Cyberon DSpotter SDK
V2.2.X
(32-bit 1C Edition)

Programming Guide

Version: 1.1.5
Date of issue: July 16, 2020

beeron

Leading Speech Solution provider

http://www.cyberon.com.tw/

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.
Cyberon Corporation, © 2019.

All rights reserved.

http://www.cyberon.com.tw/

QYM DSpotter SDK 32-hit IC Prngramming Guide

Table of Contents

1. About Cyberon DSPOtLEr SDK ..ot 1
2. REIEASE HISTOMY ...t 2
3. DSpotter Specifications, Related Files and ToOISccccooviieriiiniinnesesiee, 4
3.1, SPECITICALIONScvieiiciec e re e 4

3.2. Related Files and TOOISc.coveiieiiiieie e 5

4. DSpotter SDK API Standard Version..........ccccooeiiiiiiiieieieiese s 7
4.1. Calling Flow Chart of Standard APlcccviiiieiiiiecieeee e 7

4.1. Initialize, Reset, and ReIASE.........ccccveieiieiice e 8
DSpotter _INIEMUIE......c.ooiiiece s 8

DSPOET _RESEL ...t 9

DSPOttEr _REIEASE......cuee e s 9
DSpotter_GetMemoryUsage_ MUlti.........ccocovveriiiiiieiiccceeeee e 9

4.2, RECOGNITION vttt bbbt 10
DSpotter AddSAMPIEc.veiveeece e 11

DSpotter GEtRESUILceveiieeece e e 11

DSpotter GetRESUILEPD.........cc.ocoiiiee e 12

DSpotter GEtRESUILSCOIEccvviieieeie e 12

DSpotter GEtCMUAENEITY ...ccveeveiieiieeie ettt 13

DSpotter GEtNUMWOIG..........cceiiieiieieiic e 13

DSpotter SEtENASIl.........ccooiieiiieceece e 14

DSpotter SEtCMAENASIlccvviieiiee e 15

DSpotter GEtCMAENASIL........ccooiveiieieciccece e 15

DSpotter SetCONFIREWAIdcceeivveiieiiiie e 16

DSpotter GetConfiREWArd............cccveviiieiicecc e, 16

DSpotter SetCmdCoNfiIREWArd..........ccccveiieiiiiicce e, 17

DSpotter GetCmdCOoNfIREWArdccceeveeiiiiie e 17

DSpotter SetSGDIffREWArd..........cccoevviiieieee e, 18

DSpotter GetSGDIffREWArdccceeveiieiiiic e, 18

DSpotter SEtENErgyTH ..o 19

DSpotter GetENErgYTH......ccoiiiiie e 19

DSpotter SetReSUItMapID_Sepcccocevveieeieiie e, 20
DSpotter_SetResultMapID_Multicccoooeiiieiiiiicce e 20

DSpotter GetReSUItMAapPID.........cccooveiieiiiece e 21

5. DSpotter SDK API Advanced VErSION.........cccccveiiiiiiiieiie e 22
5.1. Calling Flow Chart of Advanced APl.........c.cccoviiieiieiiie e 22

5.2, Initialize and REIEASE.......c.eccvi et 23

DS 01011 =] £ I L T OSSR 23
DSpotterSD_GetMemoryUsade ..o 24

QYM DSpotter SDK 32-hit IC ngramming Guide

DSPOLtErSD_REICASE.eiveiiieiiiee e e 24

5.3 TTAINING 1eouteiiieiiee ettt ettt et sre e teeneesbeenbeaneenres 25
DSpotterSD_AAAUIIISTAITcoiiiieieiieeeeeeee e 26
DSpotterSD_AddSaMPIEcoiiiiiiieee e 27
DSpotterSD_AdAULIENoooiiiiiiiieeeee s 27
DSpotterSD_GEtUHIEPDccoooiiiieiiiieecee e 28
DSpotterSD_SetEPALEVELcveiiiiiie e 28
DSpotterSD_TralNWOId.........cocviiiiiieiieiieseseeee s 29
DSpotterSD_DeleteWOrd...........c.coveiiiiiiiiiiiiieieeiee e 30
DSpotterSD_SetBackgroundEnergyThreshd............cccooeiviriieienienienenen, 31

5.4. User-Implemented Flash Operation FUNCLIONS...........cccocvvveveiiieiiencsieenn 32
DataF1ash WIILEccvoiece e 32
DataFIash _EFaSec.cccveieiieiieiie e 32

6. DSpotter SDK Error Code Table........ccoooiviiiiiiieccceee e 33
7. DSpotter SUPPOrted LANQUAGESc.ooiverviiieiieeite e sieesie et e e see e e esaesnaesneas 34

QYM DSpotter SDK 32-hit IC Prngramming Guide

1. About Cyberon DSpotter SDK

DSpotter SDK is Cyberon’s flagship high-performance embedded voice recognition solution
specially optimized for mobile phones, automotives, smart home devices, consumer products,
and interactive toys. Based on phoneme acoustic models, it enables developers to create
applications of speaker-independent (SlI) voice recognition capability without requiring costly
data collection process for specific commands. With Win32-based DSpotter Model Tool,
developers can easily and quickly create their own voice command models simply by text input.
Other important features include always-on keyword-spotting capability, highly noise immune,
adjustable sensitivity, voice quality assessment, and more than 30 commonly used language

versions available.

