
IRsmallDecoder

A small, fast and reliable infrared signals decoder, for controlling
Arduino projects with remote controls.

This is a Library for receiving and decoding IR signals from remote controls. Perfect for your Arduino
projects that need a fast, simple and reliable decoder, but don't require the usage of multiple different
protocols at the same time and don't need to send IR signals.

Table of Contents

Main features
Supported protocols
Supported boards
Connecting the IR receiver
Installing the library
Using the library

A full example
Address check
The multifunctional dataAvailable() method
Disabling the decoder
Protocol data structures
Notes

Possible improvements
Contributions
Contact information
License
Appendix A - Details about this library
Appendix B - IR receiver connection details

Main features

The signals are fully decoded and the data is divided into separate variables;
The initial repetition codes are ignored, effectively reducing the possibility of getting several codes
when we just want one;
Held Keys (or buttons) are detected and processed in a more useful way;
The signal's tolerances are very loose, allowing a high detection rate without compromising the
reliability;
The signal's redundant data is only used for error detection (if the protocol has it);
SRAM and Flash memory usage is very low;
The decoding is done asynchronously, no timers required, so you can use them for other things;
No conflicts with timer-related functionalities such as tone(), servos, analogWrite(), etc.;

The signal acquisition and processing is done by a hardware (external) interrupt;
This library is compatible with a wide range of the Arduino boards.

Supported protocols

NEC
NECx
Philips RC5 and RC5x (simultaneously)
Sony SIRC 12, 15 and 20 bits (individually or simultaneously)
SAMSUNG old standard
SAMSUNG 32 bits (16 of which are for error detection)

Supported boards

Because no hardware specific instructions are used, it probably works on all Arduino boards (and possibly
others, I'm not quite sure, I've only tested it thoroughly on an Arduino Uno and a Mega).

ATtiny 25/45/85/24/44/84 microcontrollers are supported.

If you have problems with this library on some board, please submit an issue here or contact me.

Connecting the IR receiver

The receiver's output must be connected to one of the Arduino's digital pin that is usable for interrupts and
it also must work with the CHANGE mode if the intended protocol uses that mode. One example of a board
that does not have CHANGE mode on some of the interrupt pins is the Arduino 101 and one protocol that
uses that mode is the RC5 (you can find the modes here).

The following table (adapted from the Arduino Reference) contains the digital pins that can be use to
connect the IR receiver to the Arduino board:

Board or microcontroller Digital pins usable for interrupts

Uno, Nano, Mini, other 328-based 2, 3

Uno WiFi Rev.2, Nano Every all digital pins

Mega, Mega2560, MegaADK 2, 3, 18, 19, 20, 21

Micro, Leonardo, other 32u4-based 0, 1, 2, 3, 7

Zero all digital pins, except 4

MKR Family boards 0, 1, 4, 5, 6, 7, 8, 9, A1, A2

Nano 33 IoT 2, 3, 9, 10, 11, 13, A1, A5, A7

Nano 33 BLE, Nano 33 BLE Sense all pins

Due all digital pins

101 with CHANGE mode 2, 5, 7, 8, 10, 11, 12, 13

101 with other modes all digital pins

*

https://github.com/LuisMiCa/IRSmallDecoder/issues
https://www.arduino.cc/reference/en/language/functions/external-interrupts/attachinterrupt/

Board or microcontroller Digital pins usable for interrupts

ATtiny 25/45/85 2

ATtiny 24/44/84 8

If you're not sure about how to connect the IR receiver to the Arduino, go to: IR receiver connection details
at the end of this document.

Installing the library

With the Library Manager

Run Arduino IDE and go to tools > Manage Libraries...

or Sketch > Include Library > Manage Libraries...;
Search for IRsmallDecoder and install.

Manually

Navigate to the Releases page;
Download the latest release (zip file);
Run Arduino IDE and go to Sketch > Include Library > Add .ZIP Library;
Or, instead of using Arduino IDE, extract the zip file and move the extracted folder to your libraries
directory.

Using the library

In the INO file, one of the following directives must be used:

#define IR_SMALLD_NEC
#define IR_SMALLD_NECx

#define IR_SMALLD_RC5
#define IR_SMALLD_SIRC12

#define IR_SMALLD_SIRC15

#define IR_SMALLD_SIRC20

#define IR_SMALLD_SIRC

#define IR_SMALLD_SAMSUNG

#define IR_SMALLD_SAMSUNG32

before the

#include <IRsmallDecoder.h>

Then you need to create one decoder object with the correct digital pin:

IRsmallDecoder irDecoder(2); //IR receiver connected to pin 2 in this example

**

**

[*] - In the Mega family, pins 20 & 21 are not available to use for interrupts while they are used for I2C communication.

