
IRsmallDecoder

A small, fast and reliable infrared signals decoder to
control Arduino projects with remotes.
This is a Library for receiving and decoding IR signals from remote controls. Perfect
for your Arduino projects that need a fast, simple and reliable decoder, but don't
require the usage of multiple different protocols at the same time and don't need
to send IR signals.

Table of Contents

Main features
Supported Protocols
Supported Boards
Connecting the IR sensor
Installing the the library
Using the library
Possible improvements
Contributions
Contact information
License
Appendix A - Details about this library
Appendix B - IR sensor connection details

Main features

It fully decodes the signals and separates the data;
It ignores unwanted initial repetition codes;
It offers an easier way to handle held keys;
Very loose signal tolerances (variations of almost 50% are accepted);
It uses error detection (when possible);
Low SRAM and Flash memory usage;
The decoding is done asynchronously, no timers required, so you can use
them for other things;
No conflicts with timer-related functionalities such as tone(), servos,
analogWrite(), etc.;
It uses one hardware (external) interrupt;
No hardware specific instructions are used.

Supported Protocols

NEC
NECx
Philips RC5 and RC5x (simultaneously)
Sony SIRC 12, 15 and 20bits (individually or simultaneously)

Supported Boards
Because no hardware specific instructions are used, it probably works on all
Arduino boards (and possibly others, I'm not quite sure, I've only tested it
thoroughly on an Arduino Uno and a Mega). If you have problems with this library
on some board, please submit an issue here:
https://github.com/LuisMiCa/IRSmallDecoder/issues or contact me.

Connecting the IR sensor
The sensor's output must be connected to one of the Arduino's digital pin that is
usable for interrupts and, also, it must work with the CHANGE mode if the
intended protocol uses this mode. (One example of a board that does not have
CHANGE mode on some of the interrupt pins is the Arduino 101; and one protocol
that uses that mode is the RC5).

Board Usable Pins

Uno, Nano, Mini, other 328-based 2, 3

Uno WiFi Rev.2 all digital pins

Mega, Mega2560, MegaADK 2, 3, 18, 19, 20, 21

Micro, Leonardo, other 32u4-based 0, 1, 2, 3, 7

Zero all digital pins, except 4

MKR Family boards 0, 1, 4, 5, 6, 7, 8, 9, A1, A2

Due all digital pins

101 with CHANGE mode 2, 5, 7, 8, 10, 11, 12, 13

101 with other modes all digital pins

(Source: https://www.arduino.cc/reference/en/language/functions/external-

interrupts/attachinterrupt/)

If you're not sure about how to connect the IR Sensor to the Arduino, go to: IR
sensor connection details at the end of this document.

https://github.com/LuisMiCa/IRSmallDecoder/issues
https://www.arduino.cc/reference/en/language/functions/external-interrupts/attachinterrupt/

Installing the the library

Navigate to the Releases page;
Download the latest release (zip file);
Run Arduino IDE and navigate to Sketch > Include Library > Add .ZIP Library;
Or, instead of using Arduino IDE, extract the zip file and move the extracted
folder to your libraries directory.

Using the library
In the INO file, one of the following directives must be used:

#define IR_SMALLD_NEC
#define IR_SMALLD_NECx
#define IR_SMALLD_RC5
#define IR_SMALLD_SIRC12
#define IR_SMALLD_SIRC15
#define IR_SMALLD_SIRC20
#define IR_SMALLD_SIRC

before the

#include <IRsmallDecoder.h>

Then you need to create one decoder object with the correct interrupt pin:

IRsmallDecoder irDecoder(2); //IR sensor connected to pin 2 in this example

And also a decoder data structure:

irSmallD_t irData;

Inside the loop(), check if the decoder has new data available. If so, do something
with it:

void loop() {
 if(irDecoder.dataAvailable(irData)) {
 Serial.println(irData.cmd, HEX);
 }
}

A full example
#define IR_SMALLD_NEC
#include <IRsmallDecoder.h>
IRsmallDecoder irDecoder(2);
irSmallD_t irData;

void setup() {
 Serial.begin(250000);
 Serial.println("Waiting for a NEC remote control IR signal...");
 Serial.println("held \t addr \t cmd");
}

https://github.com/LuisMiCa/IRsmallDecoder/releases

void loop() {
 if(irDecoder.dataAvailable(irData)) {
 Serial.print(irData.keyHeld,HEX);
 Serial.print("\t ");
 Serial.print(irData.addr,HEX);
 Serial.print("\t ");
 Serial.println(irData.cmd,HEX);
 }
}

Protocol data structures
The protocol data structure is not the same for all protocols, but they all have two
things in common:

cmd - the button command code (one byte);
addr - the address code (usually the same for most of the buttons on one
single remote).

Most of the decoders have the keyHeld variable, which is set to true when a
button is being held.
The SIRC protocol has the ext variable which holds extended data.

