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ABSTRACT

Newton's original work on the theory of gravitation presented in the Principia, even in its best
translation, is difficult to follow. On the other hand, in the literature of physics this theory appears
only in fragments. It is because of its intellectual beauty that the author decided to compile all those
fragments and present this theory in its complete version. The framework is made up of four parts: (a)
setting up the differential equations that describe planetary trajectories; (b) linearising these equation;
(¢) providing their solution.

1. INTRODUCTION

From the world of antiquity the Greeks knew the existence of the five planets (Mercury, Venus,
Mars, Jupiter, and Saturn). They generally believed that the Earth is the center of the Universe and
that the sun and the planets revolve around it. But around 280 b.c., a Greek astronomer, Aristarchus
of Samos (310-250 b.c.), in a revolutionary departure from the geocentric idea, he reasoned that the
Earth rotates on its axis once every 24 hours, and along with the other planets it revolves around the
sun once a year [1].

The above proposition was not taken seriously by the Aristarchus’ contemporaries. The view that
the Earth was in the center of the Universe was deeply rooted in their religious beliefs. This distorted
view continued to prevail unchallenged for as many as eighteen hundred years, whereupon a Polish
monk, Nicholas Copernicus (1473-1543), revived Aristarchus’ proposition as a plausible explanation
for the apparent movement of the planets. Copernicus was credited in the history of science as the
inventor of the heliocentric idea for our solar system, but to Galileo he was just "the restorer and
confirmer" [1].

Another great mind in the history of Astronomy, Johannes Kepler (1571-1630) was destined to
advance Copernicus' work. Based on the experimental work of another great Danish astronomer,
Tycho Brahe (1546-1601), Kepler claimed that planets prescribe elliptical rather than circular orbits
around the sun, which were in perfect agreement with their apparent motion.

Aristarchus’ idea, restored by Copernicus, and advanced by Kepler, culminated to its full
development by the genius of Isaac Newton (1642-1727). With Kepler's empirical discoveries at
hand, Newton endeavored to answer two fundamental questions. Firstly, what force causes the
planets to revolve around the sun; and secondly, why their orbits are elliptical. In his pursuit to find
answers to these two questions, Newton discovered the theory of universal gravitation.

Subsequently, based on the law of universal gravitation and his other great discovery, the second
law of dynamics, Newton proved theoretically that planets do indeed prescribe elliptic trajectories
around the sun.



His proof has become monumental for its ingenuity and its immense intellectual beauty. Yet, its
coverage in physics textbooks is on the whole fragmented and incomplete. Resorting to the original
source of this work, the arguments are found to be difficult to follow. Therefore, the author
considered it worthwhile to attempt to reach Newton’s conclusion via an alternate route, so that the
beauty of the journey along this path be exposed to its full extent.

2. REVIEW OF KEPLER'S LAWS OF PLANETARY MOTION

Ancient Greek astronomers had observed that the apparent motion of five "stars" (in reality
planets) was not following a smooth path against the background of the sky as the other stars did, but
an irregular path as shown on Figure 2.1. To them, this behavior was not normal compared to the
observable regular pathways of the other stars. As a result, they collectively named these five
"undisciplined stars" planets (Greek: mhavrntat), meaning wanderers. Individually, these five
planets were named after the Greek deities (in their Latin names) Mercury, Venus, Mars, Jupiter, and
Saturn. The other three planets, Uranus, Neptune, and Pluto were discovered much later after the
invention of the telescope.
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FIGURE 2.1 Apparent trajectories of a planet, and of a star

According to the Copernican heliocentric model, these planets, including the Earth, revolve
around the sun in circular orbits. However, based on Tycho Brahe's observations, Kepler concluded
that the speculated circular orbits were not in agreement with those observations. After twenty years
of hard work, Kepler tried elliptical orbits, and to his amazement he observed an astonishing match.
Kepler's conclusion from this monumental work, are consummated in his three well-known laws of
planetary motion [1].

1. The orbit of a planet is an ellipse with the sun at one of its foci.

2. The line joining the sun to a planet sweeps over equal areas in equal intervals of time,
regardless of the length of the line.
3. The square of the period of any planet is proportional to the cube of its mean distance
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from the sun, i.e., p2 = kr~. The constant k is the same for any planet.



