
THE EQUATIONS OF
PLANETARY MOTION AND

THEIR NUMERICAL SOLUTION
Jonathan Njeunje, Dinuka Sewwandi de Silva

May 7, 2018

Abstract

Each day we ask ourselves questions about the big universe and how this great "mechanics"
function in such an incredible stability over the centuries. Some great minds of Earth’s history,
such as Isaac Newton worked on the theory of gravitation presented in the Principia, this stood
to be a major contribution in answering this question. By utilizing the theory we will focus in
setting up the differential equations that describe planetary trajectories in our solar system,
linearizing these equations and providing their solution with the help of numerical method
implemented from scratch.

1 Introduction
In our solar system, all the planets have an elliptic trajectory around the sun and the sun is also
non-static and describes a motion about a reference origin, like portrayed on the figure below.

Figure 1: Solar System

Those elliptical motions (orbits) can best be figured out by understanding the general equation
of planetary motion in the Cartesian co-ordinates system. Let us consider the following figure to
best picture our scenario.

Figure 2: Representation of two bodies under gravitational attraction in Cartesian co-ordinates

In this project we are going to derive the equations of planetary motion based on the assumption
that the masses of the planets can be approximated to point masses. This is reasonable cue to the
vast distances between bodies in the solar system.

Then, according to the Newton’s law of gravitational force acting on each of the masses we
obtain the following.

F = G
mm′

r2
(r̂)

F’ = G
mm′

r2
(−r̂)

The respective components Fx, Fy and Fz of the force F, are:

Fx = F
x′ − x
r

;

Fy = F
y′ − y
r

;

Fz = F
z′ − z
r

.

Furthermore, following Newton’s second law of dynamics we obtain:

Fx = m
d2x

dt2
;

Fy = m
d2y

dt2
;

Fz = m
d2z

dt2
.

2

Combining both set of equations, we finally get:

d2x

dt2
= Gm′

x′ − x
r3

;

d2y

dt2
= Gm′

y′ − y
r3

;

d2z

dt2
= Gm′

z′ − z
r3

.

Where r, is given by: r =
√

(x′ − x)2 + (y′ − y)2 + (z′ − z)2 (1)

Where G is a gravitational force and m and M are masses of the given planet and Sun respec-
tively, r is the distance between the planet and the Sun and F is the force.

3

2 IVP - Initial Value Problem
By using the general second order ordinary differential equation system of planetary motion we
will now be able to discuss the dynamics of such a motion for all the planets in our solar system
including the Sun. In order to reach this realization we designed a global system of equations,
accounting for all the interactions of j bodies of masses m1,m2...,mj on a given body, α of mass
mα.

Then our system of equation is:

d2xα
dt2

=

nb∑
j=1;j 6=α

Gmj
xj − xα
(rj,α)3

d2yα
dt2

=

nb∑
j=1;j 6=α

Gmj
yj − yα
(rj,α)3

d2zα
dt2

=

nb∑
j=1;j 6=α

Gmj
zj − zα
(rj,α)3

rj,α =
√

(xj − xα)2 + (yj − yα)2 + (zj − zα)2

where,
nb - Number of bodies which we consider
G - Constant of universal gravitation
mj - Mass of body j
rj,α - Distance between body j and body α
xα, yα, zα - Cartesian coordinates of body α
xj , yj , zj - Cartesian coordinates of body j

We can convert this system of equations into a standard initial value problem in the following
way:

