
MobaLedLib: Short Overview
Contents

1 Introduction.. 5

1.1 Using a configuration array ... 6

2 Configuration macros .. 6

2.1 Commonly used parameters ... 7

2.1.1 LED... 7

2.1.2 Cx ... 7

2.1.3 InCh ... 7

2.1.4 VAL0 .. 7

2.1.5 val1 .. 7

2.1.6 TimeOut / Duration ... 7

2.2 Variables / Input Channels .. 8

2.2.1 SI_Enable_Sound ... 8

2.2.2 SI_LocalVar .. 8

2.2.3 SI_0 .. 8

2.2.4 SI_1 .. 8

2.3 Single and multiple lights .. 8

2.3.1 RGB_Heartbeat (LED) .. 8

2.3.2 Const (LED, Cx, InCh, VAL0, Val1) .. 8

2.3.3 House (LED, InCh, On_Min, On_Limit, ...) ... 8

2.3.4 Houset (LED, InCh, On_Min, On_Limit, MIN_T, Max_T, ...) .. 9

2.3.5 Gas Lights (LED, InCh, ...) ... 9

2.3.6 Set_ColTab (red0, green0, Blue0 ... Red14, Green14, Blue14) ... 10

2.4 Sequential events .. 10

2.4.1 Button (LED, Cx, InCh, duration, VAL0, Val1) .. 10

2.4.2 Indicators (LED, Cx, InCh, Period) .. 11

2.4.3 BlinkerInvInp (LED, Cx, InCh, Period) .. 11

2.4.4 BlinkerHD (LED, Cx, InCh, Period) .. 11

2.4.5 Blink2 (LED, Cx, InCh, pause, Act, VAL0, Val1) .. 11

2.4.6 Blink3 (LED, Cx, InChes, pause, Act, VAL0, Val1, Off) .. 11

2.4.7 BlueLight1 (LED, Cx, InCh) ... 11

2.4.8 BlueLight2 (LED, Cx, InCh) ... 11

2.4.9 Leuchtfeuer(LED, Cx, InCh) .. 11

2.4.10 LeuchtfeuerALL (LED, InCh) ... 11

Introduction / Using a configuration array Hardi Stengelin

- 2 -

2.4.11 Andrew's Cross (LED, Cx, InCh) ... 11

2.4.12 AndreaskrRGB (LED, InCh) ... 12

2.4.13 RGB_AmpelX (LED, InCh) ... 12

2.4.14 RGB_AmpelXFade (LED, InCh) ... 12

2.4.15 AmpelX (LED, InCh) ... 12

2.4.16 AmpelXFade (LED, InCh) .. 12

2.5 Random effects ... 12

2.5.1 Flash (LED, Cx, InCh, Var, MinTime, MaxTime) ... 12

2.5.2 Fire (LED, InCh, LedCnt, brightnes) ... 12

2.5.3 Welding (LED, InCh) ... 13

2.5.4 RandWelding (LED, InCh, Var, MinTime, MaxTime, MINON, Maxon) .. 13

2.6 sound ... 13

2.6.1 Sound_Seq1 (LED, InCh) ... Sound_Seq14 (LED, InCh) .. 14

2.6.2 Sound_PlayRandom (LED, InCh, MaxSoundNr) .. 15

2.6.3 Sound_Next_of_N (LED, InCh, MaxSoundNr) ... 15

2.6.4 Sound_Next_of_N_Reset (LED, InCh, INReset, MaxSoundNr) .. 15

2.6.5 Sound_Next (LED, InCh) .. 15

2.6.6 Sound_Prev (LED, InCh) ... 16

2.6.7 Sound_PausePlay (LED, InCh).. 16

2.6.8 Sound_Loop (LED, InCh) .. 16

2.6.9 Sound_USDSPI (LED, InCh) .. 16

2.6.10 Sound_PlayMode (LED, InCh).. 16

2.6.11 Sound_DecVol (LED, InCh, Steps) .. 16

2.6.12 Sound_IncVol (LED, InCh, Steps) ... 16

2.7 Commands .. 16

2.7.1 ButtonFunc (DstVar, InCh, Duration) .. 16

2.7.2 Schedule (DstVar1, DstVarN, EnableCh, Start, End).. 17

2.7.3 Logic (DstVar, ...) ... 18

2.7.4 Counter (Mode, Inch, Enable, TimeOut, ...) .. 18

2.7.5 Monoflop (DstVar, InCh, Duration) ... 19

2.7.6 Long-shot reset (DstVar, InCh, Duration) .. 19

2.7.7 RS_FlipFlop (DstVar, S_InCh, R_InCh) ... 19

2.7.8 RS_FlipFlopTimeout (DstVar, S_InCh, R_InCh, timeout) ... 19

2.7.9 T_FlipFlopReset (DstVar, T_InCh, R_InCh) .. 19

2.7.10 T_FlipFlopResetTimeout (DstVar, T_InCh, R_InCh, timeout) .. 19

2.7.11 MonoFlopInv (DstVar, InCh, Duration) ... 19

Introduction / Using a configuration array Hardi Stengelin

- 3 -

2.7.12 MonoFlopInvLongReset (DstVar, InCh, Duration) ... 19

2.7.13 RS_FlipFlopInv (DstVar, S_InCh, R_InCh) .. 19

2.7.14 RS_FlipFlopInvTimeout (DstVar, S_InCh, R_InCh, timeout) .. 19

2.7.15 T_FlipFlopInvReset (DstVar, T_InCh, R_InCh) ... 19

2.7.16 T_FlipFlopInvResetTimeout (DstVar, T_InCh, R_InCh, timeout) ... 19

2.7.17 MonoFlop2 (DstVar0, DstVar1, InCh, Duration) ... 19

2.7.18 MonoFlop2LongReset (DstVar0, DstVar1, InCh, Duration) ... 20

2.7.19 RS_FlipFlop2 (DstVar0, DstVar1, S_InCh, R_InCh) .. 20

2.7.20 RS_FlipFlop2Timeout (DstVar0, DstVar1, S_InCh, R_InCh, timeout) .. 20

2.7.21 T_FlipFlop2Reset (DstVar0, DstVar1, T_InCh, R_InCh) ... 20

2.7.22 T_FlipFlop2ResetTimeout (DstVar0, DstVar1, T_InCh, R_InCh, timeout) 20

2.7.23 RandMux (DstVar1, DstVarN, Inch, fashion, MinTime, MaxTime) .. 20

2.7.24 Random(DstVar, Inch, fashion, MinTime, MaxTime, Minon, Maxon) .. 20

2.7.25 New_Local_Var() ... 20

2.7.26 Use_GlobalVar (GlobVarNr) .. 21

2.7.27 InCh_to_TmpVar (First InChes InCh_Cnt) ... 21

2.8 other commands ... 22

2.8.1 CopyLED (LED, InCh, SrcLED) ... 22

3 Macros and functions of the main program ... 22

3.1 MobaLedLib ... 22

3.1.1 MobaLedLib_Configuration() .. 22

3.1.2 MobaLedLib_Create (leds) .. 23

3.1.3 MobaLedLib_Assigne_GlobalVar (GlobalVar) ... 24

3.1.4 MobaLedLib_Copy_to_InpStruct (Src, BYTECNT, ChannelNr) .. 24

3.1.5 MobaLedLib.Update() ... 24

3.1.6 MobaLedLib.Set_Input (uint8_t channel, uint8_t On) .. 25

3.1.7 MobaLedLib.Get_Input (uint8_t channel) .. 25

3.1.8 MobaLedLib.Print_Config() ... 25

3.2 Heartbeat of the program ... 25

3.2.1 LED_Heartbeat_C (uint8_t Pin No.) .. 25

3.2.2 Update() .. 26

4 Many switch with a few pins ... 26

4.1 configurability ... 26

4.2 two groups of switches ... 26

4.3 principle... 27

4.4 Integration into the program .. 27

Introduction / Using a configuration array Hardi Stengelin

- 4 -

4.5 Freely available board ... 28

4.6 additional libraries .. 28

4.7 Limitations ... 28

5 CAN Message Filter ... 28

6 Connection concept with distribution modules .. 29

7 Details Pattern function .. 29

7.1 The various commands Pattern .. 29

7.2 New_HSV_Group() .. 29

7.3 Pattern_Configurator .. 29

8 Troubleshooting .. 29

9 Manuele tests ... 30

10 constants .. 30

10.1 Constant for the channel number Cx. ... 30

10.2 Constants for hours ("Timeout", "Duration"): ... 30

10.3 Constants of the Pattern function... 30

10.4 Flags and modes (for Random) and RandMux() ... 31

10.5 (Flags and modes for the Counter) Function .. 31

10.6 Lighting types of rooms: .. 32

This document has been translated from German to English by

https://www.onlinedoctranslator.com/de/

This sometimes generates funny results. Unfortunately, also some of the keywords have been

changed. If in doubt, the German version should be consulted

https://www.onlinedoctranslator.com/de/

Introduction / Using a configuration array Hardi Stengelin

- 5 -

1 Introduction
This document describes the MobaLedLib for the Arduino. With the library up to 768 LEDs and other

loads can be controlled by a single signal line from an Arduino.

The library is intended for use on a model railway. Some functions of the library can surely be used in

other applications.

For controlling the LEDs and other consumer devices chips based on the WS2811 / WS2812 are used.

Since these ICs cost only a few cents (7-12 cents) very cheap and also very flexible lighting can be

realizing at a railroad.

By controlling everything with a single signal line, the wiring is extremely simple. Consumers are

connected via 4-pin ribbon cable and inserted in distribution strips which could arbitrarily cascaded.

All rooms in a model house could be equipped with its own RGB LED while the whole house is

connected with a 4-pin connector on the distributor. In this case, each room could be individually

turned on and off. In addition, the brightness and the color of each compartment can be adjusted.

This also allows effects such as a TV or fireplace simulations.

In addition to the houses, there are a variety of other lights on a model system that can be controlled

with this library. These are, for example, light signals, Andrew's crosses, traffic lights, flashing

emergency vehicles, site protection, disco or fair effects, ...

The "Single wire Concept" can also be used to control several sound modules around the installation.

The corresponding sound module with a matching SD card is available for two euros. So, the station

Arduino

Verteiler

Verteiler

Verteiler

Verteiler

WS2811
Verteiler

WS2811
Modul

WS2811
Modul

WS2811
Modul

4

4 4
4

4 4

4

4
4

4

4

4

4

4

4

4

4 4

4
4 4

4

Configuration macros / Using a configuration array Hardi Stengelin

- 6 -

announcements, railway noise (at railroad crossing), animal sounds, church bells and more can then

be played.

The method is also suitable for controlling of moving components. By means of a small additional

circuit, the signals for driving servo or stepper motors can be generated.

With a transistor to amplify solenoids or DC motors can also be used.

The effects can be controlled automatically or manually with or without a computer.

The library contains a module with is able to read 80 and more switches using just a few ports of the

Arduino.

It also supports the import of commands via the CAN bus.

To get started easily, the library contains many examples which show clearly how the individual

functions are used. So, the system can also be used without programming skills and adapted to your

needs.

1.1 Using a configuration array
The library is adjusted via an array to the individual circumstances. For this purpose, various

commands are available which define what the program should do. The keyword "House()" is used to

define the number of rooms a building has and how many of them should be illuminated in average.

In addition, the type of illumination (brightness, color of light, lamp type, ...) and other effects like a

TV set could be configured.

Internally, this information is stored in a byte array. This method was chosen that it is possible later

to create a configuration using a Graphical User Interface. However, the input via a text editor is so

easy and in addition so flexible that a GUI is actually not necessary.

The use of a configuration array also requires minimal memory (FLASH) and can be processed

quickly. The configuration commands also ensure that the RAM required is already provided when

compiling the program. Thus, the memory usage is already fixed on program start and is monitored

by the compiler. A sophisticated dynamic memory management is eliminated. On a microcontroller

such as the Arduino very little memory is available. Therefore, the program must be very economical

with it.

To these internal details, however, the users of the library does not have to worry about.

2 Configuration macros
This section describes the configuration macros only briefly. A detailed documentation is omitted

because it no one reads it ...

If there is a need for further documentation, write to MobaLedLib@gmx.de.

Suggestions, bug fixes, ... are also welcome.

To configure C++ macros are used. This allows a certain input validation be made without using

program storage.

These macros consist of a name on which follow several parameters. The parameters are set in

parentheses.

Note: After the configuration macro, different than usually in C++, there is no tailing semicolon. This

is because the macros are "only" an array of bytes which create a comma separated list. A semicolon

is not allowed here.

mailto:MobaLedLib@gmx.de

Configuration macros / Commonly used parameters Hardi Stengelin

- 7 -

The macros generate constant data bytes which are stored in the configuration array. This array is

read by the program to generate the lighting effects. Since this array is stored in FLASH of Arduinos

all data must be constant. Therefore, it is not possible to assign variable macros. Calculations using

constants, however, are allowed.

Below the term "macro", "function" or "command" is used alternately. This serves to loosen up the

dry document. Actually, they are C++ macros which are created by the "#define" statement.

2.1 Commonly used parameters
First, the parameters used in the following macros are described so that they need not be explained

in any of the commands.

2.1.1 LED
Contains the number of LEDs in the string. All LEDs are so connected in series that the output of the

first LED is connected to the input of the next LED. This method is used for addressing the individual

LEDs. Internally, each LED uses the first three brightness values which it receives via the signal line for

controlling the three colors red, green and blue. All following values are forwarded to the output.

Therefore, the second LED in the series just gets the data from the second record. It uses the first

three brightness values for himself and gives the following on to the next. So, the colors of each LED

can be individually controlled.

The WS2811 chips are not integrated into the RGB LEDs as the next generation of modules (WS2812).

Thus, the WS2811 ICs are suitable for controlling individual LEDs as they are for example used in a

street lamp. One IC can control three outputs which could be three lanterns. From the perspective of

the program these three street lights have the same LED number. The individual lamps are addressed

by the channel number (Cx) which is described in the next section.

The WS2811 modules could also be used to control servo motors, sound modules or other actuators.

Nevertheless, the following documentation always used the term "LED" for the number in the string.

2.1.2 Cx
The Cx parameter describes the channel number an RGB LED or a WS2811 module. Here one of the

constants is entered:

C1, C2, C3, C12, C23, C_ALL, C_RED, C_GREEN, C_BLUE, C_WHITE, C_YELLOW, C_CYAN

2.1.3 InCh
Many of the effects can be switched on and off. The parameter "InCh" describes the number of the

input. There are 256 different inputs possible. As an input channel can be a switch or a special

function. It is also possible to receive the input via the CAN bus of a model railway.

2.1.4 VAL0
Contains the brightness or general the duty cycle of the output when the input is switched off. The

parameter is a number between 0 and 255 where 0 is the minimum value (LED dark), and 255 to the

maximum value.

2.1.5 val1
Is contains the value that is used when the input is turned on. See "VAL0".

2.1.6 TimeOut / Duration
Includes the time after the counter is reset to zero or the output is disabled. The time is expressed in

milliseconds and can be supplemented with an attached "Sec" or "Min". The maximum time is 17

minutes.

Configuration macros / Single and multiple lights Hardi Stengelin

- 8 -

2.2 Variables / Input Channels
Most macros have an input "InCh" with is used to activate or deactivate the function. The parameter

"InCh" contains the number of the desired input channel. This number refers to one of 256 variables.

These variables can be set in the main program with the command „Set_Input()“. In the example

"Switched_Houses" it will be shown how this can be done:

 MobaLedLib.Set_Input(INCH_HOUSE_A, digitalRead(SWITCH0_PIN));

It is recommended that a symbolic name is used instead of the number. This can be defined at the

beginning of the program with the "#define" command.

 #define INCH_HOUSE_A 0

Overlaps can be prevented if all definitions are in one place.

The input variables can also be set by other macros. In the section "2.7 Commands" on page 16

describes the commands which could be used for that purpose.

The variables can be either 0 or 1. The library in addition stores the last state of the variable. This is

used to detect whether the variable has changed. Many of the actions in the library will only be

performed if the relevant input changes. This saves a lot of computing time.

The variables from number 240 are reserved for special functions. At the moment, the following are

specific input variables defined (SI = Special Input):

2.2.1 SI_Enable_Sound
With this input variable, the sound may be globally switched on and off. It is initialized at the

program start to 1, but it can be changed by the program.

2.2.2 SI_LocalVar
This variable is used in the Pattern function if the start value is to be read from a local or global

variable. The variable to be declared by one of the commands "New_Local_Var()", "Use_GlobalVar()"

or "InCh_to_TmpVar()" are.

2.2.3 SI_0
This special input variable is always 0. This variable is needed for example when the "Reset" input of

the counter function is not used.

2.2.4 SI_1
If a function is to be active, this variable can be used. It is always set to 1.

2.3 Single and multiple lights

2.3.1 RGB_Heartbeat (LED)
RGB LED with slowly changing and flashing colors for monitoring the program health.

2.3.2 Const (LED, Cx, InCh, VAL0, Val1)
LED which is controlled by "InCh". It’s permanently on or off.

2.3.3 House (LED, InCh, On_Min, On_Limit, ...)
This is probably the most frequently used function on a model railway. With it a "lively" House is

simulated. In this house some of the rooms are randomly illuminated. The color and brightness of the

lighting can be adjusted individually. It is possible to configure a flicker of fireplace for individual

rooms also certain effects such as TV. In addition, the switch-on behavior can be adjusted (neon

lights flickering or slow brightening gas lamps).

Configuration macros / Single and multiple lights Hardi Stengelin

- 9 -

The parameter "On_Min" describes how many rooms should be at least illuminated. After turning on

as the lights are turned on after a random time until the predetermined number is reached. The

activated rooms are also determined randomly.

The parameter "On_Limit" determines how many chambers should be used simultaneously. If a

corresponding number of LEDs are reached a lamp is turned off to the next randomly selected, time.

If this parameter is greater than the number of rooms, then all the lights are on after some time (This

corresponds to our home).

Now it's enough, the library has to go out before Christmas. I will finish the manual adjustments to

the English translation in the next version. Have fun with the machine translation ...

If the houses will have a manually operated switch turned on and off, the user will see direct

feedback when pressing the switch. Therefore, immediately when switched on the input (InCh) is

activated lighting and according to a deactivated when the switch is OFF.

The three dots "..." in the macro definition represent the position at which the list of room lighting is

entered. You can specify up to 2,000 rooms (castle).

The lighting of the room is set with the following constants:

Colors / Brightness:

ROOM_DARK, ROOM_BRIGHT, ROOM_WARM_W, ROOM_RED, ROOM_D_RED, ROOM_COL0,

ROOM_COL1, ROOM_COL2, ROOM_COL3, ROOM_COL4, ROOM_COL5, ROOM_COL345

Animated effects:

FIRE, FIRED, FIREB, ROOM_CHIMNEY, ROOM_CHIMNEYD, ROOM_CHIMNEYB, ROOM_TV0,

ROOM_TV0_CHIMNEY, ROOM_TV0_CHIMNEYD, ROOM_TV0_CHIMNEYB, ROOM_TV1,

ROOM_TV1_CHIMNEY, ROOM_TV1_CHIMNEYD, ROOM_TV1_CHIMNEYB

Special lamps:

GAS_LIGHT, GAS_LIGHT1, GAS_LIGHT2, GAS_LIGHT3, GAS_LIGHTD, GAS_LIGHT1D, GAS_LIGHT2D,

GAS_LIGHT3D, NEON_LIGHT, NEON_LIGHT1, NEON_LIGHT2, NEON_LIGHT3, NEON_LIGHTD,

NEON_LIGHT1D, NEON_LIGHT2D, NEON_LIGHT3D, NEON_LIGHTM, NEON_LIGHT1M,

NEON_LIGHT2M, NEON_LIGHT3M, NEON_LIGHTL, NEON_LIGHT1L, NEON_LIGHT2L, NEON_LIGHT3L

Unused space:

SKIP_ROOM

Example: House(0, SI_1, 2, 3, ROOM_DARK, ROOM_BRIGHT, ROOM_WARM_W)

2.3.4 Houset (LED, InCh, On_Min, On_Limit, MIN_T, Max_T, ...)
Corresponds to the House() macro. Here are two additional parameters "MIN_T" and "Max_T" can

be specified. These numbers describe in seconds how long it takes randomly until the next change

occurs. In the "House) (" function these times of global definitions
 #define HOUSE_MIN_T 50 // minimum time [s] to the next event (1..255) #define HOUSE_MAX_T

150 // maximum random time [s] "

specified.

2.3.5 Gas Lights (LED, InCh, ...)
Street lights are an important part of a virtual city. They illuminate the streets at night to create a

warm atmosphere especially when it comes to gas lanterns. These lamps were initially ignited in the

real world by man and later watches or light sensors. This is described here very nicely:

http://www.gaswerk-augsburg.de/fernzuendung.html, the lanterns go to not simultaneously by different

times or lighting conditions. I observe time and again on my way home. The lights go on at random

and grow brighter gradually until they reach full brightness. This behavior also have the lamps are

http://www.gaswerk-augsburg.de/fernzuendung.html

Configuration macros / Sequential events Hardi Stengelin

- 10 -

controlled via which the macro "(Gas Lights)". Here is also still a random flickering implemented

which can be caused by fluctuations in the gas pressure or by wind gusts. They are controlled by the

lamps WS2811 chip. In light bulbs all three outputs are connected in parallel with LED lamps IC

controls three lamps. In the configuration, the order ..1., ..2., ..3 needs. be used as shown in the

example below. This ensures that the program sequentially uses the outputs of a WS2811 chips and

does not change to the next channel. The attached "D" in the example below means "Dark". These

lamps light darker than the others.

Example: gas Lights(Gas_Lights1, 67, GAS_LIGHT1D, GAS_LIGHT2D, GAS_LIGHT3D, GAS_LIGHT)

2.3.6 Set_ColTab (red0, green0, Blue0 ... Red14, Green14, Blue14)
The macro "(Set_ColTab)" you can adjust the color and brightness of the lamps individually. For this,

a list of 15 RGB values is specified. The command can be used multiple times in the configuration and

affects all following "House()" or "Gas Lights()" line.

Here is an example of the command:
 // Red Green Blue

 Set_ColTab(1, 0, 0, // 0 ROOM_COL0 Dark red for demonstration

 0, 1, 0, // 1 ROOM_COL1 " green "

 0, 0, 1, // 2 ROOM_COL2 " blue "

 100, 0, 0, // 3 ROOM_COL345 red for demonstration randomly color

 0, 100, 0, // 4 ROOM_COL345 green " 3, 4 or 5 is

 0, 0, 100, // 5 ROOM_COL345 blue " used

 50, 50, 50, // 6 Gas light

 255, 255, 255, // 7 Gas light

 20, 20, 27, // 8 Neon light

 70, 70, 80, // 9 Neon light

 245, 245, 255, // 10 Neon light

 50, 50, 20, // 11 TV0 and chimney color A randomly color A or B is used

 70, 70, 30, // 12 TV0 and chimney color B

 50, 50, 8, // 13 TV1 and chimney color A

 50, 50, 8) // 14 TV2 and chimney color B

2.4 Sequential events
This section describes functions which represent temporal sequences. Sequential events come and

reality and of course on a model train frequently. One example is the traffic light. Here the

corresponding traffic light phases are sequentially displayed. Several lamps must be switched

coordinates for this representation.

In the library, these controls are "(Pattern)" from the function generated. Such sequences can be

generated using the Excel program "Pattern_Configurator.xlsm". the chapter 5 on page 28 it’s further

described that.

2.4.1 Button (LED, Cx, InCh, duration, VAL0, Val1)
This macro saves a button for a certain time. This will enable our railway smoke generator in the

"Burning" house. The output can be deactivated before the expiration of the time when the button is

pressed a second time.

The duration determines the duration for which the output is activated when the button is pressed.

The time is specified in milliseconds and may be between 16 ms and 17 minutes (1,048,560 ms).

When the time is to be specified in seconds or minutes, then "Sec" or "Min" can be written behind

the value. Here, the upper and lower case and at least one space to the previous number of

important (for example, 3.5 min). A combination of minutes, seconds and milliseconds is also

possible. Example: 3 min + 2 sec + 17 ms

Example: button(10, C_ALL, 0, 3.5 min, 0, 255)

Configuration macros / Sequential events Hardi Stengelin

- 11 -

2.4.2 Indicators (LED, Cx, InCh, Period)
Implements a turn signal at a predetermined period. The period is specified in milliseconds. Here,

too, can "Sec" or "Min" is appended as the "Button()" function. The maximum period is two minutes

(131070 ms).

2.4.3 BlinkerInvInp (LED, Cx, InCh, Period)
Corresponds to the "flasher) (" function. In this case, the turn signal is then activated when the input

channel (InChes) off.

2.4.4 BlinkerHD (LED, Cx, InCh, Period)
Another variation of the turn indicator. Here changes the brightness of the LED between "bright" and

"dark".

2.4.5 Blink2 (LED, Cx, InCh, pause, Act, VAL0, Val1)
In this variant, the duration of the two phases and the brightness in the phases can be specified.

"Pause" defines the time in the "VAL0" is output and "Act" is the time during which "Val1" is used.

2.4.6 Blink3 (LED, Cx, InChes, pause, Act, VAL0, Val1, Off)
A third variant of the "Flash()" function. Here, the brightness value can also be specified in the off

state (Off).

2.4.7 BlueLight1 (LED, Cx, InCh)
This function generates the typical double flash of blue light on emergency vehicles.

2.4.8 BlueLight2 (LED, Cx, InCh)
Blue light having a slightly different period. By the use of two blue lights of slightly different period, a

more realistic effect.

2.4.9 Leuchtfeuer(LED, Cx, InCh)
This macro generates the flashing pattern of a wind turbine. The light is one second, then half a

second off and then back for a second. This is followed by a pause of 1.5 seconds. (Please

referhttps://www.windparkwaldhausen.de/contentbeitrag-170-84-

kennzeichnung_befeuerung_von_windkraftanlagen_.html)

2.4.10 LeuchtfeuerALL (LED, InCh)
This beacon, all three channels are used. This corresponds to the "Leuchtfeuer()" command with the

parameter "C_ALL".

2.4.11 Andrew's Cross (LED, Cx, InCh)
For controlling the alternate the flashing lights in St. Andrews crosses this function can be used. "Cx"

determines the first channel used. This Blinks alternately to the following channel. LED brightness

changes slowly so that the typical "soft" flashing occurs.

0

255

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200

ms

Blaulicht rechts

496ms

48ms

74ms

48ms

https://www.windparkwaldhausen.de/contentbeitrag-170-84-kennzeichnung_befeuerung_von_windkraftanlagen_.html
https://www.windparkwaldhausen.de/contentbeitrag-170-84-kennzeichnung_befeuerung_von_windkraftanlagen_.html

Configuration macros / Random effects Hardi Stengelin

- 12 -

2.4.12 AndreaskrRGB (LED, InCh)
This function uses two RGB LEDs for simulating the St. Andrew's Cross. , Only the red LED is activated

in each case. This macro is only intended for testing purposes with a LED stripe.

2.4.13 RGB_AmpelX (LED, InCh)
Thus, the patterns of two lights is generated, each with 3 RGB LEDs for an intersection. This macro is

only intended for testing purposes with a LED stripe. On the model railway traffic lights will be

employed with individual LEDs which are then activated via a WS2811 module.

In the Excel program "Pattern_Configurator.xlsm" which is located in the library some sites are

describing the configuration of the traffic lights ("AmpelX" .. "RGB_AmpelX_Fade_Off").

2.4.14 RGB_AmpelXFade (LED, InCh)
Another example for the control of traffic lights with RGB LEDs. Here the lights are slowly fades which

generates a more realistic impression. On the "RGB_AmpelX_Fade" in "Pattern_Configurator.xlsm" as

expanding is shown schematically works.

2.4.15 AmpelX (LED, InCh)
This light is designed for use on site. So that individual LEDs over two WS2811 modules are

controlled. In the example, "09.TrafficLight_Pattern_Func." If one finds a "circuit diagram" to do so.

To secure a crossing 4 traffic lights are needed. The opposing light signals always show the same

pattern. For driving the oppositelying traffic light can be used another WS2811 chip which receives

the same input signal as its counterpart. In the example shown schematically.

can arbitrarily complicated traffic light installations with multiple lanes and pedestrian traffic lights

and be configured with the program "Pattern_Configurator.xlsm".

2.4.16 AmpelXFade (LED, InCh)
This is the same function as above except that here the lights slowly in and be Hidden.

2.5 Random effects
This section describes some random effects.

2.5.1 Flash (LED, Cx, InCh, Var, MinTime, MaxTime)
The "Flash()" function generates a random flashes of a photographer. Passed to the "MinTime" and

"MaxTime" is determined how often the flash fires. The first parameter determines to be maintained

at least until the next flash how long. Accordingly, "MaxTime" describes the maximum time. Between

these two periods, the library determines a random time.

The macro consists of two different macros. "(Const)" and the "random()" macro (See "2.7.24

Random(DstVar, Inch, fashion, MinTime, MaxTime, Minon, Maxon)" on page20) .Dabei is the

"Const()" function from the "Random()" control function. To an intermediate variable needed their

number as a parameter "Var" is entered. This is one of the 256 input variables which in the chapter

"2.1.3 InCh" on page 7have been described. Attention this intermediate variable may be nowhere

where used differently.

Example: Flash(11, C_ALL, SI_1, 200, 5 sec, 20 sec)

2.5.2 Fire (LED, InCh, LedCnt, brightnes)
"(Fire)" function can be simulated larger fire. For this, several RGB LEDs are used which at different

points of "fire" light. In our system, the function to simulate a "Burning" house is used.

Configuration macros / sound Hardi Stengelin

- 13 -

2.5.3 Welding (LED, InCh)
"(Welding)" function can be simulated a welding light. This light flickers a while bright white and then

goes out for a while. After welding, the "weld" afterglow red briefly. This function should be

controlled by a higher-level function ("The worker also wants to take a break").

2.5.4 RandWelding (LED, InCh, Var, MinTime, MaxTime, MINON, Maxon)
This feature allows the welding light is controlled by chance. The times "MinTime" and "MaxTime"

determine the accidental start time. About "Minon" and "Maxon" indicates how long a work takes on

a workpiece. The "Var" parameter contains the number of an intermediate variable that for

controlling the "(Welding)" function is used. Attention this intermediate variable may be nowhere

where used differently.

Example: RandWelding(12, SI_1, 201, 1 min, 3 min, 50 sec, 2 min)

2.6 sound
The library can MobaLedLib matching sounds are played back to the light effects. For example, the

people of the barrier can be reproduced with the flashing of the St. Andrew's Cross. For this, a sound

additional module is required using MP3 TF-16P:

This module is available for a Euro in China. Additionally you need an SD card and a speaker. With

this module, MP3 and WAV files can be played via a built-in 3 watt amplifier. Normally, the MP3 files

are about 20 switches which are connected via different resistances to the module played. The sound

module can also be controlled via the same signal line as the light-emitting diodes by simulating

keystrokes. For this, a WS2811 chip is used. This must be connected with a couple of resistors and

capacitors for filtering the signals. The following diagram shows the structure:

The zip file S3PO_Modul_WS2811.zip in the "extras" includes a schematic and a board with this

construction. On the circuit some more components are provided with which higher power can be

switched via a WS2811 module. In addition, you can head to the circuit servo or stepper motors.

However, these are not required for sound reproduction.

Configuration macros / sound Hardi Stengelin

- 14 -

The board is composed which can be separated by buckling of three parts. The two upper parts

(bottom only one is shown) each containing a 9-way distributor for connecting the LEDs and other

components based on the WS281x:

This distribution can be arbitrarily placed at central positions of the plant. In marked "Out ..." plug

the houses, traffic lights, sound modules and other consumers are infected. Here even other

distribution boards can be connected. The labeled "inp" connector is connected to the Arduino or a

previous distribution board via a ribbon cable. Caution: When unused slots, the pins must be bridged

with a jumper 2 and 4 or the corresponding solder jumper to be connected to the rear.

The next picture shows the board for the sound module. only the components must be fitted the

wiring diagram shown above.

Important: There are some solder connectors on the rear panel. For the function of the sound

module without the other components must be SJ1 and SJ21 connected.

The following are the commands for sound output are briefly introduced.

2.6.1 Sound_Seq1 (LED, InCh) ... Sound_Seq14 (LED, InCh)
To play certain sounds, there are 14 commands in the library. The command "Sound_Seq1()", the

first MP3 or WAV file on the SD card will resist given. Accordingly, the second file is "(Sound_Seq2)"

to play ...

According to the documentation of the sound module to MP3 or WAV files must have specific names

and are stored in specific subdirectories. This seems to apply only to the playback via the serial

interface. If the files are played via buttons, then that's not necessary. This also applies to the

presented circuit simulating the keystrokes on a WS2811 module. The file name does not matter.

"(Sound_Seq1)" command will always play the file which was copied first to the SD card. Hence the

name "..Seq ...". When a file is deleted and then a new file is copied to the card, then the new file is

entered in place of the deleted file in the directory on the card. This can be very confusing.

Unfortunately, the Windows Explorer displays the files on an SD card to always sorted. There is no

option with which you can disable the sorting entirely. To check the order you have to open a

speaker

connection

Configuration macros / sound Hardi Stengelin

- 15 -

command window (cmd.exe) and "f you" type (The drive letter "f" may have to actually

acknowledged thebe adapted to SD card reader):

In this SD card, the "001.mp3" file will be played, when the input of "Sound_Seq1()" command is

activated. 6. The entry "Muh.wav" output "(Sound_Seq6)" with the macro.

The files will be played over simulated "keystrokes" which are encoded via different resistances.

Unfortunately, the distances of the resistors in the upper area are relatively small so that it can be an

overlap "(Sound_Seq14)" by component tolerances or temperature variations in the sound

commands "Sound_Seq13()" and.

The output of sounds can be globally switched on and off via the "SI_Enable_Sound". In this way, you

can disable a switch all the noise.

2.6.2 Sound_PlayRandom (LED, InCh, MaxSoundNr)
With this command, a Random file between 1 and "MaxSoundNr" will resist given when the input of

the command is activated. This can be used for the announcement of station announcements, for

example.

2.6.3 Sound_Next_of_N (LED, InCh, MaxSoundNr)
This macro file the next of between 1 and "MaxSoundNr" will resist given when the input of the

command is activated. This can be used for playing the hourly ringing of church bells, for example.

2.6.4 Sound_Next_of_N_Reset (LED, InCh, INReset, MaxSoundNr)
This command corresponds to the previous one. Here there is also the possibility of a further input

"INReset" to reset the counter.

2.6.5 Sound_Next (LED, InCh)
This command uses an internal function of the sound module with which the next sound file can be

output. The command is not limited to the 14 selectable by "keys" files as the previous commands. In

this way, all files can be played. However, a specific limitation of the scope is not possible. This can be

pre-made on the selection of files on the SD card.

C: \ Users \ Hardi> dir f:
 Volume in drive F: has no name.
 Volume Serial Number: A87B-A154

 Directory of F: \

18.03.2018 12:58 51,471 001.mp3
30/01/2018 21:04 5564 005.wav
10.03.2018 21:29 18,143 007.mp3
25/07/2015 16:04 2284950 018.mp3
10.03.2018 21:31 612667 Big Ben MP3 Klingelton.mp3
18.03.2018 01:01 239,848 Muh.wav
18.03.2018 01:00 465,808 Muhh.wav
03.10.2018 21:29 18,143 S1-b-ch.mp3
10.03.2018 10:29 19,640 S1-bd.mp3
10.03.2018 10:30 39.168 S1-huehner.mp3
10.03.2018 10:30 19,562 S1-kapelle.mp3
10.03.2018 10:31 26,710 S1-kirche.mp3
10/03/2018 21:28 30867 S1-schafe.mp3
10.03.2018 21:29 35,091 S2Voegel.mp3
10/03/2018 21:44 3703998 voegel-in-forest-with-bachlauf.mp3
10.03.2018 21:42 48,109 motorcycle-start mit.mp3
10.03.2018 21:41 368,265 motorcycle start-leerlauf.mp3
10/03/2018 21:39 218 219 fireworks-short with-heuler.mp3
10.03.2018 21:38 51,034 sparrow sparrow-twitters-3.mp3
10.03.2018 21:38 23,867 bird-brown owl-eule.mp3
10.03.2018 21:36 62,738 bird voice-spatz.mp3
 21 file (s), 8,343,862 bytes
 0 folder (s) 116,072,448 bytes free

C: \ Users \ Hardi>

Configuration macros / Commands Hardi Stengelin

- 16 -

2.6.6 Sound_Prev (LED, InCh)
This command corresponds to the "Sound_Next()" command. With this, the previous file is played on

the SD card with each pulse.

2.6.7 Sound_PausePlay (LED, InCh)
So the playback can be paused and resumed.

2.6.8 Sound_Loop (LED, InCh)
This command is evidence of the origin as a music player. Thus, all songs can be played on an SD card

in order. For the railroad could use the function possibly with special sound files with long pauses.

2.6.9 Sound_USDSPI (LED, InCh)
I did not understand this function. It activates the button which, according to the "extensive"

documentation of the sound module between "V / SD / SPI" switches.

2.6.10 Sound_PlayMode (LED, InCh)
If the "Loop" mode is active, you can switch to this "key" to the "Play Mode". I have not quite

understood. There seems to be following modes:

"Sequence", "Sequence", "Repeat same", "Random", "Loop off"

How and whether the two "Sequence" modes differ in the beginning I do not know.

2.6.11 Sound_DecVol (LED, InCh, Steps)
The playback volume of the sound module is set to the maximum value after switching on. This is

quite loud thanks to the built-in 3 watt amplifier. The "(Sound_DecVol)" macro, the volume can be

reduced. The parameter "Steps" indicates the number of steps for reducing the volume. The number

may be in the range 1 to 30 To veränderrung the volume the corresponding "key" must be held

longer than one second. Then the volume every 150 ms is reduced by one step. The appropriate

timing assumes the macro. But remember, no further instruction to the sound module may be sent is

changed while the volume. An automatic verrigellung been omitted for space reasons.

Unfortunately, the module does not remember the last setting. This means that the volume after

each switch needs to be reset. Possibly. it is better if you "quieter" converts the sound files with a

suitable program.

2.6.12 Sound_IncVol (LED, InCh, Steps)
Thus, the volume can be increased again.

2.7 Commands
With this section describes commands one or more variables are set. These variables can then be

read by other macros and evaluated. As described in "2.2 Variables / Input Channels" on page

8described there are 256 input variables. From the perspective of the functions presented here are

output variables. They are referred to in the parameter list with "DestVar". At this point in the macro,

the number of variables come. It is recommended that a symbolic name is used instead of the

number. This can be defined at the beginning of the program with the "#define" command.

2.7.1 ButtonFunc (DstVar, InCh, Duration)
This macro corresponds to a stairwell light switch. The output variable "DstVar" is one if the "Inch" is

active. The output remains after the input has been disabled active for the "duration" milliseconds.

The macro corresponding to a static, retriggerable monoflop. The time can be specified by appending

of "Sec" or "Min". The maximum time is 17 minutes.

Configuration macros / Commands Hardi Stengelin

- 17 -

2.7.2 Schedule (DstVar1, DstVarN, EnableCh, Start, End)
The "Schedule" Macro a timetable for turning on and off several lights can be created. This plan is,

however, provide only rough conditions. When the outputs are actually switched the program

determines at random so that a real impression.

are connected the output variables "DstVar1" to "DstVarN". They are turned on randomly between

the time "start" and "end" when it is "Evening" and just as random off again on "Tomorrow".

Whether it's "Evening" or "Morning" determines the global variable "DayState". It is "evening" to

"SunSet", and "Morning" to "SunRise". The second variable "Darkness" determined by a number

between 0 and 255 as "dark" it is. So that it represents the time.

The time can be generated in different ways. The easiest timer is the brightness. So that the lights

can be turned on when it is dark. It can be measured with a light dependent resistor (LDR). This

method allows a very simple and credible control. The advantage of this method is that the lights are

automatically switched to match the lighting in the room. In the example, "Darkness_Detection" this

method is used. In the example, it is also shown how to create a switch "day" and "night".

but it is also possible to receive the time from an external model railroad timer. You can, for example

read via the CAN bus. This is useful whom the room is controlled illumination over the same time.

Of course, the model time can also be generated over a few lines in the program. This is

demonstrated by "Schedule". Here, the value of the "darkness" of the time is derived.

In addition to the "darkness" ("Darkness") will be the day state ("DayState") for the "Schedule()"

function required. Both are global variables that must be set accordingly. The examples show how

this can be done.

0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

0:00
1:00
2:00
3:00
4:00
5:00
6:00
7:00
8:00
9:00

10:00
11:00
12:00
13:00
14:00
15:00
16:00
17:00
18:00
19:00
20:00
21:00
22:00
23:00

0:00

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

1
3

0

1
4

0

1
5

0

1
6

0

1
7

0

1
8

0

1
9

0

2
0

0

2
1

0

2
2

0

2
3

0

2
4

0

2
5

0

Ti
m

e

Darkness

Darkness / Time

Configuration macros / Commands Hardi Stengelin

- 18 -

2.7.3 Logic (DstVar, ...)
"(Logic)" function can be implemented logical links. With it more input variables "NOT", "AND" and

"OR" are linked together and written to the output variable "DstVar". The logic must as a Disjunctive

Normal Form (DNF) to be expressed. In this representation, groups of "AND" linkages with "OR" are

combined:

 (A AND B) OR (A AND NOT C) OR D

The brackets are not displayed in the DNF (Implicit parenthesis). In macro that looks like this:

 Logic (ErgVar, A AND B A OR AND NOT C OR D)

The input variables A to D must be defined previously:

 #define A 1 #define B 2 #define C 3 #define D 4

The "Logic()" function can also have a second parent control input to which the link can be switched

on and off:

 Logic (ErgVar, ENABLE EnabInp, A AND B A OR AND NOT C OR D)

or

 Logic (ErgVar, disbale DisabInp, A AND B A OR AND NOT C OR D)

The example "Logic" shows the use of "Logic()" function.

2.7.4 Counter (Mode, Inch, Enable, TimeOut, ...)
The "Counter()" function can be used for a variety of tasks. It is controlled by a "mode" parameters.

The following flags are defined. Several flags can with the or operator, | ' be linked.

CM_NORMAL normal ZählerCF_INV_INPUT INCH is inverted

CF_INV_ENABLE Enable invert input

CF_BINARY Binary counter, otherwise the outputs are one by one

aktiviertCF_RESET_LONG reset active when input longer than 1.5 seconds istCF_UP_DOWN

 Up / down counter (enable => reverse)

CF_ROTATE Counter starts again at the beginning when the end is reached

wurdeCF_PINGPONG Counter switches at the ends of the RichtungCF_SKIP0 Skips

NullCF_RANDOM Random count for each pulse at EingangCF_LOCAL_VAR

 Count is written to the predefined local variable

 (please refer "2.7.25 New_Local_Var()" on page 20 and

 "2.7.26 Use_GlobalVar (GlobVarNr)" on page 21)
CF_ONLY_LOCALVAR The count is only written to the local variable. There are no

 other outputs used. The number after "TimeOut" contains the number of

 Counter levels (0 ... N-1).

The "..." in the functional description represent a variable number of output channels. Here, the

numbers of the variables used are entered. These variables are other macros as input. In normal

mode, the outputs are activated sequentially. When the CF_BINARY flag is specified, then the

outputs, such as the individual bits of a binary number to be controlled.

The following are some macros are presented which are based "(counter)" on the macro.

Configuration macros / Commands Hardi Stengelin

- 19 -

2.7.5 Monoflop (DstVar, InCh, Duration)
A monoflop is a function which enables the output for a certain time when a change from zero to one

(rising edge) is detected at the input. The time period is extended with each other edge, but if the

input is not continuously active.

2.7.6 Long-shot reset (DstVar, InCh, Duration)
Is a mono recording flop of reset if the input is longer than 1.5 seconds active. The duration may, as

in the previous function can be extended.

2.7.7 RS_FlipFlop (DstVar, S_InCh, R_InCh)
A flip-flop can accept two states (0 or 1). In an RS flip-flop, the states two inputs are determined. A

positive edge at "S_InCH" sets the flip-flop (output = 1), an edge at "R_InCh" clears the flip-flop

(output = 0).

2.7.8 RS_FlipFlopTimeout (DstVar, S_InCh, R_InCh, timeout)
This macro is equivalent to the previous ones. Here also exists that determines when the flip-flop is

automatically deleted a "Timeout" parameter.

2.7.9 T_FlipFlopReset (DstVar, T_InCh, R_InCh)
The output of a "toggle flip-flop" is switched on every rising edge of input. This feature has a "reset"

input to the flip-flop can be set to zero in addition. If this input is not required, it can be subject to

"SI_0".

2.7.10 T_FlipFlopResetTimeout (DstVar, T_InCh, R_InCh, timeout)
Has an additional parameter "Timeout".

2.7.11 MonoFlopInv (DstVar, InCh, Duration)
This monostable multivibrator has an inverse output. That is, the output is at the beginning of active

(1) and is deactivated with a positive edge of "InCh". The time can be extended as in normal MF with

a rising edge.

2.7.12 MonoFlopInvLongReset (DstVar, InCh, Duration)
Here are the characteristics of inverse and reset if the input is longer than 1.5 seconds actively

combined.

2.7.13 RS_FlipFlopInv (DstVar, S_InCh, R_InCh)
This flip-flop is active at the beginning.

2.7.14 RS_FlipFlopInvTimeout (DstVar, S_InCh, R_InCh, timeout)
Here, the "timeout" parameter is coming back to it.

2.7.15 T_FlipFlopInvReset (DstVar, T_InCh, R_InCh)
And another flip-flop inverse starting value.

2.7.16 T_FlipFlopInvResetTimeout (DstVar, T_InCh, R_InCh, timeout)
That's the last flip-flop with an output.

2.7.17 MonoFlop2 (DstVar0, DstVar1, InCh, Duration)
The following macros have two outputs the inverse are connected to each other. The functions are

the same as in the foregoing, it is omitted here detailed description.

Configuration macros / Commands Hardi Stengelin

- 20 -

2.7.18 MonoFlop2LongReset (DstVar0, DstVar1, InCh, Duration)

2.7.19 RS_FlipFlop2 (DstVar0, DstVar1, S_InCh, R_InCh)

2.7.20 RS_FlipFlop2Timeout (DstVar0, DstVar1, S_InCh, R_InCh, timeout)

2.7.21 T_FlipFlop2Reset (DstVar0, DstVar1, T_InCh, R_InCh)

2.7.22 T_FlipFlop2ResetTimeout (DstVar0, DstVar1, T_InCh, R_InCh, timeout)

2.7.23 RandMux (DstVar1, DstVarN, Inch, fashion, MinTime, MaxTime)
The "RandMux()" function is activated at random one of the outputs to which "DstVarN" are defined

by the numbers "DstVar1". About "MinTime" is determined how long an output is minimally active.

"MaxTime" describes the analog maximum time which the output should remain active. The program

determines between the two corner points of a random point in time at which a random other

channel is activated. This function can be switched, for example between different lighting effects for

a disco.

With the flag "RF_SEQ" as "Mode" parameter of the next output is not selected chance, but the

outputs are activated sequentially.

2.7.24 Random(DstVar, Inch, fashion, MinTime, MaxTime, Minon, Maxon)
The "Random()" function activates an output after a random period. The duty may also be random.

So you can have an effect randomly taxes. One application of this is the flash of a Fotografens to

which from time to flash.

The parameters "MinTime" and "MaxTime" is determined in which the temporal area of the function

should be active. About "Minon" and "Maxon" the duration is specified. is used for the flash here

"Minon" = "Maxon" = 30 ms used (See "2.5.1 Flash (LED, Cx, InCh, Var, MinTime, MaxTime) on page

12).

The flash is defined as a macro:

 #define Flash (LED, Cx, InCh, Var, MinTime, MaxTime) \ Random (Var, InCh,

RM_NORMAL, MinTime, MaxTime, 30 ms, 30 ms) \ Const (LED, Cx, Var, 0, 255)

Another example of using the "RandWelding()" function on page 13,

currently the random() function knows a special mode: RF_STAY_ON. With this switch the output

remains as long until the predetermined about "Minon" and "Maxon" time has elapsed, if the input is

no longer active. This is where "Button()" macro used which, like "Flash()" and "RandWelding()", the

"random()" function uses:

 #define ButtonFunc (DstVar, InCh, duration) \ Random (DstVar, InCh, RF_STAY_ON,

0, 0, (duration), (duration))

2.7.25 New_Local_Var()
Most functions of MobaLedLib be controlled by one of the 256 logical variables. The number of the

variable used as a parameter "InCh".

There are also cases where more than two states (on / off) are needed. For this purpose, no fixed

number of variables are made available because the RAM of an Arduino is very limited in the library

though.

The macro "(New_Local_Var)" creates a variable of type "ControlVar_t" if necessary. You can take

values between 0 and 255 and has additional flags with which changes can be detected. This variable

can then be set by a function and are evaluated by one or more other features. Through this

Configuration macros / Commands Hardi Stengelin

- 21 -

approach valuable RAM is only used when it is actually needed. Additionally, the user does not have

to as the "Flash()" or "RandWelding()" function to an intermediate variable care.

To set the local variable of "Counter()" command (Page 18) Used (See page21).

the variable is evaluated (with the Pattern functions from page28).

The example "RailwaySignal_Pattern_Func" shows how this is done.

The memory for the variable is created automatically. For this is not as usual in C ++ using the "new"

command, but when compiling the array "Config_RAM []" in the required size static created. This has

the advantage that the RAM requirement is known at compile time already, and the compiler may

optionally generate alerts if the memory is running out. In this case the following message in the

Arduino IDE is shown:

The warning appears because very little RAM memory for the program is left. This memory is needed

in the C ++ program for dynamically created variables and for the stack. It is not possible to

determine from the point of view of the compiler how much memory is required to do just that.

Therefore, the memory in the library is statically reserved.

2.7.26 Use_GlobalVar (GlobVarNr)
The library can be extended with custom functions in the C ++ program. With the function

"(Use_GlobalVar)" can exchange data their own parts of the program with the library's internal

functions. Global variables can be used just like the local variables are created which the function

"(New_Local_Var)". The global variables are, however, stored in a separate array. This array must be

defined in the user's Sketch:

 ControlVar_t GlobalVar [5];

And the library in the "setup()" function will be announced:

 MobaLedLib_Assigne_GlobalVar (GlobalVar);

This allows "(Use_GlobalVar)" then the command can be used. To set the variable, for example, this

function can be added to the sketch of the user:

 // --- void Set_GlobalVar (uint8_t Id

uint8_t val) // --- {uint8_t GlobalVar_Cnt =

sizeof (GlobalVar) / sizeof (ControlVar_t); if (Id <GlobalVar_Cnt) {GlobalVar [Id]

.VAL Val; GlobalVar [Id] .ExtUpdated = 1; }}

2.7.27 InCh_to_TmpVar (First InChes InCh_Cnt)
This command creates a temporary 8-bit variable is filled with the values of several logical variables.

In contrast to the "New_Local_Var) (" function and "Use_GlobalVar()" function here requires no

additional memory. This is possible because the same memory can be used multiple times. In the two

other cases must be saved if the input changed because only then will an action triggered. With this

function, the change of the input variables is used.

In the example, "CAN_Bus_MS2_RailwaySignal" the "InCh_to_TmpVar()" function is used.

Sketch uses 20,388 bytes (66%) of program storage space. Maximum is 30,720

bytes.

Global variables use 1,556 bytes (75%) of dynamic memory, leaving 492 bytes for

local variables. Maximum is 2048 bytes.

Low memory available, stability problems May Occur.

Macros and functions of the main program / MobaLedLib Hardi Stengelin

- 22 -

2.8 other commands

2.8.1 CopyLED (LED, InCh, SrcLED)
"(CopyLED)" command is the brightness of the three colors of the "SrcLED" copied to the "LED". This

is useful, for example, at a traffic light at an intersection. Here is the Opposite lights should show the

same picture.

When two RGB LEDs should show the same, then you can reach the well through the electrical

wiring. For this, the "DIN" are parallel lines of both LEDs. Usually all LEDs are in a chain so that lined

up each LED can be individually addressed. If two LEDs are intended to show precisely the same, then

the switch is an alternative parallel. In the example, "TrafficLight_Pattern_Func" is outlined.

3 Macros and functions of the main program
The following macros and functions are in the main program, the .ino file (or on Arduinisch "Sketch")

is used.

The macros were introduced so that the sample programs are clearer and easier to maintain. In the

macro, the actual name is separated by an underscore "_" from the leading "MobaLedLib".

The macros and functions must be in certain places within the program. This is described in the

documentation of the individual elements.

3.1 MobaLedLib
The library contains several classes that can be used individually. In the next section, the class main

class "MobaLedLib" is described.

3.1.1 MobaLedLib_Configuration()
This macro initiates the configuration of the LEDs. In the configuration is defined as the LEDs and

other modules to behave. The configuration area in Braces, enclosed and finished with a semicolon

"{...}". In the last line of the configuration, the "EndCfg" keyword should be.

The macro is in the main program after the #include "MobaLedLib.h". Here, the configuration of the

example of "House":

// ** *******************

// *** Configuration array Which Defines the behavior of the LEDs ***

MobaLedLib_Configuration()

 {// LED: First LED number in the stripe

 // | INCH: Input channel. Here the special input 1 is used All which is

 // | | always on

 // | | On_Min: minimum number of active rooms. At least two rooms are

 // | | | illuminated.

 // | | | On_Max: Number of maximum active lights.

 // | | | | Rooms: List of room types (see documentation for possible

 // | | | | types).

 // | | | | |

 House (0, SI_1, 2, 5, ROOM_DARK, ROOM_BRIGHT, ROOM_WARM_W, ROOM_TV0, NEON_LIGHT,

 ROOM_D_RED, ROOM_COL2) // House with 7 rooms

 EndCfg // End of the configuration

 };

// ** *******************

Internally, the macro is defined as follows:

#define MobaLedLib_Configuration() cost PROGMEM Config unsigned char [] =

Macros and functions of the main program / MobaLedLib Hardi Stengelin

- 23 -

It defines an array of 'unsigned char' which are in the "PROGMEM" which is located in the FLASH

Arduinos. Without the "PROGMEM" the array would be copied into RAM what Währe possible due to

the small memory of a Arduinos only for small configurations.

3.1.2 MobaLedLib_Create (leds)
This macro the class "MobaLedLib" is generated. So that the memory is allocated and initialized. The

parameter "leds" tells the class where the brightness values of light emitting diodes are stored. This

is to array of type "CRGB" which in the "FastLEDs" library is defined.

The macro is in the main program after the definition of "leds" Arrays:

CRGB leds [NUM_LEDS]; // Define the array of leds

MobaLedLib_Create (LEDs); // Define the MobaLedLib instance

In addition to the memory for the LEDs, the library needs memory for each configuration lines. For

this purpose, a special method was used. The memory is allocated by each entry in the configuration

when compiling. Usually this is done for the duration of the program with the command "new". but

the "usual" approach has the disadvantage that the compiler does not know how much RAM is

needed in the operation. RAM can at the scarce resource which quickly lead to a microcontroller to

problems. That is why a different approach was used here. This does using the example of "House()"

function can be explained:

#define House (LED, InCh, On_Min, On_Limit, ...) \

 HOUSE_T, _CHKL (LED)+ RAMH, _ChkIn (InCh), On_Min, On_Limit \

 HOUSE_MIN_T, HOUSE_MAX_T, COUNT_VARARGS (__ VA_ARGS__) __VA_ARGS__,

Decisive here is the term "RAMH" which describes the memory requirements of a house. He will be

replaced by a further macro by RAM2. This macro has the following structure:

#define RAM1 1 + __COUNTER__ - __COUNTER__

#define RAM2 RAM1 + RAM1

After that, "RAM 2" is composed of two "RAM1" together. The latter is the ultimate macro. It

contains the C ++ preprocessor macro "__COUNTER__" which represents a counter which is

incremented by 1 each time when it is used.

When first using the macro "RAM1" situation is as follows: 1 +0 - 1

This makes "RAM1" = 0. In the second use of the macro situation is similar: 1 + 2 - 3

Which is also the 0th Thus, even "RAM2" and accordingly "RAMH" as 0. But is crucial that

"__COUNTER__" has been changed. With each use of "RAM1", the counter is increased by two. And

that's what is used to declare the configuration memory "Config_RAM []". This is an array of type

"unit8_t":

uint8_t Config_RAM [__ __ COUNTER / 2];

With the "__COUNTER__" trick the array is the same size that it can provide the required memory for

all configuration lines. Since the preprocessor macros are evaluated at compile the compiler knows

exactly how much memory is in use and can check if the RAM of the processor it is sufficient. If a

critical value is exceeded, then this warning:

Sketch uses 20,388 bytes (66%) of program storage space. Maximum is 30,720

bytes.

Global variables use 1,556 bytes (75%) of dynamic memory, leaving 492 bytes for

local variables. Maximum is 2048 bytes.

Low memory available, stability problems May Occur.

Macros and functions of the main program / MobaLedLib Hardi Stengelin

- 24 -

In this way, the main memory can be monitored without the need for a program line is needed. In

addition, the warning is displayed during the creation of the program on the screen. An error

message which is generated by the Arduino to maturity can not be reliably indicated the absence of

standardized output device.

The macro "MobaLedLib_Create()" contains the line for the generation of the array and the actual

initialization of the class:

#define MobaLedLib_Create (leds) \

 uint8_t Config_RAM [__ __ COUNTER / 2]; \

 MobaLedLib_C MobaLedLib (leds sizeof (leds) / sizeof (CRGB) \

 Config, Config_RAM, sizeof (Config_RAM));

3.1.3 MobaLedLib_Assigne_GlobalVar (GlobalVar)
If "(Use_GlobalVar)" in the configuration, the macro is used, then the library needs to know where

the global variables are and how many are available.

The function is in the "setup()" function of the main program called. The corresponding array must

be declared before:

ControlVar_t GlobalVar [5];

void setup() {

 MobaLedLib_Assigne_GlobalVar (GlobalVar); // Assigne the GlobalVar array to the MobaLedLib

}

3.1.4 MobaLedLib_Copy_to_InpStruct (Src, BYTECNT, ChannelNr)
the MobaLedLib used to control the LEDs is an array with logic values which additionally stores the

previous value. This library can detect whether an input has changed and only trigger the appropriate

action.

If the input signals from the main program in the so-called "InpStruct" to be fed, then used this

function is used. This will in the example "Switches_80_and_more" used to copy the keyboard array.

As an input, the function expects an array of individual bits representing the individual input

channels. The parameter "Src" contains this array. The parameter "BYTECNT" indicates how many

bytes are to be copied. "ChannelNr" indicates the target position in the input structure

"InpStrucktArray". This corresponds to the "InCh" in the configuration macros. his respect for the

"ChannelNr" divisible by 4.

In the program this macro is used function ") (loop" in the.

If only individual bits are to be copied to the input structure of the library can to the command

"Set_Input()" are used (See section 3.1.6)

3.1.5 MobaLedLib.Update()
This is the crucial function of MobaLedLib. It calculates the states of the LEDs in each main loop pass

new. She works one by one all entries in the configuration array, and thus determines the color and

brightness of each LED. In developing the library great emphasis was placed thereon, that the

function is processed very quickly, even with large configurations.

The function must be called in the "loop()" function of the Arduino program.

3.1.6 MobaLedLib.Set_Input (uint8_t channel, uint8_t On)
This function allows an input variable of MobaLedLib can be set. Thus the library switch settings or

other input values can be supplied. The parameter "channel" is the number of input variables is

described which is used in the configuration macro always "InCh".

Macros and functions of the main program / Heartbeat of the program Hardi Stengelin

- 25 -

The function "(loop)" in the function and, if appropriate, in the "setup()" function of the program

used.

It is used in almost all the examples to read the switch. In the example,

"CAN_Bus_MS2_RailwaySignal" the CAN data from the thus be read "Mobile Station".

If more bits to be read at once, then the macro "MobaLedLib_Copy_to_InpStruct" which on page 24

described are used.

3.1.7 MobaLedLib.Get_Input (uint8_t channel)
To read individual input channels, this function can be used. This can be especially useful for testing

purposes.

3.1.8 MobaLedLib.Print_Config()
This feature allows the contents of the configuration array for debugging purposes can be output via

the serial interface. But for the following line must be activated in the file "Lib_Config.h":

 #define _PRINT_DEBUG_MESSAGES must be enabled in "Lib_Config.h"

and the serial interface; initialize "Serial.begin (9600)". The "Lib_Config.h" file can be found under

Windows in the directory "C: \ Users \ <username> \ Documents \ Arduino \ libraries \ MobaLedLib \

src".

Note: This requires a lot of memory (4258 byte FLASH, 175 bytes of RAM). So you should enable

testing only the Kompilerschalter.

The function and the initialization of the serial interface is made "(setup)" in the function.

3.2 Heartbeat of the program
The class "LED_Heartbeat_C" is a small additional class with an LED for monitoring the functioning of

the microcontroller and the current on the program can be used. If the LED flashes regularly, then

the program is running normally.

The class can be used independently of the MobaLedLib class.

3.2.1 LED_Heartbeat_C (uint8_t Pin No.)
The class "LED_Heartbeat_C" is initialized with the following call in the main program. The parameter

"Pin No." contains the number of Arduino terminal to which the light-emitting diode is connected.

The digital inputs / outputs of a Arduinos be addressed with the numbers 2 through thirteenth The

analog inputs 0-5 can also be used to drive the LED. They are selected on the constants A0 to A5. The

analog inputs A6 and A7 of the "nano" can not be used as a base because they have no

corresponding output stage. In most instances, the built-in LED Arduinos which is used by the

constant "LED_BUILDIN" is passed to the class. In the examples which utilize the CAN bus that can

not be, because the pin of the internal LED is also used as clock generator for the SPI bus.

 LED_Heartbeat_C LED_Heartbeat (LED_BUILTIN); // Use the build in LED as heartbeat

3.2.2 Update()
The functionality of the program it is checked in that the function can blink which the heartbeat LED

"(loop)" in the function of the program is called. If the LED flashes, then you know that the program

calls the appropriate place regularly. To this line must be installed in the "loop()" function:

 LED_Heartbeat.Update(); // update the heartbeat LED.

Many switch with a few pins / principle Hardi Stengelin

- 26 -

4 Many switch with a few pins
The library provides to the module "Keys_4017.h" an incredibly flexible way to read very many switch

via a few signal lines are available.

If the "Keys_4017.h" file is integrated into the user program, an interrupt routine is activated

automatically in the background which is a matrix consisting of a large number of switches consist

can queries. The remarkable thing is that this very few signal lines are required. This is important

because the Arduino has only a limited number of inputs and outputs. A few signal lines are also

desirable if the switches are not directly near the Arduino. This saves cables and connectors.

The switches can be read independently. Any number of switches are activated simultaneously.

All switches are read within 100 milliseconds. Thus an immediate response to the change of a switch

is guaranteed.

The use in the user program is very simple, because the queries performed automatically in the

background.

The module can be used independently of the MobaLedLib.

4.1 configurability
Which and how many ports can be used for reading the switch be freely configured. A minimum of

three processor connections to read the switches are required. but it can also be used up to ten pins.

To read the switch one or more ICs of the type CD4017 (0.31 €) will be needed. The number of these

devices depends on the number of read in switch and the number of signal lines.

With a CD4017 and three signal lines 10 switches can already be processed. With each additional

signal line 10 other switches can be read. At 10 lines can be read in this way, 80 switch. Theoretically,

more than 10 lines are possible. Then, however, resistors must be used as shown below in the circuit,

otherwise the output current of the ICs can be too big bigger pull down.

The number of switches can be increased but also through the use of multiple CD4017. With two

blocks and three signal lines 18 switches can be read. Three ICs used, then 26 switches can be read.

At 10 ICs, it would switch 82 which can be read using only three signal lines from the Arduino.

The number of switches is calculated from:

 (IC Number * 8 + 2) * (signal lines - 2)

4.2 two groups of switches
The module can read two such groups of switches simultaneously. A group may be housed for

example in a turnout control panel and another group can read distributed at the edge of the

installation switch. The first group can consist of 80 switches which are read in over 10 signal lines.

The second group may consist of several modules, each with a CD4017 made which are connected

with each other via only 3 signal lines. These switches can be read in so-called "push-button actions."

two of the signal lines are thereby used by both groups together so that only 11 ports of Arduinos in

total are required!

4.3 principle
The IC CD4017 is a counter sequentially activated at each input pulse its outputs.

Many switch with a few pins / Integration into the program Hardi Stengelin

- 27 -

At the beginning of the uppermost output of the counter is enabled. So that the switch can be read in

the top row. With each clock signal at the input of the counter the next output is activated. In the

second step, the switches can be read from the second row like that. The block has ten outputs. This

means that 80 switches can be read at eight input channels. prevent the diode in the circuit that the

switch affect each other.

4.4 Integration into the program
To integrate the module in the user program only a few lines are required:

#define CTR_CHANNELS_1 10

#define BUTTON_INP_LIST_1 2,7,8,9,10,11,12, A1

#define CTR_CHANNELS_2 18

#define BUTTON_INP_LIST_2 A0

#define CLK_PIN A4

#define RESET_PIN A5

#include "Keys_4017.h"

With the "#defines" the counter channels used and the pins of the Arduino be set. The above

example defines two groups of switches.

The first group uses all ten channels of a CD4017 (CTR_CHANNELS_1 10). The constant

"BUTTON_INP_LIST_1" contains a list of eight input pin numbers. Thus, there is this group of 80

switches.

The second group we set with the constant "CTR_CHANNELS_2" and "BUTTON_INP_LIST_2". Here

are two counter ICs are used which are read via an input. So there are 18 switches in the group.

With the last two constants of the connection of the clock line and the reset line is specified. These

signals are shared by both groups.

CAN Message Filter / Limitations Hardi Stengelin

- 28 -

The module asks all switches off within 100 milliseconds. Thus an immediate response to the change

of a switch is guaranteed. It writes the state of the switches in a bit array. For each group its own

array exists:

 uint8_t Keys_Array_1 [KEYS_ARRAY_BYTE_SIZE_1];

 uint8_t Keys_Array_2 [KEYS_ARRAY_BYTE_SIZE_2];

which can be read by the user program. The integration of these arrays in the MobaLedLib class, the

following lines are in the "loop()" function of the program requires:

 MobaLedLib_Copy_to_InpStruct (Keys_Array_1, KEYS_ARRAY_BYTE_SIZE_1, 0);

 MobaLedLib_Copy_to_InpStruct (Keys_Array_2, KEYS_ARRAY_BYTE_SIZE_2, START_SWITCHES_2);

4.5 Freely available board
In the "extras" directory of the library, the S3PO_Modul_WS2811.zip file in which the schematic and

the appropriate board for import of switches via this module.

The board contains in addition to the CD4017 and a NAND gate with which the signals are passed on

to the next counter WS2811 three modules with light-emitting diodes which can be controlled in the

switches. Alternatively, switch with integrated RGB LEDs can be used.

The circuit can be used for distributed reading "push-button actions" and for reading many switches

in a switch control board.

A detailed documentation of the circuit is refilled when required (mail MobaLedLib@gmx.de).

4.6 additional libraries
The module uses the libraries "TimerOne.h" and "DIO2.h". Both can be installed using the Arduino

IDE. Do this by calling the (integrated Sketch / Library / manage library) the library administration and

are "TimerOne" or "DIO" in the "Narrow your search" box. The found entry must be selected and can

be installed on "Install".

4.7 Limitations
The keys are read by interrupt. For this, the timer interrupt 1 is used. Therefore, this interrupt can

not be used for other tasks. By default, the timer 1 for the servo library is used. If the switches are

read in this module, can not be driven simultaneously servos. but that is anyway in connection with

the "FastLED" library that builds the whole project is not possible because the interrupts are updated

while the LEDs need to be locked because the timing of WS281x chip is very critical.

5 CAN Message Filter
In this section, the module "Add_Message_to_Filter.h" describes ...

But enough has been written. It reads yes but no ...

If you want to read more, then encourage me with a mail: MobaLedLib@gmx.de

6 Connection concept with distribution modules
The biggest advantage of WS281x modules is the easy wiring. By using four-pole connectors which

can be simply plugged into power strips, illuminating a complex system is very simple. This section is

described in more detail ...

mailto:MobaLedLib@gmx.de
mailto:MobaLedLib@gmx.de

Details Pattern function / Pattern_Configurator Hardi Stengelin

- 29 -

Images…

7 Details Pattern function
The Pattern feature is incredibly powerful. With her komplexesten Animations can be easily

configured. This section will explain the ...

7.1 The various commands Pattern
PatternT1 (LED, NStru, InCh, LEDs, VAL0, Val1, Off, Fashion, T1, ...)

:

PatternT20 (LED, NStru, InCh, LEDs, VAL0, Val1, Off, fashion, T1, T2, T3, T4, T5, T6, T7, T8,

T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, ...)

APatternT1 (LED, NStru, InCh, LEDs, VAL0, Val1, Off, Fashion, T1, ...)

:

APatternT20 (LED, NStru, InCh, LEDs, VAL0, Val1, Off, fashion, T1, T2, T3, T4, T5, T6, T7, T8,

T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, ...)

XPatternT1 (LED, NStru, InCh, LEDs, VAL0, Val1, Off, Fashion, T1, ...)

:

XPatternT20 (LED, NStru, InCh, LEDs, VAL0, Val1, Off, fashion, T1, T2, T3, T4, T5, T6, T7, T8,

T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, ...)

PatternTE1 (LED, NStru, InCh, Enable, LEDs, VAL0, Val1, Off, Fashion, T1, ...)

:

PatternTE20 (LED, NStru, InCh, Enable, LEDs, VAL0, Val1, Off, fashion, T1, T2, T3, T4, T5, T6,

T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, ...)

APatternTE1 (LED, NStru, InCh, Enable, LEDs, VAL0, Val1, Off, Fashion, T1, ...)

:

APatternTE20 (LED, NStru, InCh, Enable, LEDs, VAL0, Val1, Off, fashion, T1, T2, T3, T4, T5,

T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, ...)

XPatternTE1 (LED, NStru, InCh, Enable, LEDs, VAL0, Val1, Off, Fashion, T1, ...)

:

XPatternTE20 (LED, NStru, InCh, Enable, LEDs, VAL0, Val1, Off, fashion, T1, T2, T3, T4, T5,

T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, ...)

7.2 New_HSV_Group()

7.3 Pattern_Configurator
This section explains how the Excel "Pattern_Configurator.xlsm" program is used ...

8 Troubleshooting
Here I want to explain how to prevent errors in configuration, detects and corrects ...

Manuele tests / Constants of the Pattern function Hardi Stengelin

- 30 -

9 Manuele tests
The library provides several tools with which you can test the Connected LEDs. This means that

individual LEDs can be controlled, change the color and carry out performance measurements.

10 constants
The constant should also be described in more detail ...

10.1 Constant for the channel number Cx.
Pictured right WS2811 module for 12V is shown. Here connectors were

soldered to connect individual LEDs. On the upper side of the board, an

additional board is used with the positive terminal is distributed to all

three connectors.

Note: For other WS2811 modules can vary the connection configuration.

Surname description

C1 = C_RED A first channel WS2811 module or the Red LED

C2 = C_GREEN A second channel module or the Green LED WS2811

C3 = C_BLUE A third channel WS2811 module or the Blue LED

C12 = C_YELLOW First and second channel of a module WS2811

C23 = C_CYAN Second and third channel of WS2811 module

C_ALL All three channels of a module WS2811 (Weis)

10.2 Constants for hours ("Timeout", "Duration"):
Surname description

min In minutes

Sec = sec In seconds

Ms = ms In milliseconds

In minutes and seconds and decimals can be used: Example: 1.5 min

The times can also be Adds: Example: 1 min + 13 sec

What is important is the distance between number and unity.

10.3 Constants of the Pattern function
Surname description
PM_NORMAL Normal mode (as a wildcard in Excel)

PM_SEQUENZ_W_RESTART Rising edge-triggered unique sequence. A new edge starts with state
0th

PM_SEQUENZ_W_ABORT Rising edge-triggered unique sequence. Abort the sequence if new
edge is detected during run time.

PM_SEQUENZ_NO_RESTART Rising edge-triggered unique sequence. No restart if new edge is
detected

PM_SEQUENZ_STOP Rising edge-triggered unique sequence. A new edge starts with state
0. If input is turned off the sequence is stopped immediately.

PM_PINGPONG Change the direction at the end: 118 bytes

constants / (Flags and modes for the Counter) Function Hardi Stengelin

- 31 -

PM_HSV Use HSV values instead of RGB for the channels

PM_RES reserved mode

PM_MODE_MASK Defines the number of bits used for the modes (currently 3 =>
Modes 0 ... 7)

_PF_XFADE Special fade mode Which starts from the actual brightness value
instead of the value of the previous state

PF_NO_SWITCH_OFF Do not switch of the LEDs if the input is turned off. Useful if several
effects use the same LEDs alternated by the input switch.

PF_EASEINOUT Easing function (transition) is used Because changes near 0 and 255
are noticed different than in the middle

PF_SLOW Slow timer (divided by 16) to be able to use longer durations

PF_INVERT_INP Invert the input switch => Effect is active if the input is 0

10.4 Flags and modes (for Random) and RandMux()
Surname description

RM_NORMAL normal

RF_SLOW Time base is divided by 16 This flag is set automatically if the time
is> 65535 ms

RF_SEQ Switch the outputs of the RandMux() function sequential and not
random

RF_STAY_ON Flag for the Ranom() function. The output stays on until the input is
turned off. Minon, Maxon define how long it stays on.

10.5 (Flags and modes for the Counter) Function
Surname description

CM_NORMAL Normal Counter mode

CF_INV_INPUT Invert input

CF_INV_ENABLE input Enable

CF_BINARY Maximum 8 outputs

CF_RESET_LONG Button long = Reset

CF_UP_DOWN An RS flip-flop can be made with CM_UP_DOWN without CF_ROTATE

CF_ROTATE Begins at the end all over again

CF_PINGPONG Changes at the end of the direction

CF_SKIP0 Skips 0. The 0 comes only with a timeout or when the button is pushed
long

CF_RANDOM Generate random numbers

CF_LOCAL_VAR Write the result to a local variable Which must be created with
New_Local_Var() prior

_CF_NO_LEDOUTP Disable the LED output (the first DestVar contains the maximum counts-
1 (counter => 0 .. n-1))

CF_ONLY_LOCALVAR Do not write to the LEDs with defined DestVar. The first contains the
number DestVar maximum number of the counter-1 (counter => 0 .. n-
1).

_CM_RS_FlipFlop1 RS flip flop with one output (Edge triggered)

_CM_T_FlipFlop1 T flip flop with one output

_CM_RS_FlipFlop2 RS flip flop with two outputs (Edge triggered)

_CM_T_FlipFlopEnable2 T flip flop with two outputs and enable

_CM_T_FlipFlopReset2 T flip flop with two outputs and reset

constants / Lighting types of rooms: Hardi Stengelin

- 32 -

_CF_ROT_SKIP0 Rotate and Skip 0

_CF_P_P_SKIP0

10.6 Lighting types of rooms:
Surname R G B description

ROOM_DARK 50 50 50 Room with low light,

ROOM_BRIGHT 255 255 255 Bright room with lighting

ROOM_WARM_W 147 77 8th Room with warm white light

ROOM_RED 255 0 0 Room with bright red light

ROOM_D_RED 50 0 0 Dark room with red light

ROOM_COL0

Room with open Kammin. This produces a flickering
reddish light which (hopefully) is similar to a
fireplace. The Kammin not always burn. From time to
time (random controlled) and a normal light is on.

ROOM_COL1

With this constant, the flicker is simulated an ongoing
TV. For this, the RGB LEDs are controlled by chance.
If the Preiserlein times not check the Internet then
burns a normal light.

ROOM_COL2

In this room, sometimes the TV is or it burns the fire
and from time to time a book is read well in normal
light.

ROOM_COL3

With this type of a second television program is
simulated. In our model world there are only two
different television programs. but these are, after all,
even in color. Various programs are required, making
it flicker different in adjacent windows to see. Other
TV stations can be activated in the program with the
compiler switch TV_CHANNELS. A downgrade to black
/ white TV could be added in the program if that fits
better in the era of the plant.

ROOM_COL4

How ROOM_TV0_CHIMNEY only with ZDF.

ROOM_COL5

Room with user defined color 5

ROOM_COL345

Room with user defined color 3, 4 or 5 All which is
randomly activated

FIRE

Chimney fire (RAM is used to store the Heat_p)

FIRED

Dark chimney "

FIREB

Bright chimney "

ROOM_CHIMNEY

With chimney fire or Light (RAM is used to store the
Heat_p for the chimney)

ROOM_CHIMNEYD

With dark chimney fire or Light "

ROOM_CHIMNEYB

With bright chimney fire or Light "

ROOM_TV0

With TV channel 0 or Light

ROOM_TV0_CHIMNEY

With TV channel 0 and fire or Light

ROOM_TV0_CHIMNEYD

With TV channel 0 and fire or Light

ROOM_TV0_CHIMNEYB

With TV channel 0 and fire or Light

ROOM_TV1

With TV channel 1 or Light

ROOM_TV1_CHIMNEY

With TV channel 1 and fire or Light

constants / Lighting types of rooms: Hardi Stengelin

- 33 -

Surname R G B description

ROOM_TV1_CHIMNEYD

With TV channel 1 and fire or Light

ROOM_TV1_CHIMNEYB

With TV channel 1 and fire or Light

The program function which is controls the houses "(gas Light)" also by the macro used which is
described in the next section. The following constants are intended. They simulate gas lamps
which only slowly reach full brightness and occasionally flicker. These lamps can of course also be
used in a house.

GAS_LIGHT 255 255 255 Gas lantern with bulb which consumes between
20mA and 60mA at 12V. The lamp is driven at full
brightness.

GAS_LIGHT1 255 - - Gas lantern with LED which the first channel (red) of a
WS2811 chip is connected.

GAS_LIGHT2 - 255 - Gas lantern with LED which the second channel
(green) of a WS2811 chip is connected.

GAS_LIGHT3 - - 255 Gas lantern with LED which on the third channel
(blue) is connected a WS2811 chips.

GAS_LIGHTD 50 50 50 Gas lantern with bulb which consumes between
20mA and 60mA at 12V. The lamp is driven with
reduced brightness.

GAS_LIGHT1D 50 - - Dark LED to channel 1

GAS_LIGHT2D - 50 - Dark LED on channel 2

GAS_LIGHT3D - - 50 Dark LED on channel 3

NEON_LIGHT

Neon light using all channels

NEON_LIGHT1

Neon light using one channel (R)

NEON_LIGHT2

Neon light using one channel (G)

NEON_LIGHT3

Neon light using one channel (B)

NEON_LIGHTD

Dark Neon light using all channels

NEON_LIGHT1D

Dark Neon light using one channel (R)

NEON_LIGHT2D

Dark Neon light using one channel (G)

NEON_LIGHT3D

Dark Neon light using one channel (B)

NEON_LIGHTM

Medium Neon light using all channels

NEON_LIGHT1M

Medium neon light using one channel (R)

NEON_LIGHT2M

Medium neon light using one channel (G)

NEON_LIGHT3M

Medium neon light using one channel (B)

NEON_LIGHTL

Large room neon light using all channels. A large
room is equipped with several neon lights Which start
delayed

NEON_LIGHT1L

Large room neon light using one channel (R)

NEON_LIGHT2L

Large room neon light using one channel (G)

NEON_LIGHT3L

Large room neon light using one channel (B)

SKIP_ROOM

Room All which is not controlled with by the house()
function (Useful for shops in a house Because this
lights are always on at night)