As it may be observed from Figure 2.2, showing the orbit of a hypothetical planet with the sun at
one of the foci of the ellipse, the areas PQS and RTS generated at equal time intervals are equal.

FIGURE 2.2 Typical trajectory of the orbit of a planet

3. THE LAW OF UNIVERSAL GRAVITATION

After the discovery of the laws of dynamics, Newton's subsequent great contribution to the
advancement of science was his discovery of universal gravitation. From his law of dynamics,
Newton knew that a force must act on a body in order for that body to move on a curved trajectory
(e.g., along the circumference of a circle or an ellipse). After many years of intense study, and guided
perhaps by Kepler's empirical laws of planetary motion, he discovered that the force responsible for
the planetary trajectories was no other than the force, which is commonly known as gravity. He then
concluded that this force, identified as an attraction between two masses, might be mathematically
defined as follows:

Between two objects of mass m and M (Fig. 3.1), respectively, at a distance r from each other, an
attractive force F is developed whose magnitude is proportional to each of the two masses and
inversely proportional to the square of their distance "r", i.e.;

FIGURE 3.1 Gravitational attraction between two masses



F=G@ G.1)
r

where G is defined as the constant of universal gravitation and its value is:
G=6.670x 10! Newton-m?/kg?

—6.670x 1078 dyn-cmo/gm? (3.2)

Equation (3.1) applies equally to a sun-planet pair and to any other pair of masses anywhere in the
Universe. From Figure 3.1, and equations (3.1a) and (3.1b), it is shown that this attraction force is
effected on each of the two masses. From now on, this force will be defined as the gravitational
force.

F, = G%ur (3.1a)
r
F, = —G%ur (3.1b)
r

where u, is a unit vector in the direction of m to M.

It 1s tempting to speculate that Newton is quite likely to have been guided by Kepler’s laws in
deriving the law of universal gravitation. Thus, using the circle as a special case for an ellipse, the
centripetal force keeping a planet on its circular orbit is equal to the centrifugal force, that is:

2
muv
F= (3.2)
r
Taking into consideration that
2
V=Wr=—r (3.3)
T
then equation (3.2) becomes:
47%r
F= 7 (3.4)
T

But in accordance with Kepler’s third law, we will have:

T? = kr? (3.5)

Therefore, substituting equation (3.5) into (3.4) we get:



F=|—m-1+ (3.6)

2
Equation (3.6) is no different than equation (3.1) if we substitute

for GM where G is the

gravitational constant and M is the mass of the sun.

4. GENERAL EQUATIONS OF PLANETARY MOTION IN CARTESIAN CO-ORDINATES

Shown on Figure 4.1 are two point masses m and m" having co-ordinates in a Cartesian inertial
system (i.e., orthogonal, not rotating, and not accelerating) X, y, z, and x', y', Z', respectively.
If the distance between m and m' is r, then in accordance with Newton’s law of gravitation the force
acting on each of the masses will be:

!

F=G" 1)
r
F'=-G"2% 4.2)
r

It has been assumed that the vector r has a positive direction from m to m’. Therefore, as the
force F has the direction of the vector r will be positive, whereas the force F' will be negative.
The cosines for the components Fy, Fy, and F, of the force F are as follows:

’ 4.3)
r r r
Therefore, the component forces Fy, Fy, and F, can be defined as follows:
x'-x

F.=F (4.4)
r

F,=FX=2 4.5)
r

F,=F*~% (4.6)
r
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FIGURE 4.1 Illustration of two point masses under mutual gravitational attraction

Similarly, the cosines for the components of the force F' are:

x-x"  y-y z-z'
—-r -r -r
The component forces ‘for the force F' are:
| X=X x-x' x-x'
F.=F =-F =F
-r -r r
F)')=F,y_y=—Fy_y =Fy_y
-r -r r
F _p it _ _piti_pi-z
-r -r r

In accordance with Newton’s second law of dynamics, we have:

2
Fx=md—;
dt
2
Fy =md_2y
dt
2
Fz=md—2Z
dt

(4.7)

(4.8)

(4.9)

(4.10)

4.11)

(4.12)

(4.13)



Combining equations (4.11), (4.12), and (4.13) with equations (4.4), (4.5), and (4.6), we will get the equation
of motion for the mass m. Thus, we will have:

d’x X —x
5 = Gm 3 (4.14)
dt r
d2 . I_
_2y=Gm i (4.15)
dt r
d2 . I_
e (4.16)
dt r
Applying the same logic for the mass m’, we will also have:
: d*x’
Fx = m/? (417)
t
' d2 '
Fy=m2 (4.18)
dt
' d2 '
Fo=m'"~ (4.19)
dt