Y =


x
y
z
vx
vy
vz

 =



x
y
z
dx

dt
dy

dt
dz

dt


thus,

dY

dt
= F (t, Y)⇒ d

dt


x
y
z
vx
vy
vz

 =



vx
vy
vz∑nb

j=1;j 6=αGmj
xj − xα
(rj,α)3∑nb

j=1;j 6=αGmj
yj − yα
(rj,α)3∑nb

j=1;j 6=αGmj
zj − zα
(rj,α)3


where,
G = 6.67E−11m3kg1s−2

nb := number of bodies = 10

4

A
ft
er

co
nv

er
ti
ng

ou
r
2n
d
or
de
r
sy
st
em

of
O
D
E
’s
to

a
1s
t
or
de
r
sy
st
em

of
O
D
E
’s
,s
ys
te
m

of
eq
ua

ti
on

s,
w
e
ne
ed
ed

a
se
t
of

in
it
ia
lv

al
ue
s
fo
r
ou

r
su
bs
eq
ue
nt

O
D
E

So
lv
er
.
T
hi
s
se
t
of

in
it
ia
l
st
at
es

is
ob

ta
in
ed

fr
om

th
e
JP

L
(J
et

P
ro
pu

ls
io
n
La

b)
ep
he
m
er
is

da
ta
ba

se
us
in
g
th
e
H
O
R
IZ
IO

N
w
eb

in
te
rf
ac
e.

T
hi
s
co
m
pr
is
ed

of
th
e

in
it
ia
ls
ta
te
s
po

si
ti
on

s
(b
ot
h
x
y
z
co
-o
rd
in
at
es
)
an

d
ve
lo
ci
ti
es

(b
ot
h
x
y
z
co
-o
rd
in
at
es
),
m
as
se
s
an

d
m
ea
n
ra
di
us

of
al
l1

0
m
aj
or

bo
di
es

in
vo
lv
ed

in
ou

r
so
la
r
sy
st
em

.

T
he

fo
llo

w
in
g
ta
bl
e
su
m
m
ar
iz
es

th
is

in
it
ia
ls

ta
te
s
co
rr
es
po

nd
in
g
to

th
e
so
la
r
sy
st
em

co
nfi

gu
ra
ti
on

on
A
pr
il
6t
h,

20
18
:

T
ab

le
1:

In
it
ia
lS

ta
te
s
fr
om

JP
L
H
O
R
IZ
O
N
S
Sy

st
em

P
O

S
IT

IO
N

(m
)

V
E
L
O

C
IT

Y
(m

/s
ec

)
(k

g)
(m

)