Multilingual Phoneme
Model Pools

text DSpotter
Model Tool

v

L 3| Command
Model

developer

v
") JMW DSpotter
R Result

end user Engine

A

QYM DSpotter SDK 32-hit IC Prngramming Guide

2. Release History

) Description
Date Version |Author

Purpose:
2019/04/11 |1.0.0 Roger
First release

Purpose:

2019/08/01 |1.0.2 Roger
Update API

Purpose:

2019/10/14 |1.0.3 Roger
Update Spec / API

Purpose:
2019/10/24 |1.0.4 Roger
Update Spec

Purpose:
2019/11/25 |1.0.5 Roger
Update Spec

Purpose:
2019/12/12 |1.0.6 Roger
Update Spec

Purpose:

2020/02/20 |1.0.7 Roger
Update Spec for v2.1.0

Purpose:
2020/03/05 |1.0.8 Roger
Update Error code table

Purpose:

2020/03/26 |1.0.9 Roger
Update Spec / API

Purpose:
2020/04/16 (1.1.0 Roger
Update Error code table/Support Languages

Purpose:
2020/04/29 |1.1.1 Roger]
Update Bin format

Purpose:
2020/05/14 |1.1.2 Roger
Update Error code table

Purpose:
2020/05/19 |1.1.3 Roger
Update Spec for v2.2.4

Purpose:

2020/06/02 |1.1.4 Roger
Update API

beeren

DSpaotter SDK 32-bit IC Programming Guide

2020/07/16

115

Roger

Purpose:
Update Bin format / API

QYM DSpotter SDK 32-hit IC Prngramming Guide

3. DSpotter Specifications, Related Files and Tools
3.1. Specifications
DSpotter algorithm is available for 32-bit IC platforms. The core engines can be ported to a

variety of platforms with architectures. Here lists DSpotter specifications ported to some
popular platforms. For 32-bit DSP32, the standard versions of DSpotter algorithms given n,
the number voice commands, each of which is 4 syllables in average, the technical

specification is listed in the following table:

Algorithm DSP32

IC Architecture 32-hit, fixed-point ALU
Sample Rate 16kHz

Feature Dimension |93

Code size 26KB

Level 0:100KB + 28B*n,

Data size Level 1:165KB + 28B*n,

Level 0:40KB + 116B*n,

RAM size Level 1:45KB + 116B*n,

ARM M3, M4

Ported Platforms |0 ilica HiFi 3, HiFi Mini

Level 0: 45MIPS

DMIPS request || ol 1: 60MIPS

For 32-bit DSP32A, the advanced version of DSpotter algorithm equipped with voice tag
training function, given n,, the number voice commands, the technical specification is listed

below:

Algorithm DSP32A

IC Architecture 32-bit with fixed-point ALU
Requirement

Input Sample Rate |16kHz

Feature Dimension |23

Code size 34KB

Level 0:100KB + 340B + 400B*n,

Data size Level 1:165KB + 340B + 400B*n,

Level 0:75KB + 116B*n,

RAM size Level 1:80KB + 116B*n,

ARM M3, M4

Ported Platforms |50 citica HiFi 3, HiFi Mini

Note that code size listed in this document is for DSpotter core engine only, and codes for
recording, playback, voice compression, data communication, and application main function
are not included. Code and RAM sizes listed in the tables of this document are estimated with

DSpotter 2.2.4 version.

QYM DSpotter SDK 32-hit IC ngramming Guide

3.2. Related Files and Tools

Library

® DSpotterSDK_16k23d_XXXX.lib, the library for DSpotter standard version, where XXXX
is the name of the IC platform running the DSpotter engine, 16k and 23d stand for 16kHz
sampling rate input and 23-dimensional feature vectors respectively.

® DSpotterSDK_16k23d_XXXX_A.lib, the library for DSpotter advanced version.

Data

® CYBase.mod: the DNN(Deep Neural Networks) model. The file name CYBase.mod is
reserved for DSpotter Model Tool, and should never be changed.

® XXXX.mod: the command group model (or called command model). “Group_n” is the
default name for the n-th group of commands in a project when created with DSpotter
Model Tool, and can be renamed. All the command group models share the same
CYBase.mod in a project.
XXXX_MapID.bin: the command ID mapping bin for “Group_n”.
CYTrimap.mod: the phoneme map model. The file name CYTrimap.mod is reserved for
DSpotter Model Tool, and should never be changed.

® XXXX_pack.bin: the binary file that packs all command group models together with the
shared CYBase.mod in a project, where XXXX is the project name assigned by
developer when creating it with DSpotter Model Tool. Before using the models in the
packed binary file, developers need to unpack it. For a DSpotter project of n group
models, the packing format is shown in the diagram below. Note that this packing file is

4-byte aligned in Little-Endian manner.

4-byte int
n+1 Number of bin files in this pack
4 Size(0) Size of CYBase.mod in bytes
n+1 Size(1) Size of group model 1 in bytes
integers |
_ Size(n) Size of group model n in bytes
CYBase.mod A Content of CYBase.mod of Size(0) bytes

) round up to 4-byte boundary

Group model 1

Group model n

Content of group model n of Size(n)
) bytes round up to 4-byte boundary

5

OYber@n DSpotter SDK 32-hit IC Prnnramminn Guide

AllGroup_MaplID_pack.bin: the binary file that packs all command ID mapping bins

together.

® XXXX_pack_withTri.bin: same as XXXX_pack.bin, append CYTrimap.mod in end of
XXXX_pack.bin

® XXXX_pack_WithTriAndMaplID.bin: same as XXXX_pack_withTri.bin, append
AllIGroup_MaplID_pack.bin in end of XXXX_pack_withTri.bin

® XXXX_pack_withTxt.bin: additional append .txt for each group, for DSpotter HL.
CYBase.mod/Group_1.mod/.../Group_x.mod/Group_1.txt/.../Group_x.txt

® XXXX_pack_WithTxtAndMaplD.bin: same as XXXX_pack_withTxt.bin, append
AllGroup_MapID_pack.bin in end of XXXX_pack_withTxt.bin

® XXXX_pack_withTxtAndTri.bin: same as XXXX_pack_withTxt.bin, append
CYTrimap.mod in end of XXXX_pack _withTxt.bin

® XXXX_pack_WithTxtAndTriAndMapID.bin: same as XXXX_pack_withTxtAndTri.bin,
append AllGroup_MapID_pack.bin in end of XXXX_pack_withTxtAndTri.bin

Tools
® DSpotter Model Tool, a Microsoft Win32-based tool for developers to create command
models for DSpotter recognition engine. Prior registration is required before developers

can use DSpotter Model Tool. Contact with Cyberon if you are new to DSpotter.