Combining equations (4.17), (4.18), and (4.19) with (4.8), (4.9), and (4.10), we obtain the equations of motion
for mass m’. Thus;

d’x x—-x
4 r _om (4.20)
dt? P
dzy; y— yl
— =Gm (4.21)
dt? P
dZZI 7— Zr
——=Gm (4.22)
dt? P
\/ ! 2 ! 2 12 2
where r= (x - x) + (y - y) + (z - z) (4.23)

Introducing ‘j’ additional point masses, equations (4.14), (4.15), (4.16), and (4.20), (4.21), (4.22) become:

2 " X .
CNE e MR St B e A (4.24)



2 ’ L=
Q=Gm'y y+Eij i~y

T o

Z_ o2 -2 2j =z
?—Gm r3, +§ij (r,-)sr (4.26)
% -Gm* 5t gGm ; xzrt)x (4.27)
zf Gmyr3y’+§ij y(frj)f (4.28)

, . .

?i—c er +§ij(]4‘.—)3 (4.29)
where rj= \/(9“’“1)2 +(y- yj)2 +(z ‘Zj)2 (4.30)
wi () () ) @31

To simplify the system of equations (4.24) through (4.29), we rewrite them based on a frame of reference whose
the origin coincides with the mass m. The new variables X, Y, and Z are defined by the following relationships:

xX'-x=X; y-y=Y;, 7-z=Z (4.32a)
By subtracting (4.32a) from (4.32b), we also get:

Subtracting equation (4.24) from (4.27), (4.25) from (4.28), and (4.26) from (4.29); and substituting the
relationships (4.32a), (4.32b), and (4.33), we get:



— G(m+m —->yGm L+ N Gm. (4.34)
AR AT
2 Y, Y, -Y
LY G+ m) -3 Gm,—+ G, (4.35)
dr S T A
2 Z -7
C;TZZ=—G(m+m’)£3—EGmJ- +2 m; =L (4.36)
T (rJ) (rj)
where I’=\/X2+Y2+Z2 (4.37)
=XV 427 (4.38)
rj‘=\/(X—Xj)2+(Y—Yj)2+(Z—Zj)2 (4.39)

To simplify notation, we rewrite equations (4.34) through (4.39) with new variables x=X, y=Y, z=7,
xj=Xj, ¥i=Yj, and z =Z;. We also set M =m, and m’ = m. Thus we get:

Equations (4.40) through (4.45) describe the motion of a planet of mass m with respect to a sun of mass M
under the interference of planets m;, mo,...,m;. The variables x, y, z are the Cartesian co-ordinates of the planet
m in a frame of reference whose origin is the sun. The variables x;, y;, and z; are the Cartesian co-ordinates of the
planet m; in the same frame of reference. It should be noted that the equations of planetary motion were derived
based on the assumption that the masses of the planets can be approximated to point masses. Because of the vast
distances associated within a planetary system, this assumption is reasonable.



‘6’722" - =G(M 4 m) - >, (2")3 : E Gm, x(;{_)f (440
N P (4.43)
= ey e (4.44)
rj'=\/(xj —x) (3 -3) (5 -2) (4.45)

5. A SIMPLIFIED EXAMPLE - A SOLAR SYSTEM WITH A SINGLE PLANET

Let us consider a solar system made of a sun and a single planet. Before we set up the equations of motion for
the planet, we will prove the following law:

If a mass is moving under the influence of a central force, its trajectory will lie on the same plane.

To prove this law, we already know that the angular momentum L of a body A in motion under a force F is:

—=rXxF (5.1)

where r is a vector indicating the position of the body A with respect to a fixed point O at time t (see Figure

(5.1).
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O .

FIGURE 5.1 Illustration of a body in circular motion under the effect of a force F.

In the present case, the gravitational force acting on the planet is central, implying that the vector r and the force
F are of the same direction. Then, in accordance with equation (5.1) above, the derivative of the angular
momentum L will be zero. Thus:

dL _ (5.2)
dt '

which implies that:
L =mr x v = constant (5.2a)

A constant angular momentum, as shown by equation (5.2a), means that the plane of the vectors r and v

remains the same all the time.

