
1

Library Modular PID controllers

Fundamentals in few words.

How the PID controllers work.

In internet many pages tell about control systems and PID controllers,

e.g. in Wikipediahttps://en.wikipedia.org/wiki/PID_controller

At the beginning of 20-th century the PID controllers were invented and

remain till today in all most cases the best solution, rarely different kind

of controllers are necessary.

Theoretically no a better way of stabilizing a physical value in closed loop

as using PID algorithm exists. Any others attempts, except same rare cases,

have brought not much improvement, but have done much complication.

In the control science we use a concept of plant.

In this abstract concept we consider an output of the plant - some measured value,

which we want to control (almost every time stabilize)

and input of the plant, which is a physical value we are able to change

through the action of controller (actuator).

 actual value

 -
 setpoint

 output difference

 Control plant and controller

We are not interested in physical construction of some apparatus, but want

to see the response of the plant, it means the reaction of the measured

value, after a change of input value.

See https://en.wikipedia.org/wiki/Step_response

PID controllers have got three main parameters:

gain

Ti integration time

Td derivative time

and calculates the following output, comparing setpoint to actual value or

directly error(t) = setpoint(t) - actual value(t)

Y(t) = gain(error + ∫error∙dt/Ti + Td∙d(error)/dt)

This output of the controllers regulates feedback of the plant causing

the actual value remaining stable.

control

plant

PID

controller

actuator

2

 +

 control error + Y(t) PID output

 +

 PID controller

This time function Y(t) conducts to Laplace transformation of transit function:

K(p) = gain(1 + 1/pTi + pTd)

where p is the operator replacing differentiation und 1/p replacing the

integration.

Calculation of controller output Y(t) in program

For Y(t) calculation we need in Arduino integration and differentiation.

Principle of integration and differentiation is to do calculations by constant

time difference between two calculation steps.

We speak about constant sample time. Only in this way the continuous differentiation

and integration could be done properly in a discreet way.

The constant sample time is realized by control functions Takt100 and Takt1000.

The sample time must be short enough to control fast changing actual values.

For almost all practical cases of control plant 100 ms created by Takt100, the standard

Library PIDcontrollersModular sample time, is sufficient.

Tuning of controllers in few words

After some jumping change of input of the plant we get a time response of the

output, which contains all dynamic information about the plant.

see https://en.wikipedia.org/wiki/Step_response

This response is described using Laplace transformation.

The sophisticated mathematics must not be known for a common user of controllers,

but simply rules of thumbs are enough to tune the controllers.

Static plants

In almost all cases plants are static; it means, after change of input, the output

after some time gets some stable value, e.g. after heating on, the temperature

begins to rise and reaches some stable value.

 proportional term=

 gain∙error

 integral term=

 gain∙ ∫error∙ dt/Ti

 derivative term =

gain∙Td∙d(error)/dt

3

temperature

 dead time time

 Response of a static plant : temperature to heating on

For the tuning of controllers we need to know the dead time of the response.

Simply use your stop watch to look for the first rise of temperature, after

heating on. You will get the dead time of the static plant.

And then calculate the following control parameters:

derivative time = dead time/2

integration time = 4 * derivative time

Gain put at the beginning =1.0 and increase the gain looking at control loop behavior,

if is stable and its overshoot is not too big.

If the gain is too big, control loop oscillates.

This oversimplified way of tuning was first found by Ziegler-Nichols.

Original Ziegler-Nichols method is far more complex and is described in details

on the internet, e.g. in wikipedia:

https://en.wikipedia.org/wiki/Ziegler%E2%80%93Nichols_method

Astatic plants

In this kind of plants some equilibrium state is reached between input and output

in control loop, but it is fragile.

Every small change of input causes higher or lower running of the output.

You can imagine a ball placed on some top, which go down after some little

touch.

4

 water level in tank

 time

 Response of an astatic plant. Water level in tank

- pump in outlet was switched off.

Control of water level in a tank could serve as an example of an astatic plant.

There are two pumps.

