[10S

The free embedded operating system.

HeliOS Developer’s Guide

0.3.x Kernel

1 Data Structure Index 1

1 Data Structure Index 1

1.1 Data Structures e e e e e e 1

2 File Index
21 File List e e

N

3 Data Structure Documentation
3.1 QueueMessage_t Struct Reference
3.1.1 Detailed Description e
3.1.2 Field Documentation
3.2 SystemlInfo_t Struct Reference L
3.2.1 Detailed Description L
3.2.2 Field Documentation
3.3 Taskinfo_t Struct Reference e
3.3.1 Detailed Description L
3.3.2 Field Documentation
3.4 TaskNotification_t Struct Reference
3.4.1 Detailed Description L
3.4.2 Field Documentationo e
3.5 TaskRunTimeStats_t Struct Reference ...
3.5.1 Detailed Description

N NN o o o o o b~ bW W w DNDdMDNDdDh

3.5.2 Field Documentation e e e e e

4 File Documentation
4.1 config.h File Reference e

4.1.1 Detailed Description L

© 0 o ©

4.1.2 Macro Definition Documentationo
4.2 HeliOS.h File Reference e 11
4.2.1 Detailed Description 15
4.2.2 Macro Definition Documentation Lo 15
4.2.3 Typedef Documentation e 16
4.2.4 Enumeration Type Documentationo 22

4.2.5 Function Documentation e e e e e 23

Index 47

1 Data Structure Index

1.1 Data Structures

Here are the data structures with brief descriptions:

QueueMessage_t
Data structure for a message queue message 2

Copyright (C) 2020-2022 Manny Peterson <mannymsp@gmail.com>

Systeminfo_t

Data structure for system informaiton 3
Taskinfo_t
Data structure for information about a task 4

TaskNotification_t
Data structure for direct to task notifications 6

TaskRunTimeStats_t
Data structure for task runtime statistics 7

2 File Index

2.1 File List

Here is a list of all documented files with brief descriptions:

config.h

Kernel header file for user definable settings 8
HeliOS.h

Header file for end-user application code 11

3 Data Structure Documentation

3.1 QueueMessage_t Struct Reference

Data structure for a message queue message.

#include <HeliOS.h>

Data Fields

» Base_t messageBytes
» char messageValue [CONFIG_MESSAGE_VALUE_BYTES]

3.1.1 Detailed Description

The QueueMessage t data structure contains the message queue message returned by xQueuePeek() and
xQueueReceive(). The QueueMessage_t type should be declared as xQueueMessage.

See also

xQueueMessage

xQueuePeek()

xQueueReceive()

xMemFree()
CONFIG_MESSAGE_VALUE_BYTES

Warning

The memory allocated for an instance of xQueueMessage must be freed using xMemFree().

Copyright (C) 2020-2022 Manny Peterson <mannymsp@gmail.com>

3.2 Systeminfo_t Struct Reference 3

3.1.2 Field Documentation

3.1.2.1 messageBytes Base_t QueueMessage t::messageBytes

The number of bytes in the messageValue member that makes up the message value. This cannot exceed
CONFIG_MESSAGE_VALUE_BYTES.

3.1.2.2 messageValue char QueueMessage_t::messageValue [CONFIG_MESSAGE_VALUE_BYTES]
the char array that contains the actual message value. This is NOT a null terminated string.

The documentation for this struct was generated from the following file:

+ HeliOS.h

3.2 Systeminfo_t Struct Reference

Data structure for system informaiton.

#include <HeliOS.h>

Data Fields

* char productName [OS_PRODUCT_NAME_SIZE]
+ Base_t majorVersion

* Base t minorVersion

» Base_t patchVersion

« Base_t numberOfTasks

3.2.1 Detailed Description

The SystemlInfo_t data structure contains information about the HeliOS system and is returned by xSystemGetSystemInfo().
The Systeminfo_t type should be declared as xSysteminfo.

See also

xSystemInfo
xSystemGetSystemInfo()

xMemFree()

Warning

The memory allocated for an instance of xSystemInfo must be freed using xMemFree().

Copyright (C) 2020-2022 Manny Peterson <mannymsp@gmail.com>

3.2.2 Field Documentation

3.2.2.1 majorVersion Base_t SystemInfo_t::majorVersion

The major version number of HeliOS and is Symantec Versioning Specification (SemVer) compliant.

3.2.2.2 minorVersion Base_t SystemInfo_t::minorVersion

The minor version number of HeliOS and is Symantec Versioning Specification (SemVer) compliant.

3.2.2.3 numberOfTasks Base_t SystemInfo_t::numberOfTasks

The number of tasks presently in a suspended, running or waiting state.