@ Cyberon DSpotter Modeling Tool V2 — X

Fle Group Language Help

Group_1
Commands Command
Input Comrmand Confi. Reward ljl - {] =2
Add
Batch Add Bzl
Speaker Independent
Command List
up
No. Command Reward CmdMapID Energy Threshold 0- ' +
Down
Confi. Reward 0|- [] +
236 SG Diff. Reward 0|- [] +
Edit Ending Silence (sec.) 0.24 | -] T
o/
Reset
Phoneme Table
Command Phoneme Play
Update Online Test Offline Test Save Project
Default
Platform: 32 Bit Language: Chinese(CHN)
Sample Rate: 16000 Hz Frame Rate: 100 (frame/sec) Feature: 23D Levek 1
Current User: roger_teng@cyberon.com.tw Current Project: Test.dsmt

QYM DSpotter SDK 32-hit IC Prngramming Guide

4. DSpotter SDK API Standard Version
4.1. Calling Flow Chart of Standard API

‘ DSpotter_Init

-
: | Recognize
Current Cmd
‘ DSpotter_AddSample ' } -
‘ DSpotter_GetResult
l ‘ Continue to
‘ DSpotter_Reset] Next Cmd
|

'

‘ DSpotter_Release

QYM DSpotter SDK 32-hit IC Prngramming Guide

4.1. Initialize, Reset, and Release

DSpotter_Init_Multi
Purpose

Create a recognizer for recognizing multiple groups of commands simultaneously.
Prototype

HANDLE DSpotter_Init_Multi(BYTE *IpbyCYBase, BYTE *IppbyModel[], INT

nNumModel, INT nMaxTime, BYTE *IpbyMemPool, INT nMemSize, BYTE

*IpbyPreserve, INT nPreserve, INT *pnErr);
Parameters

IpbyCYBase(IN): The background model, contents of CYBase.mod.

IpbyModel(IN): The command model.

nMaxTime(IN): The maximum buffer length in number of frames for keeping the status

information of commands.

IpbyMemPool(IN/OUT): Memory buffer for the recognizer.

nMemSize(IN): Size in bytes of the memory buffer IpbyMemPool.

IpbyPreserve (IN/OUT): Preserve param, give NULL.

nPreserve (IN): Preserve param, give 0.

pnErr(OUT): The return code.
Return value

Return the handle of a recognizer when success or NULL otherwise.
Remarks

It is highly recommended that the value of nMaxTime should be greater than the
maximum duration of all commands, and recognizer could keep the status information of
commands during recognition. Note that higher value of nMaxTime will increase the memory
usage.

A statically reserved buffer of memory pointed by IpbyMemPool is required to call this
function. Developers can get the memory buffer size nMemSize in advance by using the

command line tool DSpotter _GetMemoryUsage. This memory buffer can be recycled and used

by other functions when the recognition task finishes after calling DSpotter Release(...).

Pointer pnErr receives the return code after calling this function, DSPOTTER_SUCCESS
indicating success, otherwise a negative error code is returned. This pointer can be NULL, The

maximum number of command models is 10.

QYM DSpotter SDK 32-hit IC ngramming Guide

DSpotter_Reset
Purpose
Reset the recognizer before performing recognition.
Prototype
INT DSpotter_Reset(HANDLE hDSpotter);
Parameters
hDSpotter (IN): Handle of the recognizer.
Return value
DSPOTTER_SUCCESS for success or negative error code otherwise.

DSpotter_Release
Purpose
Release a recognizer.
Prototype
INT DSpotter_Release(HANDLE hDSpotter);
Parameters
hDSpotter (IN): Handle of the recognizer.
Return value
DSPOTTER_SUCCESS for success or negative error code otherwise.

DSpotter GetMemoryUsage Mullti

Purpose
Get current memory usage.

Prototype
INT DSpotter_GetMemoryUsage Multi(BYTE *IpbyCYBase, BYTE *IppbyModel]],
INT nNumModel, INT nMaxTime);

Parameters
IpbyCYBase(IN): The background model, contents of CYBase.mod
IppbyModel(IN): An array of command models to be recognized simultaneously.
nNumModel(IN): Number of models in array IppbyModel.
nMaxTime(IN): The maximum buffer length in number of frames for keeping the status of
commands.

Return value

The memory size in bytes or error code.