#
B

O
D

Y
P

X
P

Y
P

Z
V

X
V

Y
V

Z
M

A
S
S

R
A

D
IU

S

1
SU

N
1.
81
89
9E

+
08

9.
83
63
0E

+
08

-1
.5
87
78
E
+
07

-1
.1
24
74
E
+
01

7.
54
87
6E

+
00

2.
68
72
3E

-0
1

1.
98
85
4E

+
30

6.
95
50
0E

+
08

2
M
E
R
C
U
R
Y

-5
.6
75
76
E
+
10

-2
.7
35
92
E
+
10

2.
89
17
3E

+
09

1.
16
49
7E

+
04

-4
.1
47
93
E
+
04

-4
.4
59
52
E
+
03

3.
30
20
0E

+
23

2.
44
00
0E

+
06

3
V
E
N
U
S

4.
28
48
0E

+
10

1.
00
07
3E

+
11

-1
.1
18
72
E
+
09

-3
.2
29
30
E
+
04

1.
36
96
0E

+
04

2.
05
09
1E

+
03

4.
86
85
0E

+
24

6.
05
18
0E

+
06

4
E
A
R
T
H

-1
.4
37
78
E
+
11

-4
.0
00
67
E
+
10

-1
.3
88
75
E
+
07

7.
65
15
1E

+
03

-2
.8
75
14
E
+
04

2.
08
35
4E

+
00

5.
97
21
9E

+
24

6.
37
10
1E

+
06

5
M
A
R
S

-1
.1
47
46
E
+
11

-1
.9
62
94
E
+
11

-1
.3
29
08
E
+
09

2.
18
36
9E

+
04

-1
.0
11
32
E
+
04

-7
.4
79
57
E
+
02

6.
41
85
0E

+
23

3.
38
99
0E

+
06

6
JU

P
IT

E
R

-5
.6
68
99
E
+
11

-5
.7
74
95
E
+
11

1.
50
75
5E

+
10

9.
16
79
3E

+
03

-8
.5
32
44
E
+
03

-1
.6
97
67
E
+
02

1.
89
81
3E

+
27

6.
99
11
0E

+
07

7
SA

T
U
R
N

8.
20
51
3E

+
10

-1
.5
02
41
E
+
12

2.
28
56
5E

+
10

9.
11
31
2E

+
03

4.
96
37
2E

+
02

-3
.7
16
43
E
+
02

5.
68
31
9E

+
26

5.
82
32
0E

+
07

8
U
R
A
N
U
S

2.
62
50
6E

+
12

1.
40
27
3E

+
12

-2
.8
79
82
E
+
10

-3
.2
59
37
E
+
03

5.
68
87
8E

+
03

6.
32
56
9E

+
01

8.
68
10
3E

+
25

2.
53
62
0E

+
07

9
N
E
P
T
U
N
E

4.
30
30
0E

+
12

-1
.2
42
23
E
+
12

-7
.3
58
57
E
+
10

1.
47
13
2E

+
03

5.
25
36
3E

+
03

-1
.4
27
01
E
+
02

1.
02
41
0E

+
26

2.
46
24
0E

+
07

10
P
LU

T
O

1.
65
55
4E

+
12

-4
.7
35
03
E
+
12

2.
77
96
2E

+
10

5.
24
54
1E

+
03

6.
38
51
0E

+
02

-1
.6
07
09
E
+
03

1.
30
70
0E

+
22

1.
19
50
0E

+
06

5

3 Numerical method description
Before diving into writing and implementing our own numerical method of ODE Solver we needed
to verify our designed IVP model of the solar system by existing and certified ODE solvers such
as "ode45" and "ode113". These two solvers amongst many others where chosen for particular
reasons we will discuss in the next section.

After simulating our IVP with the above solvers, we obtained positive results (discussed in the
next section) validating our designed IVP model for the solar system.

The next step was to implement from scratch our own ODE solver and apply the designed IVP
to it. We made the choice of implementing an Explicit Runge-Kutta method (ERK). But
before we could used this numerical method, we first needed to define our RK-stages (ν), RK-nodes
(ci), RK-weights (bi) and RK-matrix (A = [aij]). And, verify its order of convergence, exactness
and stability.

The general equations of an ERK is:

yn+1 = yn + h

ν∑
j=1

bjf(tn + cjh, ξj)

where
ξ1 = yn
ξ2 = yn + ha2,1f(tn, ξ1)
ξ3 = yn + ha3,1f(tn, ξ1) + ha3,2f(tn + c2h, ξ2)

...
ξi = yn + h

∑i−1
j=1 ai,jf(tn + cjh, ξj), i = 1, . . . , ν

and h is the step size of our time span. According to our designed IVP, ξi will be a vector of
6 ∗ nb = 6 ∗ 10 = 60 elements. Similarly, yn+1 also will be a vector of 60 elements.

3.1 Definition of our RK method
The chosen ERK for our implementation has the following parameters:

ν = 4

c =
[
0 .5 .5 1

]
b =

[
1/6 1/3 1/3 1/6

]
A =


0 0 0 0
.5 0 0 0
0 .5 0 0
0 0 1 0


This method is identified as an Explicit Runge-Kutta method due to its lower triangular matrix,
A. Additionally, to the above definition, the ξi’s are as follows:

ξ1 = yn
ξ2 = yn + .5hf(tn, ξ1) = yn + .5hf(tn, yn)

ξ3 = yn + .5hf(tn + c2h, ξ2) = yn + .5hf
(
tn + .5h, yn + .5hf(tn, yn)

)
ξ4 = yn + hf(tn + c3h, ξ3) = yn + hf

(
tn + .5h, yn + .5hf

(
tn + .5h, yn + .5hf(tn, yn)

))
By applying these ξi’s on the general ERK formula, we can predict order of convergence of this
method.

6

3.2 Order of convergence of the chosen RK
The chosen ERK method defined in the previous subsection is of stage, ν = 4 and thus of order
4. This claim can further be verified by applying the ERK on the following IVP; applied under
different values of the step size and interpreting the resultant graphs.

