The Easiest
Way to Get
The Weather

Arduino &
PlatformlO

AN ESP32
LIBRARY

OpenWeatherOneCall

Vv3.0.0
Copyright 2020 - Jessica Hershey

http://www.github.com/jhershey69/0penWeatherOneCall

http://www.github.com/jhershey69/OpenWeatherOneCall

Table Of Contents

Installation 5
Options 6
Locations 7
Weather 8
Misc 10
Variables 11

Revisions 11

Thank you for your interest in OpenWeatherOnecCall. This library gives the user the easiest method for
gathering weather information for any location on the planet Earth. All care has been taken to ensure things
work properly, but as you know someone will find a way to break this. The Software Testing Team is a rowdy
bunch of hackers, but still they can't think of everything an end user may think to do.

If you do, in fact, find a bug please contact us with an error message (if possible) or at least what you were
doing at the time, and maybe a screenshot. The development squad will get right on the issue. Anyway, let’s get
on with how this works. Thanks again for your interest. And a special shout out to Bill Dudley for putting up
with my never ending inquisitive nature.

Jessica Hershey
Software Development

Using a latitude and longitude the program sends an API request to
OpenWeatherMap and they return a JSON with all of the variables listed in the
Variable Sheet. How you get the Latitude and Longitude is up to you. It is
suggested you use a GPS Module, but if you are connected to a non-Cellular
Hotspot WiFi your IP Address can be used to determine your location. This of
course has limitations and may be a few meters from your actual location. This
would be a good time to mention if you are connected to a cell phone
hotspot, this won’t be very accurate at all.

As an example of Hotspot inaccuracy, the software was initially tested in Toms
River, NJ near the Jersey Shore. When using the Hotspot, the weather was returned
for Newark, NJ, a scant 61 miles to the North. As you can see, we don't suggest
using a Hotspot. Again, we recommend non-Cellular Hotspot WiFi or a GPS
Module.

There is a third option available and that is CITY ID. CITY ID is a number assigned
to a city (usually with more than 15,000 in population) and OpenWeatherMap
claims this is the most accurate of all the ways to get the weather from them.
However, in our testing we have discovered the list of CITY IDs they make available
have many errors and throw a lot of 404 errors. If you know for sure your CITY ID
is valid, then by all means use it.

OpenWeatherOneCall installs like any other library in the Arduino Library System, if
you do not use the library manager, OR HAVE A NON-ARDUINO IDE, then you have
your own special way of installing libraries.

The library is for use on the ESP32 and was built using the Arduino IDE. We have a
team now working to make the Library compatible with PlatformIO and it should be
as of this release.

Because this is an Open Source project, edits to improve functionality, speed, ease of
use by other members of the Open Source Community is welcome and should be
submitted on the github page. Bug reports should also be submitted through the
GitHub Issues Reporting system.

Once the library is installed you use it like others with:

#include <OpenWeatherOneCall.h>

Then invoke the library as:

OpenWeatherOneCall OWOC;

Please note, you can call the new instance anything you want. We use OWOC in our
examples but you can use whatever is easier for you or makes more sense for your
project. We don't judge.

Now, we move on to using the library.

If left to its own devices, the OpenWeatherMap OneCall API Key (required for this library) will
return the following data sets of weather information:

CURRENT l .

DAILY (8 day future forecast)

HOURLY (48 hour future forecast)

MINUTELY (60 Minutes of precipitation forecast)
ALERTS (Current NWS Alerts for the chosen location)

According to the OpenWeatherMap APl documentation, everything EXCEPT CURRENT has a
limit of 1,000 calls per day for FREE. CURRENT has a limit of 1,000,000 per month for free. So
as you can see it would be wise to create projects that call the DAILY and HOURLY once every
24 hours, MINUTELY once per hour, and ALERTS no more than once every 10 minutes.

OpenWeatherMap insists they only update their weather every 10 minutes, and even though
they allow 1,000,000 calls a month, for a single project only 360 a day would be updated
information.

With that said, to exclude any of those data sets you will use the method
OWOC.setExcl(args);

The args for setExcl() is an int but for ease of use you can access it as such:

EXCL_C
EXCL_D
EXCL_H

EXCL_M C)

EXCL_A
That s, in order of appearance, Current, Daily, Hourly, Minutely, and Alerts. Place the excludes
you want in the method call like this:

OWOC.setExcl(EXCL_D+EXCL_M+EXCL_A+EXCL_H);

By using a GPS, WiFi Triangulation, or manually entering the Longitude and Latitude you will
get weather information for your exact desired location. WiFi Triangulation requires an
additional library called WiFiTri available from the same GitHub Repository owner as this
library. Also required is an additional Google Developer Key. This key was free when this
document was created and allowed 100,000 calls for reverse GEOCODING. Please check
Google for updated information and any fees.

Location detection by IP ADDRESS is also done by this library, but please be advised using a
CELLULAR HOTSPOT will give erroneous results. As an example, the library was testing in
Toms River, NJ on a hotspot, and the weather returned for Newark, NJ a distance of 61 miles
to the north.

How you get the Latitude and Longitude is up to you, but it gets inserted like this:

OWOC.setLatLon(float latitude,float longitude);

If you call OWOC.setLatLon() with no arguments, IP ADDRESS location will take over.

This is probably the least accurate of all calls for the weather, but OpenWeatherMap insists it
is the most accurate. (It is not, we've tested it a lot) OpenWeatherMap has a zipped file of city
identification numbers they use available, but it is out of sync, missing some cities, and
others are just plain incorrect. But we put the calling method here anyway.

OWOC.setLatLon(CITY_ID);

Finally. How to get the weather data. Please be sure you have set all the options previously
described. To review, we've set the units of measure, the location, the data to include, and if
we want historical data. So, here go...

As of V3.0.0 to call the weather from OpenWeathermap you do this:

OWOC. parseWeather();

That's it. No more unearthly long string of arguments! We set everything up already, and you
can now change anything on it's own so you don't have to inject that long list of arguments
just to change between Metric and Imperial, for example.

|F YOU ARE UPGRADING FROM V2.0.2 OR EARLIER

There is a LEGACY calling method so you can continue to use the old method with all the
arguments and will still benefit from the latest version using new memory and other
improvements. For those of you who are starting with V3.0.0 and are wondering what I'm
talking about, here is the monster:

parseWeather(DKEY,GKEY,SEEK_LATITUDE,SEEK_LONGITUDE,SET_UNITS,CITY_ID,API_EXCLUDES,GET_HISTORY)

Horrid. But it still works so you can still use it. See previous versions of the documentation to
set it up.

When you include ALERTS (remember there is a fee for over 1000 calls a day) you receive
NWS Alerts for the Latitude and Longitude sent. You receive Sender Name, Sender Location,
Alert Description, as well as Start and End times. For testing purposes you will need to search
the NWS Alerts Webpage to find a location with an alert if your location doesn’t have one.

Active Alerts (weather.gov)

An example:

Message: MOAA-MNWS-ALERTS-

CA125FT76320144 HighSurfAdvisory 125F763EFZFOCA MTRCEWMTR.9609375b826768091642456b5 1fe6d42

from w-nws_webmaster@noaa.gov
Sent: 10:17 PST on 12-14-2020
Effective: 10:17 PST on 12-14-2020
Expires: 19:00 PST on 12-14-2020

Event:
Alert:

High Surf Advisory

.. .LARGE, LONG PERIOD MNORTHWEST SWELL WILL BRIMG HAZARDOUS
CONDITIONS ALOMG THE COAST THROUGH MONDAY ...

...KING TIDE5S WILL CAUSE MINOR COASTAL OVERFLOW AND FLOODING
THROUGH TUESDAY MORNIMG. ..

A large, long period MW swell will peak in the waters today,
bringing large breaking waves of 15 to 28 feet, locally up to

25 feet, at favored breakpoints. Additionally, King Tides have
returned to the region and will ebb and flood through Tuesday.
Large swell long pericd swell and highest high tides of the year
will overlap and allow the intrusion of seawater into low lying
areas, generating minor coastal flooding. The two main time
periods of concern occur during the highest of the high tides
this morning and Tuesday morning. Thus, the surf zonefarea
beaches will be hazardous into Tuesday afternocn.

.. .COASTAL FLOOD ADVISORY REMAINS IN EFFECT UNTIL 1 PM PST
TUESDAY ...

https://www.weather.gov/alerts
https://www.weather.gov/alerts
https://www.weather.gov/alerts

Please be advised, you can't get HISTORICAL and CURRENT weather at the same time
from OpenWeatherMap. Just can’t. They don't do that. It's two different calls. You can do
them one after the other by setting your HISTORY to a number to get HISTORICAL, and then
setting your HISTORY to 0 or NULL to get CURRENT. That's just how it works over there at
OpenWeatherMap.

Also, please check for the existence of a variable before trying to use it. You'll crash. |
swear you will. We really went out of our way, used many man hours, and woman hours too,
to make sure everything was a NULL or ZERO value, but check it anyway. You can check each
section's struct for existence by doing this:

1f(OWOC.current)
1T (OWOC. hour)
1f(OWOC.minute)
if(OWOC.alert)
1f(OWOC.forecast)

The best rule of thumb is, "IF YOU DIDN'T INCLUDE IT DON'T TRY TO USE IT!"
The program releases all unused memory now and you really need to check to be sure it is
there. Memory on the ESP32 is larger than most Arduinos but still as programmers we'd be
remiss if we didn't try to use as little as possible. Right?

Previous versions of this library listed HTTPClient as a dependency. While it is not required to
be installed, it is required to be #included. There are dozens of HTTPClient libraries all with
different forms of Camel Case names, and the one used in the ESP32 is built in, but still must
be included. Other libraries are also required for NTPTime gathering to create proper
HISTORICAL URL forming. Please consult all documentation and sketches to be sure you are
using the proper additional libraries.

Please note most variables are accessed by "section[x].variable" in dot format, while
the CURRENT and ALERTS data sections are "section->variable" in pointer format.
Please download the VARIABLES PDF and keep it handy for reference...

1.2.0 - Added CITY ID option

1.3.0 - Added exclude values for API call

2.0.0 - Added HISTORICAL WEATHER, uses UNIX EPOCH TIMESTAMP see DOCs

2.0.1 - Fixed Historical Data bug for EPOCH calculation

2.0.2 - Added units (Kelvin/Metric/Imperial) to Historical

2.1.0 - Added TIMEZONE and OFFSET, removed unused vars left over from Dark Sky
3.0.0 -

+ Changed calling method to less confusing.

* One Call Key is now set as an individual function call

+ parseWeather() no longer takes ANY arguments!

+ Added EXCLUDES and memory constructor for controlling memory use.

* Added ALERTS and fixed SUMMARY to include the entire message body.

* Added error tracing. (See script examples)

* Removed extra dead code and variables. (Transparent to user)

+ Separated all functions into their own methods. (Transparent to user)

+ Removed all references to Google

« WiFi Triangulation is a separate library to avoid needing more than one API Key.

« UNITS defaults to Imperial.

+ Added IP Address location tracing. (DOES NOT WORK ON MOBILE HOTSPOTS)

+ Variables for “Daily” have been fixed. temperatureHigh and temperatureLow are now loading
proper amounts. They used to load Day and Eve values.

+ All arrays allocate memory at run time as needed. For single layer arrays like:
current.temperatureHigh please use current->temperatureHigh or
current[0].temperatureHigh

+ HTTPClient is not a “depends on” for the ESP32. It is built in. But still needs an #include

+ Legacy Mode so no changes need to previous code using v2.0.2 or earlier

http://www.github.com/jhershey69/0OpenWeatherOneCall

http://www.github.com/jhershey69/OpenWeatherOneCall

ERROR MESSAGES CAN BE RETRIEVED THUSLY:

int errorM;
errorM = OWOC.setOpenWeatherKey(ONECALLKEY);

if (errorM) {
strcpy(message, OWOC.getErrorMsgs(errorM));
printf("Error returned: %s\n", message);
return,;

	OpenWeatherOneCall Manual
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12