QYM DSpotter SDK 32-hit IC Prngramming Guide

4.2. Recognition

Functions in this section are designed to perform recognition process for the recognizer. For
some platforms with relatively limited RAM, the pseudo codes below demonstrate how to use
union data type of C language to store memory buffers for DSpotter engine, playback, and
functions of developer’s application in the same location. DSpotter engine retains the memory

buffer pointed by IpbyMemPool until DSpotter Release(...) is called, after which the buffer is

released and can be recycled and reused by other functions. The pseudo codes below show

the calling sequence for always-listening voice recognition:

/I Declare shared memory using data type union in C.
union ShareMem {
BYTE IpbyMemPool[N];
/I'N can be obtained with function DSpotter GetMemoryUsage Multi(...).
SHORT IpsPlayBuffer]...];
<Other buffers used by application>

} ShareMem;
DoVR(...)
{

/I Create a recognizer
hDSpotter = DSpotter_Init_Multi(..., ShareMem.lpbyMemPool, N, NULL, O, ...);
if (hDSpotter == NULL)

goto L_ERROR,;

<Start Recording>

while (1)
{
<Get PCM samples from recording device>
if (DSpotter_AddSample(...) == DSPOTTER_SUCCESS)

{
niD = DSpotter_GetResult(...);
DSpotter_GetResultEPD(...); [/l Optional
nScore = DSpotter_GetResultScore(...); // Optional
break;

}

}
L_ERROR:

<Stop Recording>

DSpotter_Release(...);
/I Share memory ShareMem can be used by other functions after DSpotter Release(...).

<Play Prompt using memory ShareMem.IpsPlayBuffer >

10

QYM DSpotter SDK 32-hit IC Prngramming Guide

DSpotter AddSample
Purpose
Add voice samples to the recognizer and perform recognition.
Prototype
INT DSpotter_AddSample(HANDLE hDSpotter, SHORT *IlpsSample, INT
nNumSamples);
Parameters
hDSpotter (IN): Handle of the recognizer.
IpsSample(IN): An array of 16kHz, 16-bit, mono-channel PCM raw data.

nNumSamples(IN): Number of samples in IpsSample.

Return value

Result Comment

DSPOTTER_SUCCESS A recognition result is concluded, and application
can call DSpotterGetResult(...) to retrieve the result.
DSPOTTER_ERR_NeedMoreSample |Recognition result has not been found yet, and need
to call this function again to add more samples to the
recognizer.

DSPOTTER_ERR_Rejected Arejected result is concluded, and application can
call DSpotterGetResult(...) to retrieve the result.

Other negative error code

Remarks
Application should call this function repetitively to add recorded PCM raw data into the

recognizer for recognition to proceed until a recognition is found, at which moment this function

returns DSPOTTER_SUCCESS, and the application can then call DSpotter _GetResult(...) to

retrieve the recognized result. The recommended length of the input array of samples

IpsSample is 480 samples (= 960 bytes).

DSpotter GetResult
Purpose
Get the recognition result from the recognizer.
Prototype
INT DSpotter_GetResult(HANDLE hDSpotter);
Parameters
hDSpotter (IN): Handle of the recognizer.
Return value
Return the zero-based command ID when success or negative error code otherwise. If
there are more than one command models being recognized simultaneously, the command 1D
is enumerated in order. For example, if there are 2 models containing n; and n, commands

respectively, the ID for the third command in the second model is n;+2.

11

QYM DSpotter SDK 32-hit IC ngramming Guide

DSpotter GetResultEPD
Purpose
Get the boundary information of the current recognition result.
Prototype
INT DSpotter_GetResultEPD(HANDLE hDSpotter, INT *pnWordDura, INT *pnEndSil,
INT *pnNetworkLatency);
Parameters
hDSpotter (IN): Handle of the recognizer.
pnWordDura(OUT): Duration of the result in number of samples.
pnEndSil(OUT): Ending silence length in number of samples.
pnNetworkLatency (OUT): Model delay length in number of samples.
Return value
Return the command ID when success, or negative error code otherwise.
Remarks
EPD stands for end-point detection. DSpotter determines the completion of an input
voice command by counting the length of the ending silence. This function retrieves the
command duration and length of the ending silence. Developers can also calculate the
command start time if necessary. In the application, number of added samples is recorded with

variable nTotAddSample. Then the start time nStartTime is

nStartTime = nTotAddSample - *pnWordDura - *pnEndSil - *pnNetworkLatency;

DSpotter GetResultScore
Purpose
Get the reliability score of the current recognition result.
Prototype
INT DSpotter_GetResultScore (HANDLE hDSpotter, INT *pnConfi, INT *pnSGDiff,
INT *pnFIL);
Parameters
hDSpotter (IN): Handle of the recognizer.
*pnConfi(OUT): Score of Confi.
*pnSGDIff (OUT): Score of SG Diff
*pnFIL (OUT): Score of Fil
Return value
Return the non-negative reliability score of the recognition result when success, or
negative error code otherwise.
Higher confidence score means voice is more similar to command model.
Higher SG Difference score means voice is more different from Silence/Garbage.

Higher Fil score means voice is more different from Filter model.
12

QYM DSpotter SDK 32-hit IC ngramming Guide

DSpotter GetCmdEnergy
Purpose
Get the energy of recognition result in RMS value from the recognizer.
Prototype
INT DSpotter_GetCmdEnergy(HANDLE hDSpotter);
Parameters
hDSpotter (IN): Handle of the recognizer.
Return value
Return the energy of recognition result in RMS value when success, or negative error

code otherwise

DSpotter GetNumWord
Purpose

Get the number of commands in the input model.
Prototype

INT DSpotter_GetNumWord(BYTE *IpbyModel);
Parameters

IpbyModel(IN): The command model.
Return value

Return the number of commands when success, or negative error code otherwise.

13

QYM DSpotter SDK 32-hit IC Prngramming Guide

DSpotter_SetEndSil
Purpose
Set group ending silence.
Prototype
INT DSpotter_SetEndSil(HANDLE hDSpotter, INT nEndSil);
Parameters
hDSpotter (IN): Handle of the recognizer.
nEndsSil (IN): Ending silence. The range is [0, 16], lower value will make the engine
quicker to return a result, Set 1 is 0.03s, The default is 8(0.24s).
Return value
DSPOTTER_SUCCESS for success or negative error code otherwise.
Remarks
The ending silence is a global attribute that applies to the entire model. It defines the
duration of silence after the voice input for the engine to determine the end of a voice
command. Though a longer ending silence makes the engine slower or more "picky" to
respond to user's voice input, it can usually give more stable recognition results with less false
triggers.
Set value by this API will overwrite all values set by DSpotter _SetCmdEndSil(..).