IVP: y′(t) = −y; y0 = 1 when t = 0

The ERK will by applied with step sizes: h = .1/2k, with k = 1, 2, 3, 4.

The exact solution for this IVP is known to be: y(t) = e−t

After running the written MatLab codes for this text, the following graphs were obtained:

Figure 3: Error/Error-ratio test

By inspecting the error-ratio plot on the right of the above figure we observe a trend:

error-ratio→ 16 = 24 = 2p

This interpretation let us conclude that the order of convergence, p = 4.

According to the definition of exactness, a given method is exact for the polynomials of degree less
than or equal to d , where d is the degree of the exactness and usually it is equal to the order of
the method. Therefore, the chosen ERK method is exact for the polynomials of degree less than
or equal to 4. Because, 4 is the order of convergence of this ERK method.

Additionally, it can be interpreted from the errors bar chart that the ERK method of oder 4 is
exact, as the error is in a close neighborhood of zero.

3.3 verification of stability of the chosen RK
The stability of RK method can be define according to the general equation of RK and the follow-
ing equations. Then apply RK method for the following IVP.

y′ = λy

y(t0) = y0

Now consider the equations for the ξ’s. In general its given by:

ξk = yn + hλ

k∑
i=1

ak,if(tn + cih, ξi)

7

In this equation,
∑k
i=1 ak,if(tn + cih, ξi) is a dot product of the kth row of the matrix A and a

vector of ξ. Let’s define some vectors as follows,

ξ =


ξ1
ξ2
...
ξν

 , b =


b1
b2
...
bν

 , 1 =


1
1
...
1


Then, the system of equations for ξ’s can be represented as;

ξ = yn.1 + hλAξ ⇒ ξ = (I − hλA)−1.1.yn
By using this ξ in the general equation of RK, we can be obtain,

yn = (1 + zbT (I − zA)−11)ny0 where z = hλ

Then the stability domain of RK can be find when |r(z)| < 1 where r(z) = 1 + zbT (I − zA)−11.

By using above condition, can be find the stability domain of the chosen ERK, which is men-
tioned in subsection (3.1). Therefore,

I − zA =


1 0 0 0
−.5z 1 0 0
0 −.5z 1 0
0 0 −z 1

 and (I − zA)−1 =


1 0 0 0
.5z 1 0 0
.25z2 .5z 1 0
.25z3 .5z2 z 1



bT (I − zA)−11 =
[
1/6 1/3 1/3 1/6

] 
1 0 0 0
.5z 1 0 0
.25z2 .5z 1 0
.25z3 .5z2 z 1



1
1
1
1

 = 1 +
z

2
+
z2

6
+
z3

24

⇒ r(z) = 1 + z
(
1 +

z

2
+
z2

6
+
z3

24

)
= 1 + z +

z2

2
+
z3

6
+
z4

24

By using Mathematica codes for r(z), the following stability (shaded) region was obtained:

Figure 4: Stability domain

According to this stability region it can be concluded that, the chosen ERK method is not
A-stable. Because, for a method to be A-stable it must include C− in its stability region. Despite
the fact that an A-stability wasn’t reached, necessary stability domain could be achieved. This
achieved stability will be useful the next section.

8

4 Numerical Results and Discussion
After a repeated set of simulations we made some adjustments regarding the number of planets
considered and the step size to use with the different ODE Solvers.

The adjustment made on the number of planet consider, dealt with the non-consideration of
planet Pluto. This adjustment was made in order to reduce the computational intensity of our
code and enhanced faster calculations.

The second adjustment made on the step size, mainly had to constrain the step size to a value
of 1. This adjustment was done to obtain better stability with our set of non-stiff ODE Solvers.
Mainly, due to the fact that our IVP is a Stiff IVP, and, thereby necessitated (for more appropriate
circumstances) a stiff ODE Solver with an A-stability region.

