
Getting Started with uMT

uMT v2.5.0 – Doc v2.5.0 – 07 June 2017 Page 1/24

Getting Started with uMT
This documents provides an introduction to uMT functionality with some basic examples. A reference
document for uMT calls is available as well.

uMT is a young software and, as consequence, no extensive use (and debugging) has been done yet. As a
consequence users must be aware of this and they are suggested to contact the Author in case of bugs or
issues.

Please also note that this an EDUCATIONAL tool, not designed for industrial or state-of-the-art application
(nor life or mission critical application!!!) and not fully optimized.

uMT v2.5.0 – Doc v2.5.0 – 07 June 2017

uMT
Micro Multi Tasker (uMT) is a preemptive, timesharing, soft real-time (not deterministic) multi tasker
specifically designed for the Arduino environment. uMT currently works with the AVR microprocessor family
(Arduino Uno and Arduino Mega2560) and for the SAM/SAMD architecture (Arduino Due and Zero).

Please note that the SAMD porting has not been tested! (the Author does not own a Zero board).

uMT is a simplified rewriting of a 30 years old multi tasker developed by the Author in his youth (!) which was
originally designed for the Intel 8086 architecture (and then ported to protected mode 80386, M68000, MIPS
R3). uMT is significantly simpler than the original and it has been designed for ease of use and power for the
small environment of Arduino microprocessors and boards. Last, uMT is written in a simple C++ versus its C
language ancestor to hide complexity and increase ease of use.

Main functionalities

uMT offers a rich programming environment with over 30 calls:

·Task management: creation and deletion of independent, priority based tasks with a start-up
parameter. Moreover, preemption and timesharing can be enabled/disabled at run time.

·Semaphore management: counting semaphores with optional timeout (in the simplest form they
can be used as mutual exclusion guards).

·Event management: a configurable number of events per task (16 or 32 events depending on the
AVR/SAM architecture) can be used for inter task synchronization, with optional timeout and ALL/ANY
optional logic (number of events can be extended to 32/64 by reconfiguration of uMT source code).

·Timers management: task's timers (timeouts) and agent timers (Event generation in future time)
are available.

·Support Functionalities: system tick, fatal error, rebooting, etc.

Getting Started with uMT

uMT v2.5.0 – Doc v2.5.0 – 07 June 2017 Page 2/24

Table of Contents
uMT .. 1

Main functionalities ... 1
Supported Boards ... 3
Configuration .. 5

uMTconfiguration.h ... 5
uMTdataTypes.h ... 5
Static and Dynamic Configurations ... 5

Starting uMT ... 7
Working with Tasks .. 8

Yielding Control... 9
Deleting Tasks .. 9
Restarting a Task .. 9
Tasks Priorities ... 9
Tasks Launch Parameter .. 9
Time-sharing ... 10
Preemption ... 10
Task’s Stack Size and Allocation... 11
Task’s Information ... 11

Working with Events ... 12
Working with Semaphores .. 13
Working with Timers ... 15

Timer roll-over ... 15
Return code in the uMT calls .. 16
Ancillary Functionalities .. 17
Calling uMT during Interrupt Service Routines (ISR)... 18

Task preemption in ISR management for isr_XX_YYYY() calls. .. 18
Task preemption in ISR management for isr_p_XX_YYYY() calls ... 18
ISR management performance ... 19

Dynamic Memory Management .. 21
AVR Platform .. 21
SAM/SAMD Platform... 21
Reentrancy ... 21

System Timer Tick, Rebooting and Built-in LED ... 22
AVR architecture ... 22
SAM/SAMD architecture ... 22
SAMD architecture porting .. 22
BUILTIN LED .. 22

Change Log .. 23
Author and Contacts ... 24
Copyright .. 24

Getting Started with uMT

uMT v2.5.0 – Doc v2.5.0 – 07 June 2017 Page 3/24

Supported Boards
The main challenge for the Arduino architecture has been the extremely low RAM availability in most of the
Arduino boards. For this purpose uMT is configurable both in terms of "subsystems" which can be used
(semaphores, events, timers, etc.) and in terms of quantity of objects (tasks, semaphores and timers). As a
consequence, uMT is able to run in the 2KB RAM of the Arduino Uno board although its more natural
environment is the Arduino Mega2560 board were the 8KB available RAM allows the design of very
sophisticated programs. Arduino Due is in this context a “luxury” environment thanks to the availability of
96KB of RAM.