14

QYM DSpotter SDK 32-hit IC Prngramming Guide

DSpotter SetCmdEndSil
Purpose

Set command ending silence.
Prototype

INT DSpotter_SetCmdEndSil(HANDLE hDSpotter, INT nCmdldx, INT nEndSil);
Parameters

hDSpotter (IN): Handle of the recognizer.

nCmdldx (IN): Command index.

nEndSil (IN): Response time. The range is [0, 16], lower value will make the engine

quicker to return a result, Set 1 is 0.03s, The default is 8(0.24s).
Return value

DSPOTTER_SUCCESS for success or negative error code otherwise.
Remarks

The ending silence is a attribute that applies to the command. It defines the duration of
silence after the voice input for the engine to determine the end of a voice command. Though a
longer ending silence makes the engine slower or more "picky" to respond to user's voice input,
it can usually give more stable recognition results with less false triggers.

Set value by this API will overwrite value set by DSpotter_SetEndSil(...).

DSpotter GetCmdEndSil
Purpose
Get command ending silence.
Prototype
INT DSpotter_GetCmdEndSil(HANDLE hDSpotter, INT nCmdldx);
Parameters
hDSpotter (IN): Handle of the recognizer.
nCmdldx (IN): Command index.
Return value
Return value if successful, or negative error code otherwise.

Remarks

15

QYM DSpotter SDK 32-hit IC ngramming Guide

DSpotter_SetConfiReward
Purpose
Set group confidence reward.
Prototype
INT DSpotter_SetConfiReward(HANDLE hDSpotter, INT nReward);
Parameters
hDSpotter (IN): Handle of the recognizer.
nReward (IN): Confi Reward. The range is [-100, 100], lower reward will make the engine
more "picky" to return a result.
Return value
DSPOTTER_SUCCESS for success or negative error code otherwise.
Remarks
Confidence score means voice is how much similar to command model.
The group confidence reward is a global threshold that applies to the entire model. A
lower reward makes the engine more "picky" to return a result. It is recommended to perform
sufficient amount of field tests from different users if the rejection level is changed from its

default value.

DSpotter GetConfiReward
Purpose
Get group confidence reward.
Prototype
INT DSpotter_GetConfiReward(HANDLE hDSpotter, INT *pnErr);
Parameters
hDSpotter (IN): Handle of the recognizer.
pnErr (IN/JOUT): DSPOTTER_SUCCESS if successful, or negative error code otherwise.
Return value
Return value.

Remarks

16

QYM DSpotter SDK 32-hit IC ngramming Guide

DSpotter _SetCmdConfiReward
Purpose
Set command confidence reward.
Prototype
INT DSpotter_SetCmdConfiReward(HANDLE hDSpotter, INT nCmdldx, INT
nReward);
Parameters
hDSpotter (IN): Handle of the recognizer.
nCmdldx (IN): Command index.
nReward (IN): Confi Reward. The range is [-100, 100], lower reward will make the engine
more "picky" to return a result.
Return value
DSPOTTER_SUCCESS for success or negative error code otherwise.
Remarks
Engine will add group and command confidence reward as confidence score offset.

DSpotter GetCmdConfiReward
Purpose

Get command confidence reward.
Prototype

INT DSpotter_GetCmdConfiReward(HANDLE hDSpotter, INT nCmdldx, INT *pnErr);
Parameters

hDSpotter (IN): Handle of the recognizer.

nCmdldx (IN): Command index.

pnErr (IN/JOUT): DSPOTTER_SUCCESS if successful, or negative error code otherwise.
Return value

Return value.

Remarks

17

QYM DSpotter SDK 32-hit IC ngramming Guide

DSpotter_SetSGDiffReward
Purpose
Set group SG difference reward.
Prototype
INT DSpotter_SetSGDiffReward(HANDLE hDSpotter, INT nReward);
Parameters
hDSpotter (IN): Handle of the recognizer.
nReward (IN): SG Difference Reward. The range is [-100, 100], lower reward will make
the engine more "picky" to return a result.
Return value
DSPOTTER_SUCCESS for success or negative error code otherwise.
Remarks
SG Difference score means voice is how much different from Silence/Garbage.
The group SG difference reward is a global threshold that applies to the entire model. A
lower reward makes the engine more "picky"” to return a result. It is recommended to perform
sufficient amount of field tests from different users if the rejection level is changed from its

default value.

DSpotter GetSGDiffReward
Purpose
Get group SG difference reward.
Prototype
INT DSpotter_GetSGDiffReward(HANDLE hDSpotter, INT *pnErr);
Parameters
hDSpotter (IN): Handle of the recognizer.
pnErr (IN/JOUT): DSPOTTER_SUCCESS if successful, or negative error code otherwise.
Return value
Return value.

Remarks

18

QYM DSpotter SDK 32-hit IC ngramming Guide

DSpotter_SetEnergyTH
Purpose

Set the energy threshold of recognition result in RMS value.
Prototype

INT DSpotter_SetEnergyTH(HANDLE hDSpotter, INT nEnergyTH);
Parameters

hDSpotter (IN): Handle of the recognizer.

nEnergyTH (IN): Command energy in RMS value. The range is [0, 32767].
Return value

DSPOTTER_SUCCESS for success or negative error code otherwise.
Remarks

DSpotter_GetEnergyTH
Purpose

Get the energy threshold of recognition result in RMS value.
Prototype

INT DSpotter_GetEnergy TH(HANDLE hDSpotter);
Parameters

hDSpotter (IN): Handle of the recognizer.
Return value

Return value if successful, or negative error code otherwise.