Nonetheless, with the appropriate adjustments, the following satisfactory results were obtained
and interpreted as follows:

4.1 Build-in ode45

The first ODE used was the ode45. This build-in MatLab ODE Solver was chosen to test the IVP
model and make sure it is designed correctly. The result obtained, Fig 5, showed great instability
of this ODE Solver due to the stiffness of the IVP. And, the added adjustment couldn’t lead to
better results.

Figure 5: Solar System Simulation - ode45

In the next figure, Fig 6, we can observe the instability as the parameters of Mercury tend to
decay much faster than that of the other planets. This behavior generated an error caused by the
lack of better accuracy.

9

Figure 6: Solar System Simulation - ode45 - Inner planets

This ODE Solver couldn’t complete the solution and crashed. The following figures show the
plot of the distance from the different bodies to the reference point which in this case is not the
sun but the origin.

(a) Distance from origin - ode45 - Inner planet (b) Distance from origin - ode45 - Outer planet

(c) Distance from origin - ode45 - Sun

Figure 7: Distance from origin

10

4.2 Build-in ode113

By observing from the previous method that the modeled IVP had stringent error tolerances, it
was necessary to retry the test of the IVP with higher accuracy ODE Solver as ode113. The ode113
is also a MatLab build-in Solver. The figure, Fig 8, depicts the result obtained.

Figure 8: Solar System Simulation - ode113

This result had better stability and calculated a complete solution for a time span corresponding
to the period of revolution of the planet Neptune (165 earth years). The result lead to a validation
of the IVP model.

Figure 9: Solar System Simulation - ode113 - Inner planets

11

(a) Distance from origin - ode113 - Inner planet (b) Distance from origin - ode113 - Outer planet

(c) Distance from origin - ode113 - Sun

Figure 10: Distance from origin

4.3 Implemented ERK of order 4, ode652

The final step was to build from scratch an ODE Solver to attain better (or similar) results as
those obtained with ode113.

The ODE Solver, ode652, coded on MatLab implemented the ERK of order 4 earlier described
in the Numerical method section of this paper. This implementation achieved better stability
compared to ode113 and ode45. A complete simulation of a time span equivalent to the period of
the planet Neptune was obtained. Fig 11, shows this result and Fig 12, shows a bigger scale of the
inner planets of the solar system.

Figure 11: Solar System Simulation - ode652

12

Figure 12: Solar System Simulation - ode652 - Inner planets

The above figure and of the distances from the reference point below, clearly shows a more
stable revolution of Mercury. This result is obtained by a solution made with better accuracy
compared to those of ode113 and ode45.

(a) Distance from origin - ode652 - Inner planet (b) Distance from origin - ode652 - Outer planet

(c) Distance from origin - ode652 - Sun

Figure 13: Distance from origin

With this implementation the stability domain portrait by the chosen ERK of order 4, showed
to sufficient (under certain adjustments) for the obtained solution.

13

5 Conclusion
As a summary, the implemented method discussed in this paper is a non A-stable method. Nonethe-
less, this method had a stability region necessary and sufficient for our implementation. The
modeled IVP mentioned under section 2 was analyzed to be stiff due to the existence of some its
parameters who tend to grow faster than others (Mercury’s). Thereby, higher stability needed to
be reached for satisfactory result.

After, attempting solutions of the IVP with build-in MatLab ODE Solvers, we realized a very
high error dependency of the IVP model. Due to this condition, the choice of implementing the
ERK of order 4 was made appropriate because of the better accuracy/stability it provided under
certain adjustments.

Finally, we were able to implement a method, ode652, with much more better stability than
certain build-in MatLab methods, ode45 and ode113 of quite similar non A-stability behavior, to
solve the modeled IVP of solar system dynamics.

