoder is Base-64. This encode/decode is handled entirely by the Firmata libraries
right before and after transmission of the Sysex messages and should not ordinarily be visible to the client application.

Character strings are stored on the server in UTF-8. All eight bits in a UTF-8 byte are significant. A '0' in the high order bit indicates a character in
the first group of 127 characters (the ASCII character set). A '1' in the high order bit indicates that the byte is part of a multi-byte sequence.
Unfortunately, it might also indicate a Firmata control byte. Encoding in Base-64 avoids this problem.

In the following message tables, the message contents are all shown one byte per row. Remember that all bytes starting at offset 8 are encoded
prior to transmission. The values shown in the tables below starting at offset 8 are the 8-bit values before or after encoding / decoding, they
are not the 7-bit quantities that are actually transmitted.

Detailed Device Driver Message Formats

Device Driver - Open

Query

Message Header (Plain text)

0 START_SYSEX (0xF0)
1 DEVICE_QUERY (0x30)
2 0x00 (OPEN)
3 0 (Reserved)
4 flags (LSB)
5 flags (MSB)
6 0 (Reserved)
7 0 (Reserved)

Parameter Block (before encoding)

0..n name string (UTF-8)

Message End (Plain text)

k END_SYSEX (0XF7)

Response

Message Header (Plain text)

0 START_SYSEX (0xF0)
1 DEVICE_RESPONSE (0x31)
2 0x00 (OPEN)
3 0 (Reserved)
4 0 (Reserved)
5 0 (Reserved)
6 return/status (LSB)
7 return/status (MSB)

Message End (Plain text)

8 END_SYSEX (0XF7)

Device Driver - Status

Query

Message Header (Plain text)

0 START_SYSEX (0xF0)
1 DEVICE_QUERY (0x30)
2 0x01 (STATUS)
3 0 (Reserved)
4 handle (LSB)
5 handle (MSB)
6 0 (Reserved)
7 0 (Reserved)

Parameter Block (encoded during transmission with Base-64)

0 count (LSB)
1 count (MSB)
2 register (LSB)
3 register (MSB)

Message End (Plain text)

16 END_SYSEX (0XF7)

Response

Message Header (Plain text)

0 START_SYSEX (0xF0)
1 DEVICE_RESPONSE (0x31)
2 0x01 (STATUS)
3 0 (Reserved)
4 handle (LSB)
5 handle (MSB)
6 return/status (LSB)
7 return/status (MSB)

Parameter Block (encoded during transmission with Base-64)

0..n Status data bytes read, if any

Message End (Plain text)

k END_SYSEX (0XF7)

Device Driver - Control

Query

Message Header (Plain text)

0 START_SYSEX (0xF0)
1 DEVICE_QUERY (0x30)
2 0x02 (CONTROL)
3 0 (Reserved)
4 handle (LSB)
5 handle (MSB)
6 0 (Reserved)
7 0 (Reserved)

Parameter Block (encoded during transmission with Base-64)

0 count (LSB)
1 count (MSB)
2 register (LSB)
3 register (MSB)
4..n control bytes to write

Message End (Plain text)

k END_SYSEX (0XF7)

Response

Message Header (Plain text)

0 START_SYSEX (0xF0)
1 DEVICE_RESPONSE (0x31)
2 0x02 (CONTROL)
3 0 (Reserved)
4 handle (LSB)
5 handle (MSB)
6 return/status (LSB)
7 return/status (MSB)

Message End (Plain text)

8 END_SYSEX (0XF7)

Device Driver - Read

Query

Message Header (Plain text)

0 START_SYSEX (0xF0)
1 DEVICE_QUERY (0x30)
2 0x03 (READ)

3 0 (Reserved)
4 handle (LSB)
5 handle (MSB)
6 0 (Reserved)
7 0 (Reserved)

Parameter Block (encoded during transmission with Base-64)

0 count (LSB)
1 count (MSB)

Message End (Plain text)

12 END_SYSEX (0XF7)

Response

Message Header (Plain text)

0 START_SYSEX (0xF0)
1 DEVICE_RESPONSE (0x31)
2 0x03 (READ)
3 0 (Reserved)
4 handle (LSB)
5 handle (MSB)
6 return/status (LSB)
7 return/status (MSB)

Parameter Block (encoded during transmission with Base-64)

0..n Data bytes read, if any

Message End (Plain text)

k END_SYSEX (0XF7)

Device Driver - Write

Query

Message Header (Plain text)

0 START_SYSEX (0xF0)
1 DEVICE_QUERY (0x30)
2 0x04 (WRITE)
3 0 (Reserved)
4 handle (LSB)
5 handle (MSB)
6 0 (Reserved)
7 0 (Reserved)

Parameter Block (encoded during transmission with Base-64)

0 count (LSB)
1 count (MSB)
2..n data bytes to write

Message End (Plain text)

k END_SYSEX (0XF7)

Response

Message Header (Plain text)

0 START_SYSEX (0xF0)
1 DEVICE_RESPONSE (0x31)
2 0x04 (WRITE)
3 0 (Reserved)
4 handle (LSB)
5 handle (MSB)
6 return/status (LSB)
7 return/status (MSB)

Message End (Plain text)

8 END_SYSEX (0XF7)

Device Driver - Close

Query

Message Header (Plain text)

0 START_SYSEX (0xF0)
1 DEVICE_QUERY (0x30)
2 CLOSE (0x05)
3 0 (Reserved)
4 handle (LSB)
5 handle (MSB)
6 0 (Reserved)
7 0 (Reserved)

Message End (Plain text)

8 END_SYSEX (0XF7)

Response

Message Header (Plain text)

0 START_SYSEX (0xF0)
1 DEVICE_RESPONSE (0x31)
2 CLOSE (0x05)
3 0 (Reserved)
4 handle (LSB)
5 handle (MSB)
6 return/status (LSB)
7 return/status (MSB)

Message End (Plain text)

8 END_SYSEX (0XF7)