Remarks

19

QYM DSpotter SDK 32-hit IC ngramming Guide

DSpotter_SetResultMapID_Sep
Purpose

Set single command Mapping ID bin to engine.
Prototype

INT DSpotter_SetResultMapID_Sep(HANDLE hDSpotter, BYTE *IpbMaplID);
Parameters

hDSpotter (IN): Handle of the recognizer.

IpbMapID (IN): The command mapping ID bin.
Return value

DSPOTTER_SUCCESS for success or negative error code otherwise.
Remarks

The command mapping ID bin is created by DSMT, user could set multi commands to

one index with command mapping ID bin.

DSpotter_SetResultMapID_Multi
Purpose
Set multi command Mapping ID bins to engine.
Prototype
INT DSpotter_SetResultMapID_Multi(HANDLE hDSpotter, BYTE *IppbMapIDI[], INT
nNumMaplD);
Parameters
hDSpotter (IN): Handle of the recognizer.
IppbMapID (IN): The command mapping ID bins.
nNumMaplD (IN): number of command mapping ID bins
Return value
DSPOTTER_SUCCESS for success or negative error code otherwise.
Remarks

nNumMapID must same as nNumModel which used in DSpotter_Init_Multi.

20

QYM DSpotter SDK 32-hit IC ngramming Guide

DSpotter GetResultMaplD

Purpose
Get the mapping recognition result from the recognizer.

Prototype
INT DSpotter_GetResultMapID(HANDLE hDSpotter);

Parameters
hDSpotter (IN): Handle of the recognizer.

Return value
Return the zero-based mapping command ID when success or negative error code

otherwise.

21

QYM DSpotter SDK 32-hit IC Prngramming Guide

5. DSpotter SDK APl Advanced Version
5.1. Calling Flow Chart of Advanced API

DSpotterSD_Init

|

DSpotterSD_AddUttrStart

:

DSpotterSD_AddSample

|
'

DSpotterSD_AddUttrEnd

|

DSpotterSD_TrainWord

|

DSpotterSD_Release

Add current
voice sample

|

22

QYM DSpotter SDK 32-hit IC Prngramming Guide

5.2. Initialize and Release

DSpotterSD_Init
Purpose
Create a DSpotter voice tag trainer.
Prototype
HANDLE DSpotterSD_Init(BYTE *IpbyCYBase, BYTE *IpbyTrimap, BYTE
*IpbyMemPool, INT nMemSize, INT *pnErr);
Parameters
IpbyCYBase(IN): The background model for trainer, contents of CYBase.mod
IpbyTrimap (IN): The phoneme map model for trainer, contents of CYTrimap.mod
IpbyMemPool(IN/OUT): Memory buffer for the trainer
nMemSize(IN): Size in bytes for memory buffer IpbyMemPool.
pnErr(OUT): The return code.
Return value
Return the handle of a trainer when success or NULL otherwise.
Remarks
A background model CYBase.mod is required to train a voice tag. The trainer extracts
parameters from the input CYBase.mod/Group_x.mod/CYTrimap.mod, and using the training
utterances provided by the user to create new command. Models sharing the same
CYBase.mod, including the speaker-independent (Sl) ones created from DSpotter Model Tool
and the speaker-dependent (SD) voice tags trained here, can be put together and recognized
by DSpotter engine simultaneously.
A statically reserved buffer of memory pointed by IpbyMemPool is required to call this
function. This memory buffer can be recycled and used by other functions when the training

task ends after calling DSpotterSD_Release(...).

Pointer pnErr receives the return code after calling this function, DSPOTTER_SUCCESS

indicating success, otherwise a negative error code is returned. This pointer can be NULL.

23

QYM DSpotter SDK 32-hit IC ngramming Guide

DSpotterSD_GetMemoryUsage
Purpose
Get current memory usage of training.
Prototype
INT DSpotterSD_GetMemoryUsage(BYTE *IpbyCYBase, BYTE *IpbyTrimap);
Parameters
IpbyCYBase(IN): The pointer of background model, contents of CYBase.mod.
IpbyTrimap (IN): The phoneme map model for trainer, contents of CYTrimap.mod
Return value
The memory size in bytes or error code.
Remarks

Function will return memory usage or error code.

DSpotterSD_Release
Purpose
Release the trainer.
Prototype
INT DSpotterSD_Release(HANDLE hDSpotter);
Parameters
hDSpotter(IN): Handle of the trainer.
Return value
DSPOTTER_SUCCESS for success or negative error code otherwise.

24

@yberon

5.3. Training

Functions in this section are designed to perform training process for SD voice tag. The
pseudo codes below show the calling sequence for training an SD voice tag:

/I Declare shared memory using data type union in C.

union ShareMem {
BYTE IpbyMemPool[N];
/I' N can be obtained with function DSpotterSD _GetMemoryUsage(...).
<Other buffers used by application>

} ShareMem;
DoVR _train(...)
{
<Prepare storage (possibly in flash) for utterance buffer>
/I Create a trainer
hDSpotter = DSpotterSD_Init(..., ShareMem.lpbyMemPool, N, ...);
if (hDSpotter == NULL)
goto L_ERROR,;
/I Preparation stage: adding utterances to train a voice tag
if (DSpotterSD_AddUttrStart(...) '= DSPOTTER_SUCCESS)
goto L_ERROR;
<Start Recording>
while (1)
{
<Get PCM samples from recording device>
if (DSpotterSD_AddSample(...) '= DSPOTTER_ERR_NeedMoreSample)
break;
/' Use DSpotterSD_GetUttrEPD(...) to get the starting point of the input
/I utterance, and then start to compress it and write to data flash. (Optional)
/1'if (DSpotterSD_GetUttrEPD(...) == DSPOTTER_SUCCESS)
1l <Compress recorded voice data and write it to data flash>
}
<Stop Recording>
if (DSpotterSD_AddUttrEnd(...) '= DSPOTTER_SUCCESS)
goto L_ERROR,;
/' Use DSpotterSD_GetUttrEPD(...) to get the ending point of the input utterance,
/I and move the compressed voice to external flash of larger size. (Optional)
/I if (DSpotterSD_GetUttrEPD(...) == DSPOTTER_SUCCESS)
1l <Move the compressed voice data from data flash to SPI flash>
/l Training stage, and then add voice tag to the model for recognition
if (DSpotterSD_TrainWord(...) !I= DSPOTTER_SUCCESS)
<Error Handling ...>
L_ERROR:
DSpotterSD_Release(...);
}

25

QYM DSpotter SDK 32-hit IC Prngramming Guide

DSpotterSD_AddUttrStart
Purpose
Prepare to add a new utterance for training.
Prototype
INT DSpotterSD_AddUttrStart(HANDLE hDSpotter, SHORT *IpsDataBuf, INT
nBufSize);
Parameters
hDSpotter(IN): Handle of the trainer.
IpsDataBuf (IN/OUT): The pointer of data buffer in DATA FLASH to store voice input.
nBufSize(IN): Size in bytes of the data buffer IpsDataBuf.
Return value
DSPOTTER_SUCCESS for success or negative error code otherwise.
Remarks
The data buffer IpsDataBuf is a pointer to internal data flash, or it can be pointing to
external flash through SPI bus, as long as the bus is fast enough with address mapping

hardware equipped. Internally in this function, user-implemented functions DataFlash_Write(...)

and DataFlash_Erase(...), as described in the next section, are employed to access the data

flash. If RAM is large enough, developers can also use RAM to simulate data flash when
implementing these 2 functions. Note that DSpotter SDK assumes the page size for erasing
flash is 4KB. For the consideration of efficiency, pointer I[psDataBuf has to be 4KB aligned and
nBufSize a multiple of 4KB. If IpsDataBuf is NULL, this function returns the required size of the
data buffer rounded to a multiple of 4KB. Currently the time duration of one voice tag is 3
second, which requires around 16KB data buffer. If given less than 16KB, the maximum length

of voice tag shrinks by ratio. ex. 1.5 second voice tag for given 8KB data buffer

26

QYM DSpotter SDK 32-hit IC Prngramming Guide

DSpotterSD_AddSample
Purpose
Add voice samples to the trainer for training.
Prototype
INT DSpotterSD_AddSample(HANDLE hDSpotter, SHORT *IpsSample, INT
nNumSample);
Parameters
hDSpotter (IN): Handle of the trainer.
IpsSample(IN): An array of 16kHz, 16-bit, mono-channel PCM raw data.
nNumSamples(IN): Number of samples in IpsSample.
Return value
DSPOTTER_ERR_NeedMoreSample indicates that the caller should call this function
again, otherwise DSPOTTER_SUCCESS for successfully obtaining a recognition results, or

negative error code otherwise.

DSpotterSD_AddUttrEnd
Purpose
Finish the adding process for training a voice tag.
Prototype
INT DSpotterSD_AddUttrEnd(HANDLE hDSpotter);
Parameters
hDSpotter (IN): Handle of the trainer.
Return value
DSPOTTER_SUCCESS for success or negative error code otherwise.
Remarks
Training utterances are added to the trainer by calling DSpotterSD_AddUttrStart(...),
DSpotterSD_AddSample(...) repeatedly, and DSpotterSD_AddUttrEnd(...), which constitutes

the data preparation stage before training a voice tag.

27

QYM DSpotter SDK 32-hit IC ngramming Guide

DSpotterSD_GetUttrEPD
Purpose

Get the boundary information of the currently added training utterance.
Prototype

INT DSpotterSD_GetUttrEPD(HANDLE hDSpotter, INT *pnStart, INT *pnEnd);
Parameters

hDSpotter (IN): Handle of the trainer.

pnStart(OUT): Starting point in samples

pnEnd(OUT): Ending point in samples
Return value

DSPOTTER_SUCCESS for success or negative error code otherwise.
Remarks

Usually this function is employed when developers want to store user’s voice data for
playback purpose. Values of pnStart and pnEnd are valid only when the function returns
DSPOTTER_SUCCESS.

DSpotterSD_SetEpdLevel
Purpose

Set the boundary information of the currently added training utterance.
Prototype

INT DSpotterSD_SetEpdLevel(HANDLE hDSpotter, INT nEpdLevel);
Parameters

hDSpotter (IN): Handle of the trainer.

nEpdLevel (IN): Rejection level. The range is [0, 50]
Return value

DSPOTTER_SUCCESS for success or negative error code otherwise.
Remarks

Set rejection level of training utterance EPD, if engine can't get EPD correctly, may set

after engine init.

28

QYM DSpotter SDK 32-hit IC Prngramming Guide

DSpotterSD_TrainWord
Purpose
Train a voice tag into a command model for recognition.
Prototype
INT DSpotterSD_TrainWord(HANDLE hDSpotter, char *IpszModelAddr, INT
nBufSize, INT *pnUsedSize);
Parameters
hDSpotter (IN): Handle of the trainer.
IpszModelAddr(IN/OUT): The pointer of model buffer in DATA FLASH.
nBufSize(IN): Size in bytes of the model buffer pointed by IpszModelAddr.
pnUsedSize(OUT): Size in bytes of the voice tag pointed by IpszWordAddr.
Return value
DSPOTTER_SUCCESS for success or negative error code otherwise.
Remarks
This function solely constitutes the training stage. Call this function after the data
preparation stage consisting of DSpotterSD_AddUttrStart(...), DSpotterSD_AddSample(...),
and DSpotterSD_AddUttrEnd(...) calls.