The following table shows the number of bits used by each protocol and the
datatypes of the data structure member variables:

Protocol keyHeld cmd addr ext

NEC bool 8/uint8_t 8/uint8_t --

NECx bool 8/uint8_t 16/uint16_t --

RC5 bool 7/uint8_t 5/uint8_t --

SIRC12 -- 7/uint8_t 5/uint8_t --

SIRC15 -- 7/uint8_t 8/uint8_t --

SIRC20 -- 7/uint8_t 5/uint8_t 8/uint8_t

SIRC bool 7/uint8_t 8/uint8_t 8/uint8_t

Notes

Only one protocol can be compiled at a time, however:

NECx also decodes NEC, but without the inverted address error check;
The RC5 implementation also decodes the extended protocol version,
which as a field bit that is used as an extra command bit (making a
total of 7 bits);

SIRC handles 12, 15 and 20 bits at the same time, by taking advantage
of the fact that most Sony remotes send three signal frames each time
one button is pressed. It uses triple frame verification, checks if a key
was held and adds a delay to prevent unwanted keyHeld codes;
SIRC12, SIRC15 and SIRC20 use a basic (smaller and faster)
implementation, without the triple frame verification and without the
keyHeld check;

If there is some data available, when irDecoder.dataAvailable(irData) is
called: that data is copied to the selected data structure; it marks the
received data as unavailable and then returns true.

If a new signal is received before the available data is retrieved, that previous
data is discarded. This may happen if the loop takes to long to recheck if
there's new data available, especially if delays are used. (They do not
interfere with the decoding but I wouldn't recommended their use).

Possible improvements

More protocols! That's obvious;
The keyHeld initial delay is hard-coded, I could make it configurable (in
constructor) or even changeable (with method);
I'm thinking about adding methods to disable/re-enable the decoder, to
temporarily allow the usage of other time critical interruptions (or to simply
disable it when not needed);
The dataAvailable(irData) method could be overloaded with a version
without irData;
For now, it's not easy for anyone to add other protocols;
I believe it may be possible to increase the number of usable pins, by using
NicoHood's PinChangeInterrupt Library.

Contributions
This first release was made without any contribution from other developers, but I
do have to say that this work was inspired by some of the existing IR Arduino
Libraries: Arduino-IRremote, IRLib2, IRReadOnlyRemote, Infrared4Arduino, and
especially the IRLremote, which was almost what I was looking for, but not quite...
so I decided to make my own NEC decoder and then an RC5 and a SIRC, practically
from scratch. Finaly I decided to put these decoders in a library, hoping that it will
be useful to someone.

Contact information
If you wish to report an issue related to this library (and don't want to do it on
GitHub) you may send an e-mail to: lumica@outlook.com. Suggestions and
comments are also welcome.

https://github.com/z3t0/Arduino-IRremote
https://github.com/cyborg5/IRLib2
https://github.com/otryti/IRReadOnlyRemote
https://github.com/bengtmartensson/Infrared4Arduino
https://github.com/NicoHood/IRLremote
mailto:lumica@outlook.com

License
Copyright (c) 2020 Luis Carvalho
This library is licensed under the MIT license.
See the LICENSE file for details.

Appendix A - Details about this library

Size
The size of this library is, as the name implies, small (about 900 bytes on average,
for the Arduino UNO board) and the memory usage is also reduced (around 30
bytes). Keep in mind that these values vary depending on the selected protocol
and the board used.

Program memory and static data used (in SRAM) on an Arduino UNO (in bytes):

Protocol Program memory Static data

NEC 858 28

NECx 854 30

RC5 1062 31

SIRC12 706 22

SIRC15 682 22

SIRC20 764 26

SIRC 1262 37

To keep track of the sizes of this library, I used the ToggleLED example as a
reference to determine the actual sizes, by compiling a version without the
IRsmallDecoder and comparing it to the full version, for each of the supported
protocols.

Reference sketch ToggleLED sketch

// #define IR_SMALLD_NEC
// #include <IRsmallDecoder.h>
// IRsmallDecoder irDecoder(2);
// irSmallD_t irData;
int ledState=LOW;
void setup() {
 pinMode(LED_BUILTIN, OUTPUT);
}
void loop() {
//
if(irDecoder.dataAvailable(irData)){
 ledState=(ledState==LOW)?
HIGH:LOW;
 digitalWrite(LED_BUILTIN,
ledState);
// }
}

#define IR_SMALLD_NEC
#include <IRsmallDecoder.h>
IRsmallDecoder irDecoder(2);
irSmallD_t irData;
int ledState=LOW;
void setup() {
 pinMode(LED_BUILTIN, OUTPUT);
}
void loop() {
 if(irDecoder.dataAvailable(irData))
{
 ledState=(ledState==LOW)?
HIGH:LOW;
 digitalWrite(LED_BUILTIN,
ledState);
 }
}