14

References
[1] ARIEH ISERLES, University of Cambridge, (1992), A First Course in the Numerical Analysis

of Differential Equations

[2] NAZA, (2018), HORIZONS Web-Interface,
https://ssd.jpl.nasa.gov/horizons.cgi#top

[3] InfoPlease, (2018), Basic Planetary Data,
https://www.infoplease.com/science-health/solar-system/basic-planetary-data

[4] MATLAB, (2018), Choose an ODE Solver - MATLAB and Simulink,
https://www.mathworks.com/help/matlab/math/choose-an-ode-solver.html

[5] Wikipedia, (25 October 2017), List of Runge–Kutta methods,
https://en.wikipedia.org/wiki/List_of_Runge%E2%80%93Kutta_methods

[6] Guido Kanschat, (May 2, 2018), Numerical Analysis of Ordinary Differential Equations,
https://en.wikipedia.org/wiki/List_of_Runge%E2%80%93Kutta_methods

[7] Kyriacos Papadatos, (Unknown), THE EQUATIONS OF PLANETARY MOTION AND
THEIR SOLUTION,
http://gsjournal.net/Science-Journals/Research%20Papers-Astrophysics/Download/
3763

15

https://ssd.jpl.nasa.gov/horizons.cgi#top
https://www.infoplease.com/science-health/solar-system/basic-planetary-data
https://www.mathworks.com/help/matlab/math/choose-an-ode-solver.html
https://en.wikipedia.org/wiki/List_of_Runge%E2%80%93Kutta_methods
https://en.wikipedia.org/wiki/List_of_Runge%E2%80%93Kutta_methods
http://gsjournal.net/Science-Journals/Research%20Papers-Astrophysics/Download/3763
http://gsjournal.net/Science-Journals/Research%20Papers-Astrophysics/Download/3763

Appendices

1 %% FUNCTION: ode652 ∗∗∗
2 f unc t i on [T,Y] = ode652 (ODE,TSPAN,Y_INIT)
3 % De f i n i t i o n o f the RK−Method parameters
4 A_matrix = [0 0 0 0 ; . 5 0 0 0 ; 0 . 5 0 0 ; 0 0 1 0] ;
5 b_weights = [1/6 1/3 1/3 1 / 6] ;
6 c_nodes = [0 . 5 . 5 1] ;
7

8 nu = length (c_nodes) ; %Det o f RK−Method ’ s # o f s t ag e s
9

10 STEP = TSPAN(2)−TSPAN(1) ; % Def o f the s tep s i z e
11 T = TSPAN’ ; % Def o f the time span .
12 N = length (T) ; %Det o f the # o f s t ep s .
13 M = length (Y_INIT) ; % The number o f va lue s f o r a g iven step .
14 Y = zero s (M,N) ; % I n i t i a l i s a t i o n o f the vec to r o f Y.
15 Y(: , 1) = Y_INIT ; % Def o f the I n i t i a l va lue .
16

17 %% RK−Method
18 Xi = ze ro s (M, nu) ;%I n i t i a l i s a t i o n o f the Xi ’ s .
19 f o r n = 1 :N−1
20

21 So = ze ro s (M, 1) ; %I n i t o f the out t e r sum f o r each Y.
22 f o r j = 1 : nu
23

24 Si = ze ro s (M, 1) ; %i n i t o f the inner sum f o r each Xi .
25 f o r i = 1 : j−1
26 Si = Si + A_matrix (j , i) ∗ODE(T(n)+c_nodes (i) ∗STEP, Xi

(: , i)) ; %Det o f the inner sum .
27 end ;
28

29 Xi (: , j) = Y(: , n)+STEP∗ Si ; %Determination o f Xi ’ s
30

31 So = So + b_weights (j) ∗ODE(T(n)+c_nodes (j) ∗STEP, Xi (: , j)
) ; %Det o f the out t e r sum .

32

33 end ;
34

35 Y(: , n+1) = Y(: , n)+STEP∗So ; %Det o f the Approximation o f the
next y by RK−method

36 end ;
37

38 Y = Y’ ;
39 end

16

	Introduction
	IVP - Initial Value Problem
	Numerical method description
	Definition of our RK method
	Order of convergence of the chosen RK
	verification of stability of the chosen RK

	Numerical Results and Discussion
	Build-in ode45
	Build-in ode113
	Implemented ERK of order 4, ode652

	Conclusion
	Appendices