One pump is supplying water to the tank, which is flowing outside

by action of another pump on output.

If one pump changes flow and another pump flow remains, the level in the

tank goes up or down continuously.

The introduced before simple thumb rules cannot be used in this example,

because this plant is astatic.

Look into control books for other formulas.

Generally the controller integration time interact with plant integration

causing instability in system.

Be careful using Ti, if too small, your system could be instable.

 Actual value of controllers in Arduino

 The continuous controller requires floating value in the range [0 -100], the

 Arduino analog value is type int 0 - 1023 and the following commands satisfy the

 demand:

 int value;

 value=analogRead() ;

 act=value*/10.23 ;

where : act controller actual value

In order to control a physical value we measure it and connect voltage signal

5

from the measurement instrument to Arduino 0 – 5V analog input and

read this value in program using analogRead() command.

We also need in setup analogReference() command to define reference voltage.

How to do this exactly please look into Arduino reference or manual.

As result we get 0 -1023 integer value.

Naturally the setpoint of controller has to be also in the range of 0 -100 floating

value.

Controllers can also obtain actual value in many other different ways, e.g using

bus transmission or any kind of interface to Arduino.

Two points are important:

1. Range and linearity of signals

2. Sampling time of signals and sampling time of controllers

1. range

These introduced controllers need a linear physical actual value, and then the

setpoint has to be also linear, in the range 0 – 100. Such linear actual value can be

easily indicated.

In rarely cases of nonlinearity the control function Linear is useful.

2. sample time

If the control loop is fast – e.g. control of motor speed, all signal and

components must be able to transmit the information in the

control loop, we speak about the limit frequency and sample time.

Not to indulge into the sophisticated mathematics let us say,

 controllers should run in a short cycle in Arduino, analog values must

be processed in a short time and supplied fast.

If not, the control loop can’t react quickly to disturbances in loop,

therefore, it is not able to control properly actual value.

These controllers are written for the standard sample time 100 ms,

in many instances short enough, but can run in actually any different sample time,

e.g. 10 ms or 1 s.

But then time dependent controller parameters should be calculated anew.

E.g. controllers running in 100ms sample time (T100) was tuned to Ti=100s, Td=25s

should run now in 1 s cycle(T1000) , then:

Ti new = Ti /10 =10s

Td new = Td/10 =2.5s

The same conversion affects all other control function, which are processed in time.

Their time depended parameter need to be corrected like in previous example.

One thing is important – the sample time must remain constant,

otherwise calculations of PID algorithm will flow in time, creating

new difficult problems in control system.

Small changes of controllers’ cycle don’t matter much.

6

Takt1000 and Takt100 will create constant sample time with enough accuracy,

 if only Arduino loop is not too heavily loaded doing processing (fast enough).

Output of controllers in Arduino

 Arduino analog output requires integer values in the range [0 -255] and the following

 commands satisfy the demand:

 int value;

 value=out*2.55;

 analogWrite(value);

where : out controller output

Controller CPID generates continuous output which should be converted into some

electric analog signal, e.g. current or voltage before going to actuator.

There are no analog output cards by Arduino.

 Although we use command analogWrite, but the analog values are converted into

 digital modulated output, by way of pulse width modulation (PWM) and should

 be linked to a digital output pin configured with pinMode.

Look into Arduino reference and manuals, how it is functioning.

please note:

Only pins 3,5,6,9,10,11 are available as analog output.

PWM frequency on pin 3,9,10,11- 490 Hz

PWM frequency on pin 5,6 - 980 Hz

This frequency can be changed using command:

analogWrite(pin, pulsweite)

 In the simplest way, this signal can be transformed into voltage

using low pass filter: capacitor c=10 µF , resistor R= 4.7 KΩ, operational amplifier

rail-to-rail e.g. MCP601. Unfortunately the accuracy is not the best, below 1 %.

Much better is to implement a special chip LTC2644.

 +5V

 7

 2- 6

 R

 3+ 3

 c 4

MCP601

Low pass filter for Arduino analog output

7

Low pass filter is worsening the controller output dynamic, but that is

only relevant in very fast control loops.

Two remaining controllers SPID, CPID, produce digital outputs which should be

simply connected to Arduino digital outputs using Arduino command digitalWrite().

Before using digitalWrite() the pin must be configured to output

e.g. pin 6 define as digital output, pinMode(6, OUTPUT) (see examples)

Arduino digital inputs

 Be careful using Arduino digital inputs, because they have very high input resistance

>100 MΩ and therefore are very sensitive to noise from the environment.

Use external resistors or Arduino command INPUT_PULLUP (internal resistor).

Read Arduino reference or manuals.

Inputs 0,1 are used for serial communication and are not available for programs

in examples of this library.

They may be implemented, when you erase the communication

to plotter, it means all commands Serial.begin(9600) initializing the communication.

About the library PID controllers general.

This library contains a scope of 6 files cpp+header with PID controllers and two

files cpp+header with control functions, which are useful for control systems.

The library is composed modular and very flexible: either one controller

or many controllers could run simultaneously.

Control functions could also be implemented for different purposes outside

control systems.

Call in your program only controllers and functions you need and connect

their inputs with outputs in order to get desirable performance (see examples)

and call in a proper sampling time using T100 and T1000.

There are 3 different types of controllers and 12 different control functions:

 controllers

class CPID continuous PID controller

class SPID step PID controller for servomotors

class IPID impulse PID controller with impulse-pause modulation (PWD) for heating and

 cooling.

call method cupdate.

control functions

time sampling and shifting of calls:

class Takt100 100mssampling

class Takt1000 1s sampling

8

actual value preparing:

class Mean calculating mean value

class PT low pass filter

class Diff high pass filter

class Dead dead time

class Int integration

class Linear linearizing

class Hyst hysteresis between actual value and setpoint

setpoint preparing:

class SetGen increase or decrease setpoint in steps, after push button is pressed.

class SetJpRamp replace set point jump through ramping

class SetTimeTable generate setpoints according to values defined in time table

call method fupdate

In this library every type of controller has a separate cpp file.

Additional control functions are collected in ConFunct file.

These control functions mostly prepare actual value and setpoint of

 a controller improving its performance in a control loop.

Generally controllers don’t like bumping and disturbances of actual value and setpoint,

but prefer smooth signals. Then they produce a smooth output, which is better for

actuators and create no worsening of control loop performance, but improving.

Control functions:

1. Filtering of disturbances in measured signal

 The filtering, low pass filter PT und mean value Mean , has to be done carefully,

 not too strong, not to eliminate the necessary dynamic of the control loop.

2. Eliminating nonlinearities in controlled loop, especially in measured signal.

3. Providing setpoint in a smooth way – avoiding jumping of setpoint,

 and providing setpoint according to a stored tables.

All controllers need a constant sample time, because PID algorithm desires

an exact calculation of time. Laplace functions must be sampled by constant

time, which can only be done with some limited accuracy in loop, because

 there are no standard hardware time interrupts in Arduino.

 Programs in folder examples

Half of these examples contains applications of controllers, another half simulation

loops.

9

About the applications

In the examples there are three files with application of CPIDApplication,

SPID Application and IPIDApplication and one with controllers cascade

in file CPIDApplicationCascade.

Every program has the same construction.

1. Configure Arduino inputs and outputs.

2. Read actual value using command analogRead() and filter this value using PT

 control function T=2s in order to eliminate noise. Define setpoint set=50.

3. Connect bits switching auto/manual and push buttons bits for controller

output manipulation in manual mode to peripheries.

4. Put controllers output to peripheries. Depending on controller output

either analog value CPID or digital outputs – SPID, IPID.

 Controller cascade in file CPIDApplicationCascade

Two continuous controllers con1 master controller and con2 follow up controller are

running. Actual values are supplied through commands analogRead() and

filtered using low pass filter PT with time constant 2s in order to eliminate

noise in analog signal.

Both controllers get the same digital signal switching auto/manual.

In manual mode the output of the follow up controller can be manipulated

by pushing buttons up and down. The output of master controller goes as setpoint to

follow up controller. Control parameters of follow up controller are tuned

expecting fast loop, master controller is prepared for slow loop.

About the simulation

All three types of controllers are built in an identical control loop and get to execute

 the same task: control actual value accordingly to ramp generated by SetTimeTable

 and SetJpRamp.

In all three cases the control plant is the same:

PT element (low pass filter) with T=100s connected to dead time element Dead T = 10s.

In such a case controller parameters, according to Ziegler-Nichols, are approximately as

follows:

Ti= 2* Dead T= 20s

Td = 0.5 *Dead T = 5s.

The gain was tuned experimentally: gain=6.

You can watch behavior of the controllers, compare their work, change parameter

and examine their influence on the control loop quality.

Please use the Arduino plotter to watch the simulation.

In case of IPID and SPID extra function were used to produce analog actual

value from digital outputs of these controllers:

10

Step controller SPID

SPID digital outputs are connected to integrator Int in order to simulate the work of

servo motor:

put analog value:

 100 if impulse motor direction +

0 no impulse

-100 if impulse motor direction -

Impulse controller IPID

IPID outputs are converted to analog values and lead directly as input

for PT element: 100, 0, -100

put analog value:

 100 if heating on

0 no heating, no cooling

-100 if cooling on

please note

Not every pulse on SPID and IPID controller output appears in simulation on plotter,

because they are sometimes too fast, too short and the plotter can’t depict them,

but they are not lost and show up on digital outputs.

11

Continuous PID controller CPID

Call every 100 ms using function Takt100.

Continues controllers are used generally to stabilize physical values

on a plant. Many different applications are possible and could be found in

control system literature.

The output signal of a plant, which should be hold constant, is measured

and compared to the setpoint.

The introduced CPID controller is also able to work together

with a second controller in cascade (see examples CPID cascade).

Continuous PID controller calculates the error difference between

the actual value und desired setpoint and generates a continuous output

as a sum of proportional integral and derivative term, which goes to the

actuator , according to the following formula:

Y(t) = gain (error + ∫(error.dt)/Ti + Td*d(error)/dt)

controller parameters:

float act [0 -100] actual value

float set[0 –100] setpoint

float diff [-100, 100] control difference

float out [0 – 100] PID output value

float track [0 – 100] tracking value , only for cascade of two controllers

bool auto_man switching auto/manual

bool out_up push button output up

bool out_down push button output down

bool cascade if cascade=true, master controller

float gain controller gain

float Ti[s] controller integration time

float Td[s] controller derivative time

internal data:

float P proportional term

float I integral term

float D derivative term

operation modes

Two modes are possible.

12

manual mode: auto_man = 0

It is necessary to switch into the manual mode during setup of plant, in cases of trouble

or simply to test the control loop.

And it is almost impossible to run the controller only in auto mode.

In manual mode output of the controller can be manipulated using

bits out_up und out_up. These bits can be linked directly to hardware push buttons.

out_up output of the controller higher, push button +

out_down output of the controller lower, push button -

If button pressed, the continuous output runs in the range from 0 to 100 with the

 speed 1% per second, higher or lower.

In this mode is possible to write some value direct to the out parameter, which the

controller accepts as new starting point.

Switching manual/auto happens bumping free (no jump of output), if the control

difference is zero.

automatic mode: auto_man = 1

In this mode the output of the controllers is calculated accordingly

to PID formula:

Y(t) = gain (error + ∫(error.dt)/Ti + Td*d(error)/dt)

cascade

The cascade is built of two controllers: the master controller output goes as

setpoint to follow up controller. The follow up controller works in

a fast control loop, the master controller loop is slow.

cascade

setpoint out out

 - -

 actual value slow loop actual value fast loop

 Cascade of controllers

Please read about cascade in Wikipedia:

http://en.wikipedia.org/wiki/PID_controller , cascade control

or e.g.:

https://www.west-cs.com/news/how-does-cascade-control-work/

follow- up

controller
master

controller

13

In single mode switching manual/auto should happen bumping-free, it means,

without jumps of controller output. Controller should begin its work softly from

last output, when the control difference is zero.

In case of follow-up controller in cascade the output of master controller

serves as setpoint in the follow-up controller. To get rid of the follow up

controller bumping, the analog input track in master controller

gets the actual value of the follow-up controller and after the switching to auto

produces output equals actual value which is put to the follow-up controller setpoint.

The control difference is zero and no bumping occurs.

Write cascade =1 in master controller parameter and connect parameter track

to follow-up controller actual value act (see examples, CPIDApplicationCascade).

initialization

In Arduino setup loop the CPID controller is initialized automatically.

Write some value in setup loop to parameter out, it will be taken as starting

point if actual value equals setpoint during setup. Default value is zero.

 Step PID controller SPID

Call every 100 ms using function Takt100.

This controller generates impulses for servo motor: move direction plus or minus.

The movement is equivalent to integration where output of the integrator is the motor

rotor position.

Inside the program so called speed DPID algorithm is calculated and after the motor

integration becomes PID algorithm like by continuous controller.

 SPID controller motor

 pulses +

 setpoint

 pulses -

 -

 actual value

 Step controller

controller parameters:

float act [0 -100] actual value

float set [0 -100] setpoint

float diff [-100, 100] control difference

bool auto_man switching auto/manual

bool butt_plu push button direction plus

bool butt_min push button direction minus

bool motor_plu digital output direction plus

bool motor_min digital output direction minus

DPID

algorithm

14

bool limit_plu limit switch direction plus– stopping pulses and DPID calculation

bool limit_min limit switch direction minus – stopping pulses and DPID calculation

float gain controller gain

float Ti[s] controller integral time

float Td[s] controller derivate time

float onvalue [0 – 100]

float offvalue [0 – 100]

float mimp[s] minimal motor impulse length

float motime[s] motor running time from minimal to maximal position

internal data:

float PxD speed proportional term

float I xD speed integral term

float DxD speed derivative term

operation modes

There are two operation modes: manual and auto.

manual mode: auto_man = 0

It is necessary to switch into the manual mode during setup of plant,

in cases of trouble, or simply to test the control loop.

And it is almost impossible to run the controller only in auto mode.

In manual mode output of the controller can be manipulated.

Pressing the push button butt_plu causes motor rotating direction plus,

the push button butt_min rotation direction minus.

automatic mode: auto_man = 1

DPID speed algorithm is calculated and put out in form of pulses on

digital outputs motor_plu and motor_min.

If limit position is reached and one of limit switches is activated,

the generation of pulses is stopped.

Without limit switches processing of DPID will be limited inside, but

pulses are not stopped.

Limit switches do this better, stopping also pulses in right moment

and therefore are recommended.

Parameter mimp prevents too short pulses that could damage motor.

Near the point diff=0 the action of motor could be limited by means of

built in hysteresis with parameters onvalue and offvalue.

How it happens is described in case of control function Hyst.

These two parameters cannot be too big because of control loop accuracy.

15

initialization

In Arduino setup loop the controller is initialized automatically.

Impulse PID controller IPID – temperature controller

 Call every 100 ms using function Takt100.

 setpoint out heating

 - cooling

actual value

 Impulse controller

controller parameters:

float act [0 -100] actual value

float set [0 -100] setpoint

float diff [-100, 100] control difference

float out [0 -100] continous output

float track [0 -100] tracking value, only for cascade

bool auto_man switching auto/manual

bool butt_pl push button direction plus

bool butt_min push button direction minus

bool heating output heating

bool cooling output cooling

bool three_two controller type =false, only heating, =true heating and cooling

bool cascade if cascade =true, master controller

float gain controller gain

float Ti[s] controller integration time

float Td[s] controller derivate time

float period[s] impulse/pause period by PWD modulation

float min_imp[s] minimum impulse length

float cool_to_heat ratio cooling/heating in the range < 0, 1 >

float zone_high [0-100] control zone high

float zone_low [0 -100] control zone low

internal data:

float P proportional term

float I integral term

float D derivative term

 PID

algorithm

 conversion

output [0 - 100] to pulses

heating and cooling

16

In this controller output of a continuous controller [0 -100] is converted

into heating/cooling pulses by impulse/pause modulation (PWD).

The period is constant and defined in seconds by parameter period.

Types of controller

Two types of controllers are possible: parameter three_two = 0 only heating,

three_two = 1 heating and cooling.

three_two = 0 controller output 0 – 100 heating pulses 0 – 100.

three_two = 1 controller output 0 - 100 cooling 0 -50, heating 50 - 100

Two short pulses (pauses) are eliminated through choice of minimal impulse

length, parameter min_imp in seconds

operation modes

There are two operation modes: manual and auto.

manual mode: auto_man = 0

It is necessary to switch into the manual mode during setup of plant,

in cases of trouble, or simply to test the control loop.

And it is almost impossible to run the controller only in auto mode.

In this mode the controller output out can be manipulated in the range [0 – 100]

using the push buttons butt_pl direction up with a speed 1% per second and butt_min

direction down with a speed 1% per second.

As result of the controller output manipulation, length of heating (and cooling pulses)

pulses changes from value zero to period.

automatic mode: auto_man = 1

PID algorithm is calculated and put out in a form of heating and cooling

pulses on digital outputs heating and cooling.

Parameter min_imp prevents too short pulses that could damage the

heating (cooling) units.

Parameter cool _to heat defines the ratio cooling/heating and is smaller 1.

If cool_to_heat =1, then by analog output out=0 cooling impulse length equals

period (full cooling).

If cool_to_heat=0.5, then by out=0 cooling pulse length equals 50% of period.

Zones zone_high and zone_low are switching action of PID algorithm off

17

in the following way:

1.

actual value temperature overshoots act >=set + zone_high

then heating (cooling) permanent off, PID integration is stopped.

2.

actual value temperature goes down act <=set - zone_low

then heating permanent on (cooling off), PID integration is stopped.

initialization

In Arduino setup loop the controller is initialized automatically.

Write some value in setup loop to parameter out, it will be taken as starting

point, if actual value equals setpoint during setup. Default value is zero.

List of programs in ConFunc file.

Takt100 and Takt1000

The fundamental classes in this library are Takt1000 und Takt100.

They create time sampling 1s und 100 ms and in the same

time they share calls of controllers und control functions.

Takt100 returns values: 0,1,2,3,4 every 100 ms shifted at 20 ms

one after another.

Takt1000 returns values 0,1,2,3,4 every 1 s shifted at 200ms.

one after another

Both return 5 in case of no time sampling.

They cannot do this perfectly, but with the accuracy of loop time.

They use for this task system function millis().

Although this way is not perfect, it brings enough accuracy in most

cases.

Using of Takt1000 and Takt100.

Only one instance of Takt1000 and Takt100 should be called in loop,

because only then we get their desired performance: not only the right sampling,

but also the right microprocessor time sharing.

The time sharing.

If many controllers are called in the same cycle, they create too big

burden for the Arduino microprocessor.

Functions Takt1000 and Takt100 not only create the sampling

1000ms and 100ms, but also share the burden of processing

into many Arduino cycles.

18

How to call Takt100 and Takt1000.

example for Takt100 and continuous controller CPID (look into Arduino examples)

loop (

value=takt100.fupdate();

if (value ==0)

{ con1.cupdate(); } //instance 1 of controller is processed every 100 ms

if (value ==1)

{ con2.cupdate(); } //instance 2 of controller is processed 20ms later, every 100 ms

.................

..................

 if (value==4)

 { con5.cupdate();}

)

 where:

 takt100.fupdate() // call method fupdate of class Takt100

 con1.update() // call method update of class CPID

Function Mean

Call in 100 ms cycle using Takt100 sample time or Takt10001 second sample time.

parameters

float in signal input

float out output mean value

bool start if start=true initialize

Calculate a mean value of last 8 sampled values according to formula:

out = (in + 7 out last value)/8

Be careful, on this way signal loses noise and disturbances, but also some dynamic

can be lost, which is necessary for good performance of control loop.

initialization

In Arduino setup loop the controller is initialized automatically, if bit start=1.

Put start= 1 to initialize.

Function PT

Call every 100 ms using function Takt100

19

parameters

float in input signal

float out filtered output

float T[s] time constant

out

 time

 Response of PT element to step in jump =1

Function PT is a low pass filter, suitable especially for the filtering the

actual value, realizing the following Laplace function:

1/1+pT

In simple words, higher frequency disturbances, noise, in signal are filtered.

The more T constant is bigger, the stronger works the filter.

T cannot be too big if we don’t want to lose the dynamic

of the signal and worsening the control loop efficiency .

initialization

Not needed. Load start value into in=out in Arduino setup loop if required.

Default value is zero

Function Diff

call every 100ms using control function Takt100

parameters

float in input

float out output

float T [s]time constant

T 1

20

out

 T time

 Response of Diff element to step in jump =1

Function Diff is a high pass filter, realizing the following Laplace function:

pT /1+pT

Using this filter we increase disturbances, noise, in signal.

Function Diff must be used carefully only for smooth signals if we

want to increase their impact in control loop .

E.g. PID controllers deploy D term to strength the reaction of controllers

for control difference variations.

initialization

No initialization.

Starting value of out is zero, if in=0.

Function Dead

Call every 1s using Takt1000 - then the max dead time is 30s,

Using Takt100 in 100 ms sampling we get 3 s max dead time.

By means of function we delay analog values on output in relation to input

at a defined dead time.

parameters

float in input

float out output

int deadtime [s] dead time 0- 30 multiply sample time

float inArray[31] = {0,0};

bool start

1

21

out

1

 time

 dead time

Response of Dead element to step in jump =1.

initialization

Bit start=true initializes Dead function and writes to inArray many equal input

values “in” existing in moment of initialization. And these values appear first on output

Dead. If this is not done, on output of Dead are appearing zeros during

the time <= deadtime.

 Function Int

Call every 100ms using Takt100.

parameters

in [0 -100] input

out [0 -100] output

Ti[s] integration time.

out

1

 Ti time

 Response of Int element to step in jump =1, starting point zero: out0=0

22

Input in is integrated according to following formula:

out = ∫input.dt/Ti+ out0

Where out(0) is output value in time t=0 , which could be set in Arduino setup loop.

After setup every 100 ms new value is added:

delta out = in*0.1/Ti

The input and output are limited in the range of 0 – 100.

In this library the integrator is used to simulate servomotor working on step

 controller output.

initialization

Not needed.

Change starting point loading value to out in Arduino setup loop if required.

Default value is 0.

Linearization Function Linear

This function does not need any time sampling.

parameters

float LinArr[21]={0,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100}

float in input

float out output

Control loops work good without any nonlinearity, but especially they need

a linear actual value.

 In Arduino we process analog values in the following way.

On the input of Arduino we put a voltage in the range of 0 – 5V. We read this

value by means of analogRead command, getting digital value 0 -1023.

Arduino controllers require 0 – 100.0 floating value, so the operation

 act=analog Read/10.23 satisfies this demand.

Now remains the question, how the physical measured value is represented by

our floating value 0 -100 ? We need a linear function between 0 -100 value and a physical

value for indication and control loop – we should know how big must be the

controller setpoint , to satisfy the target equation:

diff=set – act =0

There are some nonlinear sensors and transducers,

e.g. resistor PT100 or others sensors for the temperature measurement.

In such cases using of class Linear is a remedy.

In the array LinArr should be stored 21 interpolation points which correspond

to input in the range from 0 – 100 in the following way:

0 physical value limit down

5 physical value interpolation point 1

10 physical value interpolation point 2

23

...

100 physical value limit up

Default points in program represent a linear characteristic.

Replace them through points of your nonlinear characteristic.

On the output of Linear we will get a linear physical value appropriate for indication

in the range (physical value limit down – physical value limit up).

For the purpose of controllers we convert the result into the range of 0 -100 through the

following operation:

act= out*100/(limit up – limit down)

and define controller setpoint also in the range of 0 – 100.

initialization

Not needed.

Function Hyst

This function does not need any time sampling.

parameters

float act actual value

float set setpoint

float out output

float onvalue enable output = setpoint – actual value

float offvalue disable output = 0

Hyst creates hysteresis between actual value and setpoint according to the picture:

 out

 -onvalue -offvalue set-act

 offvalue onvalue

This function is useful for formation, near the equilibrium setpoint=actual value,

dead zone and hysteresis in order to limit the action of controller and stabilize

the control loop.

This hysteresis is built in controller SPID. No controller pulses are sent to

servo motor if actual value almost reaches setpoint. This is defined through

24

parameters onvalue and offvalue (picture).

initialization

Not needed.

Function SetGen

Call every 100 ms using function Takt100.

parameters

float set [0 – 100]

bool butt_up

bool butt_down

float [%] set_slow

float [%] set_fast

float [s] switch_ time

This control function generates setpoint in a form of ramping.

If one of the two push buttons is pressed, the setpoint goes from the last set

value (put it in Arduino setup loop) up or down.

In the beginning the ramping speed is set_slow in % and after the switch_time

is over, the speed changes to set_fast %.

The setpoint is limited in the range of 0 – 100.

initialization

In Arduino setup loop this function is initialized automatically

Change starting point loading value to set in Arduino setup loop if required.

Default value is 0.

Function SetJpRamp

 Call every 100 ms using function Takt100.

parameters

float act actual value

float set setpoint

float out output

float speed_higher [%]

float speed_lower [%]

bool start enable ramp

This is another function for smoothing jumps of setpoint set.

After new setpoint jump on input set, SetJpRamp generates on output out

25

ramps with different speed, depending on the direction of setpoint change.

Either ramp up, if new setpoint is bigger the last setpoint, with

speed set_higher %/s , or ramp down with speed set_lower %/s.

The ramping begins from actual value on input act and stops,

when the target setpoint is reached.

When the setpoint was changed once again during the ramping,

the reaction depends on the progress in ramping.

If the new setpoint is bigger as the the ramp value on out and the ramping

was direction higher, the ramp will continue moving.

If the new setpoint is lower out, a new ramp with a speed set_lower

direction down, is started.

By ramping down and setpoint change the action is similar, but into the

opposite direction.

initialization

Function is enabled if start =1. When start = 0, the function is switched off and

runs in bypass - then out = set.

Function SetTimeTable

Call every second using function Time1000.

parameters

float set setpoint

int TimeMin[20] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};

int TimeSec[20] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 };

float SetArray[20] = {50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50};

bool start starting the sequence

This function produces setpoint set due to 20 values of setpoint

stored in SetArray and time stored in arrays TimeSec and TimeMin.

After bit start is set, the program begins from the first value of setpoint in SetArray[0]

und puts it to the output set as long as the sum of time stored in both arrays TimeMin

and TimeSec in the same position is not over. Then switches to the next setpoint

from SetArray.

Example:

The first stored value in SetArray[0] is setpoint = 30, the second element SetArray[1] is

20, TimeSec[0]=0 (default) and TimeMin[0]=5 (see examples, simulations)

On the output of this function appears set=30 during first five minutes.

Then follows the value 20.

Plausibility of values in arrays.

26

There is no check of setpoint value, but the content of the two time arrays is checked

 in the following way:

 1. If the sum of TimeSec and TimeMin values in the same position in arrays is zero,

the sequence is stopped.

Use this to terminate the time schedule. Write zero into both arrays to stop the

sequence.

2. If the new sum TimeSec and TimeMin is smaller than the last value time,

the sequence is stopped (error back in time movement attempt).

If the sequence is stopped, the value of setpoint set can be overwritten and changed.

initialization

Every time bit start =0 resets the sequence.

After bit start =1 sequence is running from the beginning according to the time table.