Now having proved that the trajectory of the planet will lie always on the same plane, we can describe it in the
two-dimensional space.

Setting m;= 0, and assuming that m is much smaller than M, equations (4.40) and (4.41) become:

d’x X
d’y y

where r=4 24 y2 (5.5

Equations (5.3), (5.4), and (5.5) describe the trajectory of a planet of mass m, under the effect of the gravitational
force of a sun of mass M. It is assumed that the masses m and M are point masses (which is a realistic
assumption, given that the distance between the two masses is very large), and that there is no interference from

other planets.
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6. THE EQUATIONS OF PLANETARY MOTION IN POLAR CO- ORDINATES

Equations (5.3) and (5.4) are not linear, and thus they cannot be solved analytically in their present form.
Somehow, we have to convert these non-linear differential equations into linear ones by some appropriate
transformation. In the pursuit of this goal, we will first convert these equations in a new form using polar co-
ordinates.

The position of a particle M in the two dimensional space can be represented in polar co-ordinates by a vector
of magnitude r and an angle 0, which the vector r forms with the x-axis (see Figure 6.1).

The velocity v of the particle can now be analyzed into a component v, along the vector r and a component v,
perpendicular to v,. The relationship between Cartesian and polar co-ordinates for the position of the particle, as
shown from Figure (6.1), may be described by the following equations:

Xx=rcos6 (6.1)
y=rsinf (6.2)
Yy
M(r, 0
S (r,0)
: u(o)
u (r) :
|
vl
I |
'y
|
|
O 0 : > X

FIGURE 6.1 Analysis of velocity into polar co-ordinates

The first and second derivatives of equations (6.1) and (6.2) result in the following relationships:

@=cos9ﬂ—rsin9£ (6.3
dt dt dt
Q=sin9£+rcos9£ (6.4)
dt dt dt ,

2 2 2
M=cos€ﬂ—2sint9ﬂﬁ—rsin@ﬂ—rcosﬁ(ﬁ) (6.5)
dt* dt* dt dt dt* dt
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2 2 2 2
Q=sin@ﬂ+2cos¢9£ﬁ+rcoeﬁ—rsine(ﬁ) (6.6)
dt* dt* dt dt dt* dt

Substituting equations (6.5) and (6.6) into equations (6.3) and (6.4), we get:

2 2 2
cost—;—ZSineﬂﬁ—rSinﬁd—f—rcosﬁ(ﬁ) =-GM COZH (6.7)
dt dt dt dt dt r
2 2 2 :
sin0ﬂ+20050£ﬁ+rcoseﬂ—r3ine(ﬁ) =-GM sin 6 (6.3)
dr? dt dt dt? dt r?

To simplify equations (6.7) and (6.8), we multiply (6.7) by cosB and (6.8) by sinf. Then summing them up we
get:

d’r  (d6) GM
—2 —-r— = - —2 (69)
dt dt r
Now we multiply equation (6.7) by sinf and (6.8) by cos6, and then subtracting them we get:
d*0 _ drdo
r—2+2——=0 (6.10)
dt dt dt

We rewrite equations (6.9) and (6.10) as a system of two equations: Thus:

dir  (do\ GM

a? Na) =72 @
d’0 _dr do

r——42———-= (6.10)
dr? dr dt

Equations (6.9) and (6.10) describe the trajectory of a planet in polar co-ordinates. However, these equations are
still non-linear.

Continuing our effort to transform these equations into a linear version, we will make use of our earlier
conclusion that the angular momentum of a body in motion under the influence of a central force is constant
(equation 5.2). Thus, we will have:

L =mr xv (6.11a)
Since V="V, + Vg (6.11b)
equation (6.11a) becomes:
L=mrxv, +mrxuv, (6.11¢)
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The term mr x v, is zero because the vectors v, and r have the same direction. Therefore, equation (6.11c)
becomes:
L=mrxv, (6.12)

Since v, is a vector perpendicular to r, the value of the angular momentum L will be:

L=mrv, (6.13)
Si Vg =1 40 (6.14)
ince =r— .
o dt
then equation (6.13) becomes:
do
L=mr’"2 (6.15)
dt

Solving equation (6.15) for d6/dt, we get:

a0 L

E = W (6.16)
where the value L of the angular momentum is constant.
Substituting equation (6.16) into equation (6.9), we get:
d*r L GM
(6.17)