Model buffer pointed by IpszModelAddr is in the format of an acoustic model containing

only user trained voice tags.lpszModelAddr can be pointing to internal data flash, external SPI
flash with address mapping mechanism supported, or RAM simulating flash. For more

information, please see remarks for DSpotterSD_AddUttrStart(...).

nBufSize contains 340B header(H), and 400B for each voice tag(T) times the maximum
number(N) of voice tag, Maximum nBufSize is 16KBytes.
nBufSize=H+N-T

29

QYM DSpotter SDK 32-hit IC Prngramming Guide

DSpotterSD_DeleteWord
Purpose
Remove a voice tag from the model for recognition.
Prototype
INT DSpotterSD_DeleteWord(HANDLE hDSpotter, char *IpszModelAddr, INT nldx,
INT *pnUsedSize);
Parameters
hDSpotter (IN): Handle of the trainer.
IpszModelAddr(IN/OUT): The pointer of model buffer in DATA FLASH.
nldx (IN): The command index.
pnUsedSize(OUT): Size in bytes of the model pointed by IpszModelAddr after removing
the voice tag.
Return value
DSPOTTER_SUCCESS for success or negative error code otherwise.
Remarks
When a command is successfully removed from a model, the command index for the
other survival voice tags may be changed.
Parameter IpszModelAddr can be pointing to internal data flash, external SPI flash with
address mapping mechanism supported, or RAM simulating flash. For more information,

please see remarks for DSpotterSD_AddUttrStart(...).

30

QYM DSpotter SDK 32-hit IC ngramming Guide

DSpotterSD_SetBackgroundEnergyThreshd
Purpose
Set Energy threshold for SD Trainning.
Prototype
INT DSpotterSD_SetBackgroundEnergyThreshd(HANDLE hDSpotter, INT
nThreshold);
Parameters
hDSpotter(IN): Handle of the trainer.
nThreshold (IN):Base RMS value, default is 1200.
Return value
DSPOTTER_SUCCESS for success or negative error code otherwise.
Remark
While training voice tag,Engine will check first 10 frames’s average RMS value,if RMS
greater than 4 times of Base RMS value, DSpotterSD_AddSample(...),will return
DSPOTTER_ERR_NoisyEnvironment.

31

QYM DSpotter SDK 32-hit IC ngramming Guide

5.4. User-Implemented Flash Operation Functions

DSpotter trainer needs data flash to store the training utterances to train a voice tag. To
optimize the resource usage to the most extent, we leave the flexibility to application
developers to and manipulate the data flash. It is therefore developers’ responsibility to
correctly implement the flash access functions listed in this section. Though these functions
are intended for accessing flash, developers can actually use RAM to simulate flash in the

implementation if RAM is large enough.

DataFlash_Write
Purpose
Write data into data flash.
Prototype
INT DataFlash_Write(BYTE *IpbyDest, BYTE *IpbySrc, INT nSize);
Parameters
IpbyDest (OUT): The pointer of destination data buffer in DATA FLASH.
IpbySrc (IN): The pointer of source data buffer.
nSize(IN): Size in bytes of the source data buffer IpbySrc.
Return value
0 for success or negative error code otherwise.

DataFlash_Erase
Purpose
Erase the flash given the starting address and its size.
Prototype
INT DataFlash_Erase(BYTE *IpbyDest, INT nSize);
Parameters
IpbyDest (OUT): The pointer of destination data buffer in DATA FLASH.
nSize(IN): Size in bytes of the destination data buffer IpbyDest.
Return value
0 for success or negative error code otherwise.
Remarks
Trainer assumed the flash page size is 4KB currently. In other words, the input value of

nSize is always a multiple of 4KB and pointer IpbyDest is 4KB aligned.

32

QYM DSpotter SDK 32-hit IC ngramming Guide

6. DSpotter SDK Error Code Table

Error Symbol Error Code
DSPOTTER_SUCCESS 0
DSPOTTER_ERR_lllegalHandle -2001
DSPOTTER_ERR_lllegalParam -2002
DSPOTTER_ERR_LeaveNoMemory -2003
DSPOTTER_ERR_LoadModelFailed -2005
DSPOTTER_ERR_NeedMoreSample -2009
DSPOTTER_ERR_BuildUserCommandFailed -2013
DSPOTTER_ERR_Rejected -2020
DSPOTTER_ERR_LicenseFailed -2200
DSPOTTER_ERR_CreateModelFailed -2500
DSPOTTER_ERR_WriteFailed -2501
DSPOTTER_ERR_NotEnoughStorage -2502
DSPOTTER_ERR_NoisyEnvironment -2503
DSPOTTER_ERR_VoiceTooShort -2504
DSPOTTER_ERR_VoiceToolLong -2505

33

QYM DSpotter SDK 32-hit IC Prngramming Guide

7. DSpotter Supported Languages

Arabic Bahasa(IDN) Bahasa(MYS)
Cantonese(HK) Chinese(CHN) Chinese(CHN)/English
Chinese(TWN) Dutch English(AU)
English(IN) English(PHI) English(SEA)
English(SG) English(TWN) English(UK)
English(US) English(Worldwide) French

German Hindi Italian

Japanese Korean Norwegian
Polish Portuguese(BRA) Portuguese(EU)
Russian Spanish(EU) Spanish(LA)
Taiwanese Thai Turkish
Vietnamese

34