The default configuration for ARDUINO Uno is:

Tasks: 5 4 available, including the Arduino main loop()
Semaphores: 8
Task's Stack size: 200 bytes To minimize memory usage
Idle task stack size: 128 bytes To minimize memory usage
Events 16
Semaphores 8
Timers 5 task timers

5 agent timers
TaskRestart functionality disabled
Available RAM:
(using Test20_Complex1.ino
test)

~460 bytes including Arduino main loop() stack, after
Kn_Start() execution.

The default configuration for ARDUINO Mega2560 is:

Tasks: 10 9 available, including the Arduino main loop()
Semaphores: 16
Task's Stack size: 256 bytes
Idle task stack size: 128 bytes
Events 16
Semaphores 16
Timers 10 task timers

10 agent timers
Available RAM:
(using Test20_Complex1.ino
test)

~4500 bytes including Arduino main loop() stack, after
Kn_Start() execution.

The default configuration for ARDUINO Due is:

Tasks: 20 19 available, including the Arduino main loop()
Semaphores: 32
Task's Stack size: 1024 bytes
Idle task stack size: 512 bytes
Events 32
Semaphores 32
Timers 20 task timers

20 agent timers
Available RAM:
(using Test20_Complex1.ino

~70000 bytes including Arduino main loop() stack, after
Kn_Start() execution.

Getting Started with uMT

uMT v2.5.0 – Doc v2.5.0 – 07 June 2017 Page 4/24

test)

The default configuration for ARDUINO Zero is:

Tasks: 15 14 available, including the Arduino main loop()
Semaphores: 32
Task's Stack size: 1024 bytes
Idle task stack size: 512 bytes
Events 32
Semaphores 32
Timers 15 task timers

15 agent timers
Available RAM:
(using Test20_Complex1.ino
test)

Estimated 16000
bytes

Estimated, never tested.

The above configurations can be modified at compile time to increase or decrease requirements (and memory
occupation). Moreover, for Arduino Mega2560, Due and Zero boards, a dynamic (run-time) configuration is
also possible.

Getting Started with uMT

uMT v2.5.0 – Doc v2.5.0 – 07 June 2017 Page 5/24

Configuration
uMT can be fully configured at compile-time by modifying the "uMTconfiguration.h" and “uMTdataTypes.h”
files. Moreover, for Arduino Mega2560 and DUE boards, a dynamic configuration (run-time) is also possible.

uMTconfiguration.h

uMT_USE_EVENTS 1 to use Events, 0 otherwise
uMT_USE_SEMAPHORES 1 to use Semaphores, 0 otherwise
uMT_USE_TIMERS 1 to use Timers, 0 otherwise
uMT_USE_RESTARTTASK 1 to use tk_Restart(), 0 otherwise (it saves 4 bytes for each

configured task for AVR architecture)
uMT_USE_PRINT_INTERNALS 1 to use tk_Kn_PrintInternals(), 0 otherwise (it saves 30 bytes)
uMT_USE_MALLOC_REENTRANT 1 to use malloc()/realloc()/free() in a thread safe mode by using

interrupt locking/unlocking before operating on dynamic memory
descriptor list. See also the chapter related to dynamic memory
allocation.

Additional, debugging related, configuration is available:

uMT_SAFERUN default to 1. Only if application has been debugged and one needs
additional RAM, this option can be set to 0

uMT_IDLE_TIMEOUT default to 1. If set, this triggers some special action for IDLE task (e.g.,
PrintInternals())

Additional configuration can be performed by modifying data types in uMTdataTypes.h (e.g., Events number
and Semaphores maximum counter value).

The uMT environment is implemented as a C++ class (uMT) which is already created (instantiated) in the
variable Kernel. All the uMT calls are then in the form of Kernel.xxx().

In general, most of the uMT calls return an return code (or E_SUCCESS for successful completion) and it is
a good programming practice to test for this exit code (not done in the examples below to improve code
readability).

uMTdataTypes.h

The following data types can be changed to fit specific needs.

Param_t 16 bits for AVR, 32 bits for SAM/SAMD.
SemValue_t 16 bits for AVR, 32 bits for SAM/SAMD
uMT_MAX_SEM_VALUE (0xffff) for 16 bits, (0xffffffff) for 32 bits.