> m?r? 2

Equation (6.17) contains only one variable (r) but it is still non-linear as it contains powers of 1.
We also make the observation that equation (6.10) is the derivative of equation (6.16). Thus, taking the
derivative of equation (6.16), we get:

dt? m 3 dt
2
or rd_26+2(iz)ﬂ=0
dt mr~ ) dt
d’0 _dodr
or r—+ ——=0 (6.10)
dt dt dt

Therefore, the system of equations (6.9) and (6.10) is now simplified to:
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d’r I*'1 GM
w20
do L 1

@i mp? e

In our continuing effort to transform these equations into a linear form, we will make the following
transformation [ 2 ].

r== (6.18)

To combine the two equations into one, we will eliminate time, and thus we will be able to express r as a
function of 6. Thus, by differentiating (6.18), we get:

dr__ 1 dudo 619)
dt  u?do dt '
Combining (6.16) with (6.19), we get:
dr 1 du L
d " dOm? (@20
Combining (6.20) with (6.18), we get:
dr L 1 du 2
—=—-———1U (6.21)
dt m u2 do
dr L du
or E=_Z% (6.213)
Differentiating also (6.22), we get:
d*v L d*udo
@ mae? dt o
Combining (6.23) with (6.16) and (6.18), we get:
d*r L\ 2 d*u
a2 \m) " ae? (6230

Substituting equations (6.23a) and (6.18) into (6.17), we get:
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U= (6.24)
1

where U=-— (6.18)
r

h= £ (6.25)
m

u=GM (6.26)

Equation (6.24) is a linear second order differential equation, which can now be solved analytically.

It is remarkable what has been achieved with a simple transformation (Eq. 6.18). A highly non-linear differential
equation is transformed into an ordinary linear one! It is tempting here to speculate whether this was simply by
accident or perhaps that natural phenomena are destined to be represented only by linear differential equations.

7. SOLUTION OF THE EQUATION OF PLANETARY MOTION FOR A SOLAR SYSTEM OF A
SINGLE PLANET (EQUATION 6.24)

The general solution of equation (6.24) will be the sum of the complementary solution u, and the particular
integral u,. The complementary solution u. is the solution of the homogeneous equation, that is:

d’u
—tu= 0 (7.1)
do
Defining the operator D = d/d6, equation (7.1) may be rewritten as follows:
(D2 + 1)u -0 (72)
or (D + i)(D - i)u =0 (7.3)
The general solution of equation (7.3) is the following:

+ czei‘9 (7.4)

-if
u, =ce

The particular integral u, may be computed as follows:

We rewrite equation (7.24) using the operator D. Thus;
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(D+i)(D-i)u, =" (7.5)

Solving for (D+1)u, we get:

f(x) (7.6)

where f (x) = (7.7)

From standard textbooks on differential equations, integration of the right-hand side of equation (7.6) using the
operator 1/(D- 1) results in the following:

i0

. _ ue -6 g( -
(D + l)up =7 fe d(-i0) 8
or (D + i)up = i%eiee_ie
h
or (D+i)u, = i:—z (7.9)

Solving for u,, the particular integral may be computed as follows:

1 u
u = L
P D+in?

or u,= e_igf(i:—z)eiede

i

or i, =h%e_i6fei6d(i8)
U —io io
or U, =——e e
P2
u
or U, =— (7.10)
P2

Therefore, the general solution of equation (7.24) is:
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i0 -
U=U.+u,=ce’ +ce
Using the relationships:
[0

e’ =cosO+isin0

and % —cos@-isin0

equation (7.11) becomes:

u=(c, +c,)cosO+i(c; —c,)sin 0+

or l=(c1+cz)cost9+(cl—c2)sin0+

r

(7.11)

(7.12)

(7.13)

(7.14)

(7.14a)

Since the left-hand side is a real number, the right-hand side must be a real number as well. Therefore, the
imaginary term must be zero, implying that c;-c,=0, or ¢; = ¢ ;= C/2. Then, equation (7.14a) becomes:

1=Ccos6+i

r h2

Equation (7.15) constitutes the general solution of the equation of planetary motion (6.24).