[**] - Assuming you're using
damellis' ATtiny core or
SpenceKonde's ATTinyCore.
Other cores may have different pin assignments.

https://github.com/LuisMiCa/IRsmallDecoder/releases
https://github.com/damellis/attiny
https://github.com/SpenceKonde/ATTinyCore

And also a decoder data structure:

irSmallD_t irData;

Inside the loop(), check if the decoder has new data available. If so, do something with it:

void loop() {

 if(irDecoder.dataAvailable(irData)) {

 Serial.println(irData.cmd, HEX);

 }

}

A full example

#define IR_SMALLD_NEC
#include <IRsmallDecoder.h>

IRsmallDecoder irDecoder(2);

irSmallD_t irData;

void setup() {

 Serial.begin(250000);

 Serial.println("Waiting for a NEC remote control IR signal...");

 Serial.println("held \t addr \t cmd");

}

void loop() {

 if(irDecoder.dataAvailable(irData)) {

 Serial.print(irData.keyHeld,HEX);

 Serial.print("\t ");

 Serial.print(irData.addr,HEX);

 Serial.print("\t ");

 Serial.println(irData.cmd,HEX);

 }

}

Address check

if you are using multiple remotes, with different addresses, in the vicinity of your project, you should also
verify the address. You can do something like this:

if (irData.addr == theRightAddr) {

 switch (irData.cmd) {

 case someCmd:

 // do something here

 break;

 case someOtherCmd:

 // do some other things

 break;

 //etc.

 }

}

The multifunctional dataAvailable() method

The dataAvailable(irData) method combines the functionalities of 3 "fictitious" functions:
isDataAvailable(), getData() and setDataUnavailable(). If there is some data available, already decoded, when
irDecoder.dataAvailable(irData) is called:

The data is copied to the selected data structure irData ;
The original data is marked as unavailable;
And, finally, it returns true.

If there's no new data, it just returns false.

Note: this library does not use data buffering, if a new signal is received before the available data is
retrieved, that previous data is discarded. This may happen if the loop takes to long to check for new data.
So, if you want to use repetition codes, try to keep the loop duration below 100ms (for NEC and RC5) and
don't use delays. They don't interfere with the decoding, but I don't recommend their usage.

If you want to check if any key was pressed and don't care about the data, you can use the
dataAvailable() method without any parameters. Keep in mind that, if there's new data available, this

method will discard that data, before returning true. The ToggleLED example demonstrates this
functionality.

Disabling the decoder

If you don't want to receive IR codes when they are not needed or if you want to prevent possible
interferences in time critical functions by the decoders' interrupts, you can use the disable() and
enable() methods. The TemporaryDisable example demonstrates a possible usage for these methods.

The enable() method also resets the decoder after reenabling it. This is useful if you have to temporarily
disable all interrupts or need to use a library that does that. If you don't reset the decoder after re-enabling
all interrupts, the next IR signal may not be recognized if the IR receiver detected some signal while the
interrupts where disabled.

Protocol data structures

The protocol data structure is not the same for all protocols, but they all have two member variables in
common:

cmd - the button command code (one byte);
addr - the address code (usually the same for all buttons on one single remote).

Most of the decoders have the keyHeld variable (which is set to true when a button is being held) and two
of the SIRC decoders have the ext variable (see notes for more details);

The following table shows the number of bits used by each protocol and the datatypes of the data structure
member variables:

https://github.com/LuisMiCa/IRsmallDecoder/blob/master/examples/ToggleLED/ToggleLED.ino
https://github.com/LuisMiCa/IRsmallDecoder/blob/master/examples/TemporaryDisable/TemporaryDisable.ino

Protocol keyHeld cmd addr ext

NEC bool 8/uint8_t 8/uint8_t --

NECx bool 8/uint8_t 16/uint16_t --

RC5 bool 7/uint8_t 5/uint8_t --

SIRC12 -- 7/uint8_t 5/uint8_t --

SIRC15 -- 7/uint8_t 8/uint8_t --

SIRC20 -- 7/uint8_t 5/uint8_t 8/uint8_t

SIRC bool 7/uint8_t 8/uint8_t 8/uint8_t

SAMSUNG bool 8/uint8_t 12/uint16_t --

SAMSUNG32 bool 8/uint8_t 8/uint8_t --

Notes

Only one protocol can be compiled at a time, however:
NECx also decodes NEC, but the address will have redundant data;
The RC5 implementation also decodes the extended protocol version, which has a field bit that is
used as an extra command bit (making a total of 7 bits);
SIRC12 will detect signals from SIRC15 and SIRC20, but the codes will not be correct;
Similarly, SIRC15 will also detect signals from SIRC20, but not from SIRC12.