Static and Dynamic Configurations
Arduino Uno can only be configured in a static way using .h files. In Arduino Uno no dynamic memory
allocation has been envisioned and .h files must be used.

Arduino Mega2560, Due and Zero boards can have a certain number of parameters configured when calling
the Kn_Start() uMT call. The process requires a call to Kn_GetConfiguration() to get the current setting,
changing what is needed and then passing the result to the Kn_Start() call:

Getting Started with uMT

uMT v2.5.0 – Doc v2.5.0 – 07 June 2017 Page 6/24

void setup()
{

Serial.begin(57600);

uMTcfg Cfg;

Kernel.Kn_GetConfiguration(Cfg);

Cfg.rw.Tasks_Num = MAX_TASKS;
Cfg.rw.Semaphores_Num = MAX_SEM;
Cfg.rw.Task1_Stack_Size = 512;
Cfg.rw.AppTasks_Stack_Size = 512;

Kernel.Kn_Start(Cfg);

Kernel.Kn_PrintConfiguration(Cfg);
}

The configuration parameters are the following:

PARAMETER BOARD DESCRIPTION
Tasks_Num Mega2560

Due/Zero
Number of the TASKS in the system.

Semaphores_Num Mega2560
Due/Zero

Number of SEMAPHORES in the system.

AgentTimers_Num Mega2560
Due/Zero

Number of AGENT TIMERS in the system.

AppTasks_Stack_Size Mega2560
Due/Zero

Size (in bytes) of the STACK for any new created TASK.

Task1_Stack_Size Mega2560
Due/Zero

Size (in bytes) of the reserved STACK for the Arduino loop() TASK.

Idle_Stack_Size Mega2560
Due/Zero

Size (in bytes) of the STACK for the IDLE TASK.

BlinkingLED All If TRUE, the SysTick interrupt routine will turn on/off LED 13 every
second.

IdleLED All If TRUE, when IDLE task is running, LED 13 is turned on.
TimeSharingEnabled All If TRUE, Time-Sharing functionality is enabled, FALSE otherwise

When configuration is set dynamically, uMT data area is allocated using malloc() for SAM architecture, and
using uMTmalloc() for AVR architecture.

Getting Started with uMT

uMT v2.5.0 – Doc v2.5.0 – 07 June 2017 Page 7/24

Starting uMT
Before any operation, uMT must be started using Kernel.Kn_Start() call, usually implemented in the Arduino
setup() call:

void setup()
{

Serial.begin(57600);

Serial.println(F("setup(): Initialising..."));
delay(100); //Allow for serial print to complete.

Kernel.Kn_Start();
}

Although technically speaking uMT could be initialized using a class constructor, the Kernel.Kn_Start()
explicit initialization approach allows a more flexible and complex start up (and initialization) of the whole
application.

After Kernel.Kn_Start(), uMT has created 2 tasks: IDLE and ARDUINO.

The IDLE task (task id number 0) is a task which runs when no other task are ready or running. The current
version of the IDLE task is setting the BUILTIN LED to ON and, after some time of uninterrupted run, it prints
on the Serial the internal status of the uMT kernel. BUILTIN LED functionality is controlled by an option in the
Kernel.Kn_Start() call while printing is controlled by uMT_IDLE_TIMEOUT setting (and timeout value by
uMT_IDLE_TIMEOUTVALUE setting)

Arduino loop() routine is uMT task id number 1a and becomes the first RUNNING task in the system.

In general, no operations (e.g., changing task priority) can be performed on the IDLE task.

Getting Started with uMT

uMT v2.5.0 – Doc v2.5.0 – 07 June 2017 Page 8/24

Working with Tasks
Tasks can be created with the Kernel.Tk_CreateTask() call and then started (set READY to run) with the
Kernel.Tk_StartTask() call. This two steps strategy allows to create all the required tasks, setting up any
required initialization environment and then finally starting them.

The entry point of a new task is specified in the parameter list of Kernel.Tk_CreateTask() call which returns
the Task ID of the newly created tasks. In the second variable, the uMT TASK ID is returned. When
uMT_VARIABLE_DYNAMIC is enabled, an optional third parameters defines the stack size in bytes.

Below an example of task creation:

static void Task2()
{

int counter = 0;
TaskId_t myTid;

Kernel.Tk_GetMyTid(myTid);

Serial.print(F(" Task2(): myTid = "));
Serial.println(myTid);

Serial.print(F(" Task2(): Active TASKS = "));
Serial.println(Kernel.Tk_GetActiveTaskNo());

Serial.println(F(" Task2(): Deleting myself..."));
Serial.println(F(""));
Serial.flush();

Kernel.Tk_DeleteTask(myTid);

}

void loop() // TASK TID=1
{

TaskId_t Tid2;
TaskId_t Tid3;

Serial.println(F(" Task1(): Kernel.Tk_CreateTask(Task2)"));

Kernel.Tk_CreateTask(Task2, Tid2);

// optional Kernel.Tk_CreateTask(Task2, Tid2, 512);

Serial.print(F(" Task1(): Task2's Tid = "));
Serial.println(Tid2);

Serial.print(F(" Task1(A): Active TASKS = "));
Serial.println(Kernel.Tk_GetActiveTaskNo());
Serial.flush();

Serial.println(F(" Task1(): StartTask(Task2)"));
Serial.flush();

Kernel.Tk_StartTask(Tid2);

Serial.println(F(" Task1(): Yield(A)"));
Serial.println(F(""));

Getting Started with uMT

uMT v2.5.0 – Doc v2.5.0 – 07 June 2017 Page 9/24

Serial.flush();

// Run other task
Kernel.Tk_Yield();

// Wait for the Tsk1 to die...
do
{

ActiveTasks = Kernel.Tk_GetActiveTaskNo();

Serial.print(F(" Task1(loop1): Active TASKS = "));
Serial.println(ActiveTasks);
Serial.flush();
delay(500);

} while (ActiveTasks != 2);

while (1)
 ;
}

Yielding Control
A task can be release the processor and force the execution of the next task in the READY queue (round
robin) by calling Kernel.Tk_Yield(). The IDLE task is executed only if no other task is ready to run. If the
yielding task is still the highest priority task, no round robin is performed.

Deleting Tasks
A task can be deleted by calling Kernel.Tk_DeleteTask(). A task can also terminate itself by calling this
routine. After deletion, the task structure is available again for a new task creation. Arduino loop() task,
however, cannot be deleted (because its STACK area cannot be reused in a new task).

Restarting a Task
A task can be restarted by calling Kernel.Tk_ReStartTask(). A task restart operation will reset the initial stack
pointer to the entry routine of the task but it will not change current task priority. It remains in the application
responsibility to clean up any other application related resource (including semaphores).

Tasks Priorities
uMT tasks can have a priority in the range between 0 (lowest priority task, usually the IDLE task) and 15
(highest priority). NORMAL priority is set to the value of 8 and all new tasks are created with priority equal to
NORMAL.

Task’s priority can be changed with Kernel.Tk_SetPriority() call to any valid value in the range. Priorities
must be used with a great care and a good real-time programming architecture is best based on
synchronization and not on priorities. There are cases, however, when priorities are handy and this is
supported in uMT.
The READY queue is order by task priorities: higher priority tasks go to the head of the queue.

Tasks Launch Parameter
To increase flexibility, each task has got an individual parameter launch which can be set between task’s
creation and task start. This parameter can be read by the launched task at run-time and used accordingly.

The parameter type is Param_t and it can contain any basic data type (including pointers). Currently it is 16
bits on AVR and 32 bits on SAM/SAMD architectures.

Getting Started with uMT

uMT v2.5.0 – Doc v2.5.0 – 07 June 2017 Page 10/24

The parameter can only be written between Kernel.Tk_CreateTask() and Kernel.Tk_StartTask() calls to
minimize logic errors.

Below an example:

void Producer()
{

Param_t Param;
int HowManyComponents;

// Get how many
Kernel.Tk_GetParam(Param);

int ProdIndex = (int)Param;
HowManyComponents = ProdIndex + 1;

< other task activities…>

}

void loop() // TASK TID=1
{

TaskId_t TidProducer[MAX_PRODUCERS];

for (int idx = 0; idx < MAX_PRODUCERS; idx++)
{

Kernel.Tk_CreateTask(Producer, TidProducer[idx]);

// Set parameters for Producers
Kernel.Tk_SetParam(TidProducer[idx], idx);

}

// Start tasks
for (int idx = 0; idx < MAX_PRODUCERS; idx++)

Kernel.Tk_StartTask(TidProducer[idx]);

< other task activities…>

}

Time-sharing
uMT also implements a time-sharing functionality: any task is allowed to run only for a fixed maximum time
(time slice) before another task is selected to run. The time slice value is initially set by a configuration value
(uMT_TICKS_TIMESHARING) in uMT (usually 1 second). Time sharing can be disabled/enabled run-time
calling Kernel.Tk_SetTimeSharing() or by an option in the Kernel.Kn_Start() initial call.

Preemption
The preemptive behavior of uMT can be enabled and disabled at run-time by calling
Kernel.Tk_SetPreemption(). When preemption is disabled, the current task will run until it will call an uMT
functionality which can suspend it (e.g., trying to acquire a busy semaphore) or preemption is enabled again.
Time sharing is also disabled when preemption is disabled.

The main purpose to disable preemption is to prevent the suspension of the current task still managing
interrupts and other interrupt driven system events. Although a good real-time programming style is not
relying on disabling preemption, there are cases when this functionality can be needed.

Getting Started with uMT

uMT v2.5.0 – Doc v2.5.0 – 07 June 2017 Page 11/24

Task’s Stack Size and Allocation
When uMT_VARIABLE_DYNAMIC is set for a specific board, a task’s stack size (in bytes) can be specified
in the Tk_CreateTask() call. This is giving a much greater flexibility and control to how much memory is used.

When uMT_VARIABLE_DYNAMIC is set, uMT is allocating stack area by using malloc() for SAM
architecture, and using uMTmalloc() for AVR architecture.

Board Default Allocation Type
Arduino Uno uMT_FIXED_STATIC (do NOT change!)
Arduino Mega2560 uMT_VARIABLE_DYNAMIC
Arduino Due/Zero uMT_VARIABLE_DYNAMIC

Default values are defined in "uMTconfiguration.h" file.

Task’s Information
It is possible to get task’s information using the Tk_GetTaskInfo() (for the caller or any task in the system)
and print it on Serial by calling Tk_PrintInfo().

//
// Returned in Tk_GetTaskInfo()
//

class uMTtaskInfo
{
public:

TaskId_t Tid; // Task ID
TaskPrio_t Priority; // Task priority
Status_t TaskStatus; // Task's status
RunValue_t Run; // How many run

StackSize_t StackSize; // Stack's size in bytes
StackSize_t FreeStack; // Free stack size inbytes
StackSize_t MaxUsedStack; // Maximum used stack in bytes

};

The Run field contains the number of times this task has been RUNNING.
The MaxUsedStack field contains the maximum stack area used by the task. This heuristic calculation is
achieved by setting, at task’s creation, the task’s stack area to a well-defined value and then scanning the
area to discover which part has not been modified yet. The mechanism is not error proof but it gives anyway
a good estimate. These two values are also print in the Kn_PrintInternals() call.

Getting Started with uMT

uMT v2.5.0 – Doc v2.5.0 – 07 June 2017 Page 12/24

Working with Events
Events are a set of binary flags related to each task which can be set by the owner task or by other tasks.
They provide a very basic but also very powerful synchronization mechanism between tasks. Event setting
can also be executed during Interrupt Service Routines (ISR).

Each task is equipped with 16 or 32 Events (depending on uMT configuration, typically 16 for AVR and 32
for SAM architectures, which can be independently reconfigured in uMT).

Kernel.Ev_Send() primitive is available to set one or more Events and Kernel.Ev_Receive() primitive is
available to wait for Events to happen. In the wait primitive it is possible to specify uMT_ANY to be awoken
if at least one has been set. uMT_NOWAIT can be optionally specified to return control immediately if the
event condition is not met (and current event set is returned as well).

Optionally (if TIMERS are enabled) a timeout can be specified to avoid to wait longer than a predefined time.

Below an example:

#define EVENT_A 0x0001
#define EVENT_B 0x0002

void Task2()
{

int counter = 0;
TaskId_t myTid;

Kernel.Tk_GetMyTid(myTid);

Serial.print(F(" Task2(): myTid = "));
Serial.println(myTid);
Serial.flush();

while (1)
{

Serial.println(F(" Task2(): iEv_Send(1, EVENT_A)"));
Serial.flush();

Kernel.Ev_Send(1, EVENT_A);

Serial.println(F(" Task2(): iEv_Receive(EVENT_B, uMT_ANY)"));
Serial.flush();

Kernel.Ev_Receive(EVENT_B, uMT_ANY, &eventout);

Serial.println(F(" Task2(): delay(3000)"));
Serial.flush();
delay(3000);

}
}

See the examples in the uMT library for further details.

Getting Started with uMT

uMT v2.5.0 – Doc v2.5.0 – 07 June 2017 Page 13/24

Working with Semaphores
uMT provides counting Semaphores for highly sophisticated inter-task communication.

A Semaphore is a synchronization object that controls access by multiple processes to a common resource
in a parallel programming environment.

The simplest form of a Semaphore provides only a binary value: free (1) or busy (0). uMT implementation,
however, provides counting semaphores to allow a more flexible inter-task communication (using the value
of 0 for a “busy” semaphore which is the initial semaphore value as well).

The maximum value of a counting Semaphore is configuration dependent (16 bits for AVR and 32 bits for
SAM, which can be reconfigured at run time (at the expenses of additional RAM memory space).

Semaphore queues (that is the list of tasks blocked in the attempt to acquire a busy semaphore) can be order
by task priority (default uMT behavior). If this is undesirable, each individual Semaphore queue can be
configured differently by calling Sm_SetQueueMode(), usually before Semaphore first utilization.

Below an example of use of Semaphores:

#define SEM_ID_01 1 // Semaphore id
#define SEM_ID_02 2 // Semaphore id

void Task2()
{

int counter = 0;
TaskId_t myTid;

Kernel.Tk_GetMyTid(myTid);

Serial.print(F(" Task2(): myTid = "));
Serial.println(myTid);
Serial.flush();

while (1)
{

Serial.println(F(" Task2(): iSm_Release(SEM_ID_01)"));
Serial.flush();

Kernel.Sm_Release(SEM_ID_01);

Serial.println(F(" Task2(): iSm_Claim(SEM_ID_02)"));
Serial.flush();

Kernel.Sm_Claim(SEM_ID_02, uMT_WAIT);

Serial.println(F(" Task2(): Tm_WakeupAfter(4000)"));
Serial.flush();
Kernel.Tm_WakeupAfter(4000);

Serial.println(F(" Task2(): kicking again..."));
Serial.flush();

}
}

Getting Started with uMT

uMT v2.5.0 – Doc v2.5.0 – 07 June 2017 Page 14/24

void loop() // TASK TID=1
{

int counter = 0;
Errno_t error;
TaskId_t Tid;

Serial.println(F(" Task1(): Kernel.Tk_CreateTask(Task1)"));

Kernel.Tk_CreateTask(Task2, Tid);

Serial.print(F(" Task1(): Task2's Tid = "));
Serial.println(Tid);

Serial.println(F(" Task1(): StartTask(Task1)"));

Kernel.Tk_StartTask(Tid);

TaskId_t myTid;
Kernel.Tk_GetMyTid(myTid);

Serial.print(F(" Task1(): myTid = "));
Serial.println(myTid);

while (1)
{

Serial.print(F(" Task1(): iSm_Claim(SEM_ID_01), timeout=1000"));
Serial.flush();

Timer_t timeout = 1000; // Timeout 1 second (other task, 3 seconds)

while ((error = Kernel.Sm_Claim(SEM_ID_01, uMT_WAIT, timeout)) != E_SUCCESS)
{

if (error == E_TIMEOUT)
{

// Timeout
Serial.println(F("Task1(): Sm_Claim(): timeout!"));
timeout = (Timer_t)5000; // Large timeout...

}
else
{

Serial.print(F("Task1(): Sm_Claim() Failure! - returned "));
Serial.println((unsigned)error);
delay(5000);

}
}

Serial.print(F(" Task1(): iSm_Release(SEM_ID_02)"));
Kernel.Sm_Release(SEM_ID_02);

}
}

Getting Started with uMT

uMT v2.5.0 – Doc v2.5.0 – 07 June 2017 Page 15/24

Working with Timers
uMT provides timers to wait for a specified number of milliseconds (without using system resources) or to
send Events is a future time possibly in an automatic repeated mode.

Kernel.Tm_WakeupAfter() can be used to wait for a defined number of milliseconds.

Kernel.Tm_EvAfter() can be used to send an Event after a defined number of milliseconds.

Kernel.Tm_EvEvery() can be used to send an Event every a defined number of milliseconds.

Timers can also be cancelled with Kernel.Tm_Cancel() call.

Multiple timers can be activated for the same task until Timers resource availability has terminated.

uMT is configured with one timer (called TASK TIMER) for each task to support Kernel.Tm_WakeupAfter()
[this approach guarantees that this call will never fail for resource unavailability, at expenses of additional
RAM] and with a number of AGENT TIMER defined in the uMT configuration file (default equal to the total
number of tasks). For example, in a configuration with 10 tasks a total of 20 Timers (10 TASK TIMERS + 10
AGENT TIMERS) are available.

A detailed example of Timers use is available in the example folder of the uMT library.

Timer roll-over
The Arduino standard SysTick management is based on a 32 bits counter (as returned by millis() Arduino
call). This counter is counting milliseconds and it is rolling over after roughly 50 days (4,294,967,295 / 1000
/3600 / 24 = 49,7 days).
uMT is implementing its internal tick counter with 40 bits (in uMT_ExtendedTime.h) extending the total roll-
over to more than 34 years. uMT calls, however, limit the timeout value to 32 bits limiting the range for any
future event to 50 days. Because uMT is managing the timer roll-over, the timeout is properly managed also
when the 50 days roll-over is achieved.

As a conclusion:
1. Any future event cannot be farther than 49,7 days (32 bit)
2. This 49,7 days window can be applied in the full 34 years period window.
3. A repeated event (e.g. Kernel.Tm_EvEvery()) can be working for the full 34 years period.

Getting Started with uMT

uMT v2.5.0 – Doc v2.5.0 – 07 June 2017 Page 16/24

Return code in the uMT calls
In general all the uMT calls return an return code (or E_SUCCESS for successful completion). It is a good
programming practice to test for this exit code (not done in the examples listed in this document, to improve
code readability).

Current return codes (see “uMTerrno.h”):

enum Errno_t
{
/* 00 */ E_SUCCESS, // SUCCESS
/* 01 */ E_ALREADY_INITED, // KERNEL already inited
/* 02 */ E_ALREADY_STARTED, // TASK already started
/* 03 */ E_NOT_INITED, // KERNEL not inited
/* 04 */ E_WOULD_BLOCK, // Operation would block calling TASK
/* 05 */ E_NOMORE_TASKS, // No more TASK entries available
/* 06 */ E_INVALID_TASKID, // Invalid TASK Id
/* 07 */ E_INVALID_TIMERID, // Invalid TIMER Id
/* 08 */ E_INVALID_MAX_TASK_NUM, // Not enough TASK entries configured in the Kernel
(Kn_Start) or too many
/* 09 */ E_INVALID_SEMID, // Invalid SEMAPHORE Id
/* 10 */ E_INVALID_TIMEOUT, // Invalid timeout (zero or too large)
/* 11 */ E_OVERFLOW_SEM, // Semaphore counter overflow
/* 12 */ E_NOMORE_TIMERS, // No more Timers available
/* 13 */ E_NOT_OWNED_TIMER, // TIMER is not owned by this task
/* 14 */ E_TASK_NOT_STARTED, // TASK not started, cannot ReStartTask()
/* 15 */ E_TIMEOUT, // Timeout
/* 16 */ E_NOT_ALLOWED, // Not allowed [Tk_ReStartTask() suicide]
/* 17 */ E_INVALID_OPTION, // Invalid additional option
/* 18 */ E_NO_MORE_MEMORY, // No more memory available [Tk_CreateTask()]
/* 19 */ E_INVALID_STACK_SIZE, // Invalid STACK size [Tk_CreateTask()]
/* 20 */ E_INVALID_MAX_TIMER_NUM, // Invalid max Timer number [Kn_start()]
/* 21 */ E_INVALID_MAX_SEM_NUM // Invalid max Semaphore number [Kn_start()]
};

Getting Started with uMT

uMT v2.5.0 – Doc v2.5.0 – 07 June 2017 Page 17/24

Ancillary Functionalities
Additional helper functionalities are available in uMT. Here a list with a short description (look at uMT class
definition for a full list).

CALL DESCRIPTION
isrKn_FatalError() Print an optional string to Serial and the calls isrKn_Reboot()
isrKn_Reboot() Reboot the system
isrKn_GetVersion() Return