3.2.2.4 patchVersion Base_t SystemInfo_t::patchVersion

The patch version number of HeliOS and is Symantec Versioning Specification (SemVer) compliant.

3.2.2.5 productName char SystemInfo_t::productName[0S_PRODUCT_NAME_SIZE]

The name of the operating system or product. Its length is defined by OS_PRODUCT_NAME_SIZE. This is NOT a
null terminated string.

The documentation for this struct was generated from the following file:

+ HeliOS.h

3.3 Taskinfo_t Struct Reference

Data structure for information about a task.

#include <HeliOS.h>

Data Fields

* Base tid

» char name [CONFIG_TASK_NAME_BYTES]
« TaskState_t state

» Ticks_t lastRunTime

 Ticks_t totalRunTime

Copyright (C) 2020-2022 Manny Peterson <mannymsp@gmail.com>

3.3 Tasklinfo_t Struct Reference 5

3.3.1 Detailed Description

The TasklInfo_t structure is similar to xTaskRuntimeStats_t in that it contains runtime statistics for a task. However,
TasklInfo_t also contains additional details about a task such as its identifier, ASCIl name and state. The TaskInfo_t
structure is returned by xTaskGetTasklInfo(). If only runtime statistics are needed, TaskRunTimeStats_t should be
used because of its lower memory footprint. The TasklInfo_t type should be declared as xTaskinfo.

See also

xTasklInfo

xTaskGetTaskInfo()

xMemFree()
CONFIG_TASK_NAME_BYTES

Warning

The memory allocated for an instance of xTaskInfo must be freed using xMemFree().

3.3.2 Field Documentation

3.3.21 id Base_t TaskInfo_t::id

The task identifier which is used by xTaskGetHandleByld() to return the task handle.

3.3.2.2 lastRunTime Ticks_t TaskInfo_t::lastRunTime

The runtime duration in ticks the last time the task was executed by the scheduler.

3.3.2.3 name char TaskInfo_t::name[CONFIG_TASK_NAME_BYTES]

The name of the task which is used by xTaskGetHandleByName() to return the task handle. This is NOT a null
terminated string.

3.3.2.4 state TaskState_t TaskInfo_t::state

The state the task is in which is one of four states specified in the TaskState_t enumerated data type.

3.3.2.5 totalRunTime Ticks_t TaskInfo_t::totalRunTime
The total runtime duration in ticks the task has been executed by the scheduler.

The documentation for this struct was generated from the following file:

* HeliOS.h

Copyright (C) 2020-2022 Manny Peterson <mannymsp@gmail.com>

3.4 TaskNotification_t Struct Reference

Data structure for direct to task notifications.

#include <HeliOS.h>

Data Fields

» Base_t notificationBytes
« char notificationValue [CONFIG_NOTIFICATION_VALUE_BYTES]

3.4.1 Detailed Description

The TaskNotification_t data structure contains the direct to task notification returned by xTaskNotifyTake(). The
TaskNotification_t type should be declared as xTaskNotification.

See also

xTaskNotification

xTaskNotify Take()

xMemFree()
CONFIG_NOTIFICATION_VALUE_BYTES

Warning

The memory allocated for an instance of xTaskNotification must be freed using xMemFree().

3.4.2 Field Documentation

3.4.2.1 notificationBytes Base_t TaskNotification_ t::notificationBytes

The number of bytes in the notificationValue member that makes up the notification value. This cannot exceed
CONFIG_NOTIFICATION_VALUE_BYTES.

3.4.2.2 notificationValue char TaskNotification_t::notificationValue [CONFIG_NOTIFICATION_VALUE_BYTES]
The char array that contains the actual notification value. This is NOT a null terminated string.

The documentation for this struct was generated from the following file:

* HeliOS.h

Copyright (C) 2020-2022 Manny Peterson <mannymsp@gmail.com>

3.5 TaskRunTimeStats_t Struct Reference 7

3.5 TaskRunTimeStats t Struct Reference

Data structure for task runtime statistics.

#include <HeliOS.h>

Data Fields
* Base tid

» Ticks_tlastRunTime
» Ticks_t totalRunTime

3.5.1 Detailed Description

The TaskRunTimeStats_t structure contains task runtime statistics and is returned by xTaskGetAllRunTimeStats()
and xTaskGetTaskRunTimeStats(). The TaskRunTimeStats_t type should be declared as xTaskRunTimeStats.

See also

xTaskRunTimeStats
xTaskGetTaskRunTimeStats()
xTaskGetAlIRunTimeStats()

xMemFree()

Warning

The memory allocated for an instance of xTaskRunTimeStats must be freed using xMemFree().

3.5.2 Field Documentation

3.5.2.1 id Base_t TaskRunTimeStats_t::id

The task identifier which is used by xTaskGetHandleByld() to return the task handle.

3.5.2.2 lastRunTime Ticks_t TaskRunTimeStats_t::lastRunTime

The runtime duration in ticks the last time the task was executed by the scheduler.

3.5.2.3 totalRunTime Ticks_ t TaskRunTimeStats_t::totalRunTime
The total runtime duration in ticks the task has been executed by the scheduler.

The documentation for this struct was generated from the following file:

* HeliOS.h

Copyright (C) 2020-2022 Manny Peterson <mannymsp@gmail.com>

4 File Documentation

4.1 config.h File Reference

Kernel header file for user definable settings.

Macros

+ #define CONFIG_MESSAGE_VALUE_BYTES 8u

Define to enable the Arduino API C++ interface.
 #define CONFIG_NOTIFICATION_VALUE_BYTES 8u

Define the size in bytes of the direct to task notification value.
« #define CONFIG_TASK_NAME_BYTES 8u

Define the size in bytes of the ASCII task name.
+ #define CONFIG_MEMORY_REGION_SIZE_IN_BLOCKS 24u

Define the number of memory blocks available in all memory regions.
« #define CONFIG_MEMORY_REGION_BLOCK_SIZE 32u

Define the memory block size in bytes for all memory regions.
+ #define CONFIG_QUEUE_MINIMUM_LIMIT 5u

Define the minimum value for a message queue limit.

4.1.1 Detailed Description

Author

Manny Peterson (mannymsp@gmail.com)

Version

0.3.3

Date

2022-01-31

Copyright

HeliOS Embedded Operating System Copyright (C) 2020-2022 Manny Peterson mannymsp@gmail.com

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see https«
://www.gnu.org/licenses/.

Copyright (C) 2020-2022 Manny Peterson <mannymsp@gmail.com>

mailto:mannymsp@gmail.com
mailto:mannymsp@gmail.com
https://www.gnu.org/licenses/
https://www.gnu.org/licenses/

4.1 config.h File Reference 9

4.1.2 Macro Definition Documentation

4.1.21 CONFIG_MEMORY_REGION_BLOCK_SIZE #define CONFIG_MEMORY_REGION_BLOCK_SIZE 32u

Setting CONFIG_MEMORY_REGION_BLOCK_SIZE allows the end-user to define the size of a memory region
block in bytes. The memory region block size should be set to achieve the best possible utilization of the avail-
able memory. The CONFIG_MEMORY_REGION_BLOCK_SIZE setting effects both the heap and kernel memory
regions. The default value is 32 bytes. The literal must be appended with a "u" to maintain MISRA C:2012 compli-
ance.

See also

xMemAlloc()

xMemFree()
CONFIG_MEMORY_REGION_SIZE_IN_BLOCKS
CONFIG_KMEM_SIZE_IN_BLOCKS

4.1.2.2 CONFIG_MEMORY_REGION_SIZE IN BLOCKS #define CONFIG_MEMORY_REGION_SIZE_IN_«
BLOCKS 24u

The heap memory region is used by tasks. Whereas the kernel memory region is used solely by the kernel for kernel
objects. The CONFIG_MEMORY_REGION_SIZE_IN_BLOCKS setting allows the end-user to define the size, in
blocks, of all memory regions thus effecting both the heap and kernel memory regions. The size of a memory block
is defined by the CONFIG_MEMORY_REGION_BLOCK_SIZE setting. The size of all memory regions needs to
be adjusted to fit the memory requirements of the end-user's application. By default the CONFIG_MEMORY_«
REGION_SIZE_IN_BLOCKS is defined on a per platform and/or tool-chain basis therefor it is not defined here by
default. The literal must be appended with a "u" to maintain MISRA C:2012 compliance.

4.1.2.3 CONFIG_MESSAGE_VALUE_BYTES #define CONFIG_MESSAGE_VALUE_BYTES 8u

Because HeliOS kernel is written in C, the Arduino API cannot be called directly from the kernel. For example,
assertions are unable to be written to the serial bus in applications using the Arduino platform/tool-chain. The
CONFIG_ENABLE_ARDUINO_CPP_INTERFACE builds the included arduino.cpp file to allow the kernel to call the
Arduino API through wrapper functions such as ArduinoAssert(). The arduino.cpp file can be found in the /extras
directory. It must be copied into the /src directory to be built.

Note

On some MCU's like the 8-bit AVRs, it is necessary to undefine the DISABLE_INTERRUPTS() macro because
interrupts must be enabled to write to the serial bus.

Define to enable system assertions.

The CONFIG_ENABLE_SYSTEM_ASSERT setting allows the end-user to enable system assertions in HeliOS.
Once enabled, the end-user must define CONFIG_SYSTEM_ASSERT_BEHAVIOR for there to be an effect. By
default the CONFIG_ENABLE_SYSTEM_ASSERT setting is not defined.

Copyright (C) 2020-2022 Manny Peterson <mannymsp@gmail.com>

10

See also

CONFIG_SYSTEM_ASSERT_BEHAVIOR

Define the system assertion behavior.

The CONFIG_SYSTEM_ASSERT_BEHAVIOR setting allows the end-user to specify the behavior (code) of the
assertion which is called when CONFIG_ENABLE_SYSTEM_ASSERT is defined. Typically some sort of output is
generated over a serial or other interface. By default the CONFIG_SYSTEM_ASSERT_BEHAVIOR is not defined.
Note

In order to use the ArduinoAssert() functionality, the CONFIG_ENABLE_ARDUINO_CPP_INTERFACE setting
must be enabled.

See also

CONFIG_ENABLE_SYSTEM_ASSERT
CONFIG_ENABLE_ARDUINO_CPP_INTERFACE

#define CONFIG_SYSTEM_ASSERT_BEHAVIOR(f, 1) _ArduinoAssert_(£ , 1)
Define the size in bytes of the message queue message value.

Setting the CONFIG_MESSAGE_VALUE_BYTES allows the end-user to define the size of the message queue
message value. The larger the size of the message value, the greater impact there will be on system performance.
The default size is 8 bytes. The literal must be appended with "u" to maintain MISRA C:2012 compliance.

See also

xQueueMessage

4.1.2.4 CONFIG_NOTIFICATION_VALUE_BYTES #define CONFIG_NOTIFICATION_VALUE_BYTES 8u

Setting the CONFIG_NOTIFICATION_VALUE_BYTES allows the end-user to define the size of the direct to task no-
tification value. The larger the size of the notification value, the greater impact there will be on system performance.
The default size is 8 bytes. The literal must be appended with "u" to maintain MISRA C:2012 compliance.

See also

xTaskNotification

4.1.2.5 CONFIG_QUEUE_MINIMUM_LIMIT #define CONFIG_QUEUE_MINIMUM_LIMIT 5u

Setting the CONFIG_QUEUE_MINIMUM_LIMIT allows the end-user to define the MINIMUM length limit a message
queue can be created with xQueueCreate(). When a message queue length equals its limit, the message queue will
be considered full and return true when xQueuelsQueueFull() is called. A full queue will also not accept messages
from xQueueSend(). The default value is 5. The literal must be appended with "u" to maintain MISRA C:2012
compliance.

See also

xQueuelsQueueFull()
xQueueSend()
xQueueCreate()

Copyright (C) 2020-2022 Manny Peterson <mannymsp@gmail.com>

4.2 HeliOS.h File Reference 11

4.1.2.6 CONFIG_TASK_NAME_BYTES #define CONFIG_TASK_NAME_BYTES 8u

Setting the CONFIG_TASK_NAME_BYTES allows the end-user to define the size of the ASCII task name. The
larger the size of the task name, the greater impact there will be on system performance. The default size is 8 bytes.
The literal must be appended with "u" to maintain MISRA C:2012 compliance.

See also

xTaskInfo

4.2 HeliOS.h File Reference

Header file for end-user application code.

Data Structures

« struct TaskRunTimeStats_t

Data structure for task runtime statistics.
« struct TaskInfo_t

Data structure for information about a task.
« struct TaskNotification_t

Data structure for direct to task notifications.
« struct QueueMessage_t

Data structure for a message queue message.
« struct Systeminfo_t

Data structure for system informaiton.

Macros

- #define DEREF_TASKPARM(t, p) *((t *)p)

A C macro to simplify casting and dereferencing a task paramater.

Typedefs

« typedef uint8_t Base_t
Type definition for the base data type.
* typedef uint32_t Ticks_t
The type definition for time expressed in ticks.
* typedef size_t Size_t
The type defintion for storing the size of some object in memory.
* typedef Size_t xSize
The type defintion for storing the size of some object in memory.
* typedef void Task_t
Stub type definition for the task type.
* typedef void TaskParm_t
Type definition for the task parameter.
* typedef void Queue_t
Stub type definition for the message queue type.
* typedef void Timer_t

Copyright (C) 2020-2022 Manny Peterson <mannymsp@gmail.com>

12

Stub type definition for the timer type.
typedef void Addr_t

Type defintion for the memory address data type.
typedef Addr_t * xAddr

Type defintion for the memory address data type.
typedef Base_t xBase

Type definition for the base data type.
typedef Timer_t * xTimer

Stub type definition for the timer type.
typedef Queue_t * xQueue

Stub type definition for the message queue type.
typedef QueueMessage_t * xQueueMessage

Data structure for a message queue message.
typedef TaskNotification_t * xTaskNotification

Data structure for direct to task notifications.
typedef Taskinfo_t * xTasklInfo

Data structure for information about a task.
typedef TaskRunTimeStats_t x xTaskRunTimeStats

Data structure for task runtime statistics.
typedef Task_t x xTask

Stub type definition for the task type.
typedef TaskParm_t x xTaskParm

Type definition for the task parameter.
typedef Ticks_t xTicks

The type definition for time expressed in ticks.
typedef TaskState_t xTaskState

Enumerated type for task states.
typedef SchedulerState_t xSchedulerState

Enumerated type for scheduler states.
typedef Systeminfo_t x xSystemInfo

Data structure for system informaiton.

Enumerations

» enum TaskState_t { TaskStateError , TaskStateSuspended , TaskStateRunning , TaskStateWaiting }

Enumerated type for task states.

» enum SchedulerState_t { SchedulerStateError , SchedulerStateSuspended , SchedulerStateRunning }

Enumerated type for scheduler states.

Functions

void xSystemlInit (void)
System call to initialize the system.
void _SystemAssert_ (const char «file_, int line_)
System call to handle assertions.
xAddr xMemAlloc (const xSize size_)
System call to allocate memory from the heap.
void xMemFree (const xAddr addr_)
System call to free memory allocated from the heap.
xSize xMemGetUsed (void)

Copyright (C) 2020-2022 Manny Peterson <mannymsp@gmail.com>

4.2 HeliOS.h File Reference 13

System call to return the amount of allocated heap memory.
» xSize xMemGetSize (const xAddr addr_)
System call to return the amount of heap memory allcoated for a given address.
» xQueue xQueueCreate (xBase limit_)
System call to create a new message queue.
+ void xQueueDelete (xQueue queue_)
System call to delete a message queue.
» xBase xQueueGetLength (xQueue queue_)
System call to get the length of the message queue.
+ xBase xQueuelsQueueEmpty (xQueue queue_)
System call to check if the message queue is empty.
+ xBase xQueuelsQueueFull (xQueue queue_)
System call to check if the message queue is full.
» xBase xQueueMessagesWaiting (xQueue queue_)
System call to check if there are message queue messages waiting.
» xBase xQueueSend (xQueue queue_, xBase messageBytes_, const char xmessageValue_)
System call to send a message using a message queue.
» xQueueMessage xQueuePeek (xQueue queue_)
System call to peek at the next message in a message queue.
+ void xQueueDropMessage (xQueue queue_)
System call to drop the next message in a message queue.
» xQueueMessage xQueueReceive (xQueue queue_)
System call to receive the next message in the message queue.
« void xTaskStartScheduler (void)
System call to pass control to the HeliOS scheduler.
+ void xTaskResumeAll (void)
System call to set scheduler state to running.
+ void xTaskSuspendAll (void)
System call to set the scheduler state to suspended.
» xSystemInfo xSystemGetSystemInfo (void)
The xSystemGetSysteminfo() system call will return the type xSysteminfo containing information about the system

including the OS (product) name, its version and how many tasks are currently in the running, suspended or waiting
states.

» xTask xTaskCreate (const char xname_, void(xcallback_)(xTask, xTaskParm), xTaskParm taskParameter_)

System call to create a new task.
+ void xTaskDelete (xTask task_)

System call to delete a task.
» xTask xTaskGetHandleByName (const char xname_)

System call to get a task's handle by its ASCII name.
+ xTask xTaskGetHandleByld (xBase id_)

System call to get a task's handle by its task identifier.
» xTaskRunTimeStats xTaskGetAllRunTimeStats (xBase xtasks_)

System call to return task runtime statistics for all tasks.
» xTaskRunTimeStats xTaskGetTaskRunTimeStats (xTask task_)

System call to return task runtime statistics for the specified task.
+ xBase xTaskGetNumberOfTasks (void)

System call to return the number of tasks regardless of their state.
+ xTaskInfo xTaskGetTaskInfo (xTask task_)

System call to return the details of a task.
» xTaskInfo x xTaskGetAllTaskinfo (xBase xtasks_)

System call to return the details of all tasks.

Copyright (C) 2020-2022 Manny Peterson <mannymsp@gmail.com>

14

xTaskState xTaskGetTaskState (xTask task_)
System call to return the state of a task.
char x xTaskGetName (xTask task_)
System call to return the ASCII name of a task.
xBase xTaskGetld (xTask task_)
System call to return the task identifier for a task.
void xTaskNotifyStateClear (xTask task_)
System call to clear a waiting direct to task notification.
xBase xTaskNotificationlsWaiting (xTask task_)
System call to check if a direct to task notification is waiting.
Base_t xTaskNotifyGive (xTask task_, xBase notificationBytes_, const char xnotificationValue_)
System call to give another task a direct to task notification.
xTaskNotification xTaskNotifyTake (xTask task_)
System call to take a direct to task notification from another task.
void xTaskResume (xTask task)
System call to resume a task.
void xTaskSuspend (xTask task_)
System call to suspend a task.
void xTaskWait (xTask task_)
System call to place a task in a waiting state.
void xTaskChangePeriod (xTask task_, xTicks timerPeriod_)
System call to set the task timer period.
xTicks xTaskGetPeriod (xTask task_)
System call to get the task timer period.
void xTaskResetTimer (xTask task_)
System call to reset the task timer.
xSchedulerState xTaskGetSchedulerState (void)
System call to get the state of the scheduler.
xTimer xTimerCreate (xTicks timerPeriod_)
System call to create a new timer.
void xTimerDelete (xTimer timer_)
System call will delete a timer.
void xTimerChangePeriod (xTimer timer_, xTicks timerPeriod_)
System call to change the period of a timer.
xTicks xTimerGetPeriod (xTimer timer_)
System call to get the period of a timer.
xBase xTimerlsTimerActive (xTimer timer_)
System call to check if a timer is active.
xBase xTimerHasTimerExpired (xTimer timer_)
System call to check if a timer has expired.
void xTimerReset (xTimer timer_)
System call to reset a timer.
void xTimerStart (xTimer timer_)
System call to start a timer.
void xTimerStop (xTimer timer_)

The xTimerStop() system call will place the timer in the stopped state. Neither xTimerStart() nor xTimerStop() will
reset the timer. Timers can only be reset with x TimerReset().

void xSystemHalt (void)
The xSystemHalt() system call will halt HeliOS.

Copyright (C) 2020-2022 Manny Peterson <mannymsp@gmail.com>

4.2 HeliOS.h File Reference 15

4.2.1 Detailed Description

Author

Manny Peterson (mannymsp@gmail.com)

Version

0.3.3

Date
2022-01-31

Copyright

HeliOS Embedded Operating System Copyright (C) 2020-2022 Manny Peterson mannymsp@gmail.com

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see https«
://www.gnu.org/licenses/.

4.2.2 Macro Definition Documentation

4.2.2.1 DEREF_TASKPARM i#define DEREF_TASKPARM (
t,
p) *x((t *)p)

When a task paramater is passed to a task, it is passed as a pointer of type void. To use the paramater, it must
first be cast to the correct type and dereferenced. The following is an example of how the DEREF_TASKPARM() C
macro simplifies that process.

void myTask_main (xTask task_, xTaskParm parm_) {
int 1i;

i = DEREF_TASKPARM (int, parm_);

i++;

DEREF_TASKPARM (int, parm_) = i;

7

}

Parameters

t | The data type to cast the task paramater to (e.g., int).

p | The task pointer, typically named parm_.

Copyright (C) 2020-2022 Manny Peterson <mannymsp@gmail.com>

mailto:mannymsp@gmail.com
mailto:mannymsp@gmail.com
https://www.gnu.org/licenses/
https://www.gnu.org/licenses/

16

4.2.3 Typedef Documentation

4.2.3.1 Addr_t typedef void Addr_t

The xAddr type is used to store a memory address and is used to pass memory addresses back and forth between
system calls and the end-user application. It is not necessary to use the xAddr type within the end-user application
as long as the type is not used to interact with the HeliOS kernel through system calls.

4.2.3.2 Base t typedef uint8_t Base_t

A simple data type is often needed as an argument for a system call or a return type. The Base_t type is used in
such a case where there are no other structural data requirements and is typically an unsigned 8-bit integer. The
Base_t type should be declared as xBase.

See also

xBase

4.2.3.3 Queue_t typedef void Queue_t

The Queue_t type is a stub type definition for the internal message queue structure and is treated as a message
queue handle by most of the message queue related system calls. The members of the data structure are not
accessible. The Queue_t type should be declared as xQueue.

See also

xQueue

xQueueDelete()

Warning

The memory allocated for an instance of xQueue must be freed using xQueueDelete().

4.23.4 Size t typedef size_t Size_t

The Size_t type is used to store the size of an object in memory and is always represented in bytes. Size_t should
always be declared as xSize.

See also

xSize

Copyright (C) 2020-2022 Manny Peterson <mannymsp@gmail.com>

4.2 HeliOS.h File Reference 17

4235 Task_t typedef void Task_t

The Task_t type is a stub type definition for the internal task data structure and is treated as a task handle by most
of the task related system calls. The members of the data structure are not accessible. The Task_t type should be
declared as xTask.

See also

xTask
xTaskDelete()

Warning

The memory allocated for an instance of xTask must be freed by xTaskDelete()

4.2.3.6 TaskParm_t typedef void TaskParm_t

The TaskParm_t type is used to pass a parameter to a task at the time of creation using xTaskCreate(). A task
parameter is a pointer of type void and can point to any number of intrinsic types, arrays and/or user defined
structures which can be passed to a task. It is up the the end-user to manage, allocate and free the memory related
to these objects using xMemAlloc() and xMemFree(). The TaskParm_t should be declared as xTaskParm.

See also

xTaskParm
xMemAlloc()

xMemFree()

Warning

The memory allocated for an instance of xTaskParm must be freed using xMemFree().

4.2.3.7 Ticks_t typedef uint32_t Ticks_t

The xTicks type is used by several of the task and timer related system calls to express time. The unit of measure
for time is always ticks.

See also

xTicks

Copyright (C) 2020-2022 Manny Peterson <mannymsp@gmail.com>

18

4.2.3.8 Timer_t typedef void Timer_t

The Timer_t type is a stub type definition for the internal timer data structure and is treated as a timer handle by
most of the timer related system calls. The members of the data structure are not accessible. The Timer_t type
should be declared as xTimer.

See also

xTimer

xTimerDelete()

Warning

The memory allocated for an instance of xTimer must be freed using xTimerDelete().

4239 xAddr typedef Addr_t* xAddr

The xAddr type is used to store a memory address and is used to pass memory addresses back and forth between
system calls and the end-user application. It is not necessary to use the xAddr type within the end-user application
as long as the type is not used to interact with the HeliOS kernel through system calls.

4.2.3.10 xBase typedef Base_t xBase

A simple data type is often needed as an argument for a system call or a return type. The xBase type is used in
such a case where there are no other structural data requirements is typically an unsigned 8-bit integer.

See also

Base t

4.2.3.11 xQueue typedef Queue_t#* xQueue

The xQueue type is a stub type definition for the internal message queue structure and is treated as a message
queue handle by most of the message queue related system calls. The members of the data structure are not
accessible.

See also

Queue_t

xQueueDelete()

Warning

The memory allocated for an instance of xQueue must be freed using xQueueDelete().

Copyright (C) 2020-2022 Manny Peterson <mannymsp@gmail.com>

4.2 HeliOS.h File Reference 19

4.2.3.12 xQueueMessage typedef QueueMessage_t* xQueueMessage

The xQueueMessage data structure contains the message queue message returned by xQueuePeek() and
xQueueReceive(). See QueueMessage_t for information about the data structure's members.
See also

QueueMessage_t

xQueuePeek()

xQueueReceive()

xMemFree()
CONFIG_MESSAGE_VALUE_BYTES

Warning

The memory allocated for an instance of xQueueMessage must be freed using xMemFree().

4.2.3.13 xSchedulerState typedef SchedulerState_t xSchedulerState

The scheduler can be in one of four possible states defined in the SchedulerState_t enumerated type. The state of
the scheduler is changed by calling xTaskSuspendAll() and xTaskResumeAll(). The state can be obtained by calling
xTaskGetSchedulerState().

See also

xSchedulerState
xTaskSuspendAll()
xTaskResumeAll()
xTaskGetSchedulerState()

4.2.3.14 xSize typedef Size_t xSize

The xSize type is used to store the size of an object in memory and is always represented in bytes.

4.2.3.15 xSystemInfo typedef SystemInfo_t* xSystemInfo

The xSystemInfo data structure contains information about the HeliOS system and is returned by xSystemGetSystemInfo().
See xSystemlnfo_t for information about the data structure's members.
See also

Systeminfo_t
xSystemGetSystemInfo()
xMemFree()

Warning

The memory allocated for an instance of xSystemInfo must be freed using xMemFree().

Copyright (C) 2020-2022 Manny Peterson <mannymsp@gmail.com>

20

4.23.16 xTask typedef Task_t* xTask

The xTask type is a stub type definition for the internal task data structure and is treated as a task handle by most
of the task related system calls. The members of the data structure are not accessible.
See also

Task t
xTaskCreate()
xTaskDelete()

Warning

The memory allocated for an instance of xTask must be freed by xTaskDelete()

4.2.3.17 xTaskInfo typedef TaskInfo_t* xTaskInfo

The xTasklInfo structure is similar to xTaskRunTimeStats in that it contains runtime statistics for a task. However,
xTasklInfo also contains additional details about a task such as its identifier, ASCIl name and state. The xTaskInfo
structure is returned by xTaskGetTasklInfo(). If only runtime statistics are needed, xTaskRunTimeStats should be
used because of its lower memory footprint. See TaskInfo_t for information about the data structure's members.

See also

TasklInfo_t

xTaskGetTaskInfo()

xMemFree()
CONFIG_TASK_NAME_BYTES

Warning

The memory allocated for an instance of xTaskinfo must be freed using xMemFree().

4.2.3.18 xTaskNotification typedef TaskNotification_t# xTaskNotification

The xTaskNotification data structure contains the direct to task notification returned by xTaskNotifyTake(). See
TaskNotification_t for information about the data structure's members.
See also

TaskNotification_t

xTaskNotify Take()

xMemFree()
CONFIG_NOTIFICATION_VALUE_BYTES

Warning

The memory allocated for an instance of xTaskNotification must be freed using xMemFree().

Copyright (C) 2020-2022 Manny Peterson <mannymsp@gmail.com>

4.2 HeliOS.h File Reference 21

4.2.3.19 xTaskParm typedef TaskParm_t* xTaskParm

The xTaskParm type is used to pass a parameter to a task at the time of creation using xTaskCreate(). A task
parameter is a pointer of type void and can point to any number of intrinsic types, arrays and/or user defined
structures which can be passed to a task. It is up the the end-user to manage allocate and free the memory related
to these objects using xMemAlloc() and xMemFree().

See also

TaskParm_t
xMemAlloc()

xMemFree()

Warning

The memory allocated for an instance of xTaskParm must be freed using xMemFree().

4.2.3.20 xTaskRunTimeStats typedef TaskRunTimeStats_t# xTaskRunTimeStats

The xTaskRunTimeStats structure contains task runtime statistics and is returned by xTaskGetAllRunTimeStats()
and xTaskGetTaskRunTimeStats(). See TaskRunTimeStats_t for information about the data structure's members.

See also

TaskRunTimeStats_t
xTaskGetTaskRunTimeStats()
xTaskGetAlIRunTimeStats()

xMemFree()

Warning

The memory allocated for an instance of xTaskRunTimeStats must be freed using xMemFree().

4.2.3.21 xTaskState typedef TaskState_t xTaskState

A task can be in one of the four possible states defined in the TaskState_t enumerated type. The state of a task is
changed by calling xTaskResume(), xTaskSuspend() or xTaskWait().

See also

TaskState_t
xTaskResume()
xTaskSuspend()
xTaskWait()

Copyright (C) 2020-2022 Manny Peterson <mannymsp@gmail.com>

22

4.2.3.22 xTicks typedef Ticks_t xTicks

The xTicks type is used by several of the task and timer related system calls to express time. The unit of measure
for time is always ticks.

See also

Ticks_t

4.2.3.23 xTimer typedef Timer_t* xTimer

The xTimer type is a stub type definition for the internal timer data structure and is treated as a timer handle by most
of the timer related system calls. The members of the data structure are not accessible.

See also
Timer t

xTimerDelete()

Warning

The memory allocated for an instance of xTimer must be freed using xTimerDelete().

4.2.4 Enumeration Type Documentation

4.2.41 SchedulerState_ t cnum SchedulerState_t

The scheduler can be in one of four possible states defined in the SchedulerState_t enumerated type. The state of
the scheduler is changed by calling xTaskSuspendAll() and xTaskResumeAll(). The state can be obtained by calling
xTaskGetSchedulerState().

See also

xSchedulerState
xTaskSuspendAll()
xTaskResumeAll()

Enumerator

SchedulerStateError | Not used.
SchedulerStateSuspended | State the scheduler is in after xTaskSuspendAll() is called.

SchedulerStateRunning | State the scheduler is in after xTaskResumeAll() is called.

Copyright (C) 2020-2022 Manny Peterson <mannymsp@gmail.com>

4.2 HeliOS.h File Reference 23

4.24.2 TaskState t enum TaskState_t

A task can be in one of the four possible states defined in the TaskState_t enumerated type. The state of a task is
changed by calling xTaskResume(), xTaskSuspend() or xTaskWait(). The TaskState_t enumerated type should be
declared as xTaskState.

See also
xTaskState
xTaskResume()
xTaskSuspend()
xTaskWait()

Enumerator

TaskStateError | Returned by xTaskGetTaskState() when task cannot be found.

TaskStateSuspended | State a task is in when it is first created by xTaskCreate() or suspended by
xTaskSuspend().

TaskStateRunning | State a task is in after xTaskResume() is called.
TaskStateWaiting | State a task is in after xTaskWait() is called.

4.2.5 Function Documentation

4251 _SystemAssert () void _SystemAssert_ (
const char x file ,

int line_)

The SystemAss