SIRC handles 12, 15 and 20 bits at the same time, by taking advantage of the fact that most Sony
remotes send three signal frames each time one button is pressed. It uses triple frame verification,
checks if a key was held and ignores the initial repetition codes.
SIRC12, SIRC15 and SIRC20 use a basic (smaller and faster) implementation, without the triple frame
verification and without the keyHeld check.
The SIRC20 protocol has the ext variable which holds extended data.
The SIRC decoder also has the ext variable, but it's only used when a 20-bit code is detected, otherwise
it's set to 0.

Possible improvements

I might add a few more IR protocols to this library (there are a lot of them out there);
The keyHeld initial delay is hard-coded, I could make it configurable (in constructor) or even
changeable (with method);
I believe it may be possible to increase the number of usable pins, by using NicoHood's
PinChangeInterrupt Library;
SIRC12, SIRC15 and SIRC20 do not have the keyHeld feature. SIRC fills that gap, but requires 3 signal
frames for each keypress;
The SIRC decoder could also return the number of detected bits (12, 15 or 20).
I have not finished redrawing the IR signals' graphs that would better explain the protocols' timings.

Contributions

So far, these releases were made without any significant contribution from other developers, but I do have
to say that this work was inspired by some of the existing IR Libraries: Arduino-IRremote, IRLib2,
IRReadOnlyRemote, Infrared4Arduino and especially the IRLremote, which was almost what I was looking
for, but not quite... So I decided to make my own NEC decoder and then an RC5 and a SIRC. Finally I
decided to put these decoders in a library, hoping that it will be useful to someone.

Contact information

If you wish to report an issue related to this library (and don't want to do it on GitHub) you may send an e-
mail to: lumica@outlook.com. Suggestions and comments are also welcome.

License

Copyright (c) 2020 Luis Carvalho

This library is licensed under the MIT license.

See the LICENSE file for details.

https://github.com/z3t0/Arduino-IRremote
https://github.com/cyborg5/IRLib2
https://github.com/otryti/IRReadOnlyRemote
https://github.com/bengtmartensson/Infrared4Arduino
https://github.com/NicoHood/IRLremote
mailto:lumica@outlook.com

Appendix A - Details about this library

Size

The size of this library is, as the name implies, small (about 900 bytes on average, for the Arduino UNO
board) and the memory usage is also reduced (around 30 bytes). Keep in mind that these values vary
depending on the selected protocol and the board used.

Program memory and static data used (in SRAM) on an Arduino UNO (in bytes):

Protocol Program memory Static data

NEC 862 29

NECx 858 31

RC5 1066 32

SIRC12 710 23

SIRC15 686 23

SIRC20 768 27

SIRC 1266 38

SAMSUNG 884 30

SAMSUNG32 856 30

To keep track of the sizes of this library, I used a sketch, similar to the ToggleLED example, with and without
the library. By compiling each of the supported protocols and comparing their sizes with the reference
sketch we get the memory used by the library.

Reference sketch With NEC protocol decoder

// #define IR_SMALLD_NEC

// #include <IRsmallDecoder.h>

// IRsmallDecoder irDecoder(2);

// irSmallD_t irData;

int ledState=LOW;

void setup() {

 pinMode(LED_BUILTIN, OUTPUT);

}

void loop() {

//if(irDecoder.dataAvailable(irData)){

 ledState=(ledState==LOW)? HIGH:LOW;

 digitalWrite(LED_BUILTIN,ledState);

//}

}

// On Arduino UNO,

// Sketch uses 766 bytes

// Global variables use 11 bytes

#define IR_SMALLD_NEC

#include <IRsmallDecoder.h>

IRsmallDecoder irDecoder(2);

irSmallD_t irData;

int ledState=LOW;

void setup() {

 pinMode(LED_BUILTIN, OUTPUT);

}

void loop() {

 if(irDecoder.dataAvailable(irData)){

 ledState=(ledState==LOW)? HIGH:LOW;

 digitalWrite(LED_BUILTIN,ledState);

 }

}

// On Arduino UNO, with NEC protocol,

// Sketch uses 1628 bytes

// Global variables use 40 bytes

Speed

Although my main goals are functionality and small size, I believe this library is reasonably fast. I haven't
compared it to other libraries (it's not easy to do so), but I was able to compare the speed of the different
protocols that I've implemented so far:

Protocol Speed comparisons:

Protocol
Interrupt
Mode

Avg.
Interrupt
Time

Max.
Interrupt
Time

Interrupts per
Keypress

 Signal Duration

NEC RISING 11.35 µs 13 µs 34 67.5ms

NECx RISING 10.90 µs 13 µs 34 67.5ms

RC5 CHANGE 10.44 µs 17 µs 14 to 28 24.9ms

SIRC12 RISING 10.44 µs 13 µs 3*13 3*(17.4 to 24.6)ms

SIRC15 RISING 10.51 µs 12 µs 3*16 3*(21 to 30)ms

SIRC20 RISING 11.10 µs 15 µs 3*21 3*(27 to 39)ms

SIRC RISING 11.70 µs 17 µs 39, 48 or 63 3*(17.4 to 39)ms

SAMSUNG FALLING 10.99 µs 13 µs 2*22 2*(32.1 to 54.6)ms

SAMSUNG32 FALLING 10.97 µs 14 µs 34 (54.6 to 72.6)ms

Notes:

Signal Duration is the effective signal duration, not the signal period;
Tested on an Arduino Uno @ 16MHz;
To get the number of the clock cycles used by an interrupt, multiply the time (in μs) by 16;
The decoding is done partially while the signal is being received. When a signal is fully received, the
final stage of the decoding is executed and that's when the interrupt takes more time to run.

Unwanted initial repetition codes

Remote control keys do not "bounce", but the remotes do tend to send more codes than we wish for when
we press a button. That's because, after a very short interval, they start sending repeat codes. To avoid those
unwanted initial repetitions, this library ignores a few of those repetition codes before confirming that the
button is actually being held.

Data separation

The data sent by the remotes is decoded according to the protocols' specifications and separated into
different variables. On most remotes only the 8-bit command matters, so you don't have to work with 16-
bit or 32-bit codes, reducing code size and memory usage.

Simplicity

As you've probably seen above, or if you've already tried one of the "Hello..." examples, this library is very
simple to use and it's not full of rarely needed features. That's what makes it small and why it uses few

resources. Additional features may be added in the future, but only if requested and do not significantly
affect the size and/or speed.

How it works

The decoding is done asynchronously, which means that it doesn't rely on a timer to receive and process
signals, but it uses a hardware interrupt to drive the Finite State Machines that perform the decoding. In
fact, they are Statechart Machines (David Harel type) working in a asynchronous mode.

Most of the protocols' Statechart Machines are implemented using switch cases, but I also use the "labels as
values" GCC extension (AKA "computed gotos") to implement some of the more complex statecharts. It's
not a C++ standard but it should work with all IDEs that use the GCC (like Arduino IDE). If you have
problems compiling any of the protocols that use the "labels as values" extension, please submit an issue
here or contact me.

I can't say that it's easy to understand how these decoders work, some of the Statechart Machines I
designed turned out to be a bit tricky. But if you still want to take a look at the statechart diagrams, they
can be found here. Note that they may not be an exact representation of what I actually implemented, but
they are a good starting point.

No hardware specific instructions

In order to make this library compatible with most of the Arduino boards, I didn't include any hardware
specific instructions, but I did use a programming technique in which it's assumed that the microcontroller's
endianness is Little-Endian. On some boards you may even get a warning related to this, but it should work
anyway.

https://github.com/LuisMiCa/IRsmallDecoder/issues
https://github.com/LuisMiCa/IRsmallDecoder/tree/master/extras/Statecharts

Appendix B - IR receiver connection details

If you are using a simple IR receiver module, the pinout order will most likely be Out Gnd Vcc , as in the
following examples:

But beware, there are other IR receivers with different pinouts, like these examples:

If you are using a test module, the pinout is usually written on it (sometimes it's DATA, DAT or S instead of
OUT).

The connection to the Arduino is very straightforward, just connect:

OUT (or DAT or S) to one of the Arduino's digital pin that has interrupt capability ;

VCC to the Arduino's +5V or (+3.3V if you are using a board with a lower operating voltage);

GND to one of the Arduino's Ground connector.

Nearly all IR receiver's datasheets recommend the usage of an RC filter (R1, C1) at the power input, but it's
not absolutely necessary, (it's meant to suppress power supply disturbances):

Note that most IR receiver test modules already have that RC filter.

[1]

[2]

1. Go to Connecting the IR receiver for more information.
2. Keep in mind that not all IR receivers can operate at low voltages.