Speed
Despite the fact that my main goals were functionality and small size, I believe this
library is reasonably fast. I haven't compared it to other libraries, (its not easy to do
so) but I did manage to compare the speed of the different protocols I've
implemented so far:

Protocol Speed comparisons:

Protocol Interrupt
Mode

Avg.
Interrupt

Time

Max.
Interrupt

Time

Interrupts
per

Keypress

NEC FALLING 11,9 µs 14 µs 34 67,5ms

NECx FALLING 11,4 µs 14 µs 34 67,5ms

RC5 CHANGE 10,4 µs 17 µs 14 to 28 24,9ms

SIRC12 RISING 11,0 µs 13 µs 3*13 3*(17,4 to 24,6)ms

SIRC15 RISING 10,9 µs 12 µs 3*16 3*(21 to 30)ms

SIRC20 RISING 11,1 µs 15 µs 3*21 3*(27 to 39)ms

SIRC RISING 11,7 µs 17 µs 39, 48 or
63

3*(17,4 to 39)ms

Notes:

Signal Duration is the effective signal duration, not the signal period.
Tested on an Arduino Uno @ 16MHz;
To get the number of the clock cycles used by an interruption, multiply the
time (in μs) by 16;
The decoding is partially done while the signal is being received. When one
signal is fully received, the final stage of the decoding is executed and that's
when the interruption takes more time to run.

Asynchronous?
The decoding is done asynchronously, meaning it does not rely on a timer to
receive and process the signals. but it still uses a hardware interrupt to drive the
Finite State Machines that perform the decoding. Actually, they are Statechart
Machines (David Harel type) working in asynchronous mode.

Most of the protocols' Statechart Machines are implemented using switch cases,
but I also use the "labels as values" GCC extension (AKA "computed gotos") to
implement some of the more complex machines. It's not a C++ standard but it
should work with all IDEs that use the GCC (like Arduino IDE).

 Signal Duration

If you have problems compiling any of the protocols that use the "labels as values"
extension, please submit an issue here:
https://github.com/LuisMiCa/IRsmallDecoder/issues or contact me.

Unwanted initial repetition codes
Remote control keys do not "bounce", but the remotes do tend to send more
codes than we wish for, when we press a button. That's because, after a very short
interval, they start to send repeat codes. To avoid those unwanted initial
repetitions, this library ignores a few of those repetition codes before confirming
that the button is really being held.

Data separation
The data sent by the remotes is decoded according to the protocols' specifications
and separated into different variables. In most remotes only the 8 bit command
matters, so you don't have to work with 16 or 32 bit codes, reducing code size and
memory usage.

Simplicity
As you've probably seen above, or if you've tried out any of the "Hello..." examples,
this library is very simple to use and it's not full of rarely needed features. That's
what makes it small and why it uses very few resources. Additional features may be
included in the future, but only if they are requested and do not affect the size
and/or speed significantly.

How it works
I can't say that it's simple to understand how the decoders work, some of the
Statechart Machines I've designed turned out to be a bit convoluted. But if you still
would like to take a look at the statechart diagrams, they can be found here
https://github.com/LuisMiCa/IRsmallDecoder/tree/master/extras/Statecharts.
Please note that they may not be an exact representation of what I've effectively
implemented, but they are a good starting point.

No hardware specific instructions
In order to make this library compatible with most of the Arduino boards, I didn't
include any hardware specific instructions, but I did use a programming technique
in which it's assumed that the microcontroller's endianness is Litle-Endian. On
some boards you may even get a warning related to this, but it should work
anyway.

https://github.com/LuisMiCa/IRsmallDecoder/issues
https://github.com/LuisMiCa/IRsmallDecoder/tree/master/extras/Statecharts

Appendix B - IR sensor connection details
If you are using a simple IR Receiver module the pinout order will be, most likely,
Vout Gnd Vcc like in the the following examples:

But beware, there are other IR Receivers with different pinouts, like these
examples:

If you are using a test
module, the pinout is usually
written on it (sometimes it's
DAT or S instead of Vout).

The connection to the Arduino is very straightforward, just connect:

OUT (or DAT or S) to one of the Arduino's digital pin that has interrupt
capability[1];

VCC to the Arduino's +5V or (+3.3V if you are using a board with lower
operating voltage[2]);

GND to one of the Arduino's Ground connector.

[1] Go to Connecting the IR sensor for more information.

[2] Note that not all IR Sensors can operate at low voltages.

Nearly all IR Sensor's datashets recommend the usage of an RC filter (R1, C1) at
the power input, but it's not really necessary, (it's meant to suppress power supply
disturbances):

Note that most IR Receiver Test Modules already have that RC filter.

https://markdownmonster.west-wind.com/