7.1 determination of the constant ‘C’ in equation (7.15)

(7.15)

Let the velocity and the position vector at time t=0 be v, and r,, respectively. From equation (7.15) we get:

2
I w
(ro hz)

cos’ 0 = o2
Also, by differentiating equation (7.15) we get:
—%(ﬂ) =-Csin Qﬁ
r dt dt
or (£)=C7‘2 sinﬂﬁ
dt dt

18
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Taking into consideration equation (6.16), equation (7.1.2) becomes:

(ﬂ) =Chsin6 (7.1.3)
dt

from which we will have:

(7.1.4)
Zh 2
Summing up equations (7.1.1) and (7.1.4) we will have:
2 2
o) e - ()
2 2 1.
o) \h ht  \dt) (7.1.5)

C? C?h?

Now we will compute (dr/dt)? by using the principle of conservation of energy. Thus, we will have:

E=lmv02—m—u
rO
1 2 2\ mu
=—m|v, " +U,," |-——
2 (or 06) r,
=1m(dr)2+r2(de)2 _m‘u (716)
dat), °\dt),| r,
2
L (dr) i1} L | _mu
2 i dt 0 ¢ m2r04 T,
Solving equation (7.1.6) for (dr/dt)%, we get:
dar\> 2E 2u K>
E =;+r———2 (717)
0 r

Substituting (7.1.7) into (7.1.5), we get:
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+ _— - .
r, nt r0h2 m r, r02
2 oy !
2
or ‘u—2+2—E= *p?
h m

Solving equation (7.1.9) for C, we get:

2
_ % L+ 2Eh2
h mu

(7.1.8)

(7.1.9)

(7.1.10)

Substituting equation (7.1.10) into equation (7.15), we get the equation of planetary motion, that is:

Equation (7.1.11) can be written in a more simplified form as follows:

1_ i(1 +ecos 0)
roef

Equation (7.1.12) is the familiar expression of a conic section, where:

2
e= 1+2Eh2
mu

2
/- Eh?
s l+2——
mu
_L
m
u=GM
and E = lm’U2 - mGM
2 r

20

(7.1.11)

(7.1.12)

(7.1.13)

(7.1.14)

(6.25)

(6.26)

(7.1.15)



If the value of e is less than 1, the conic section is an ellipse, if it is equal to 1 is a parabola, and if it is greater
than 1 is a hyperbola. Obviously, from equation (7.1.13) it is inferred that the total energy £ must be negative
and the expression under the radical positive in order for e to be positive and less than 1. Indeed, based on the
equations (7.1.13) through (7.1.15), and (6.25) and (6.26), using the values: »=1.49x10"" m, m =5.98x10**
kg, M=1.98x10>" kg, T=3.16x10’ sec, and G=6.67x10""" Newton-m?/kg’, it is easily proven that E is negative
and with absolute value less than one, resulting a positive and less than one e. Therefore, equation (7.1.11)
describes an ellipse.

8. VERIFICATION OF KEPLER’S LAWS

Kepler’s first law, that planets prescribe elliptical orbits around the sun, is self—evident from equation
(7.1.11), which has been shown above to be indeed an ellipse.

Kepler’s second law can be verified as follows: The area that the radius » sweeps over between
times ¢ and +Af¢ is:

dA = l(rdt9)r = l;"2d¢9
2 2
or dA = lI’Zﬁdt (8.1)
2 dt

Combining equation (8.1) with equation (7.1.12) and integrating, we get:

l2 2,2
A, =] Lzﬁ dt 8.2)
0 \(1+ecosB) dt

To compute this integral is not an easy task. Therefore, we leave this challenge to the mathematicians.
However, there is an easier way to prove Kepler’s second law.

Integrating equation (8.1) between time t; and time t,, we get:
2( 2 d6
4

To verify this law requires that the quantity resulting from the above integration be a function of the
time difference (t; - t;) only. But for this to happen, the integrand in equation (8.3) must have a
constant value. Indeed, in accordance with equation (6.15), we have:

r? % - % (8.4)
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Therefore, the integral in equation (8.3) becomes:
L
m

Equation (8.5) states that the area 4;, swept over by the radius r depends on the time interval (t-t;)
only, regardless at which point of the ellipse the starting time is taken, which verifies Kepler’s second
law. It is reminded that the angular momentum L is constant (see section 5.0 ).

With regard to Kepler’s third law, given that the radius of an ellipse is not constant, it cannot be
verified analytically, except in the special case where the eccentricity is very small and the ellipse can
be approximated to a circle.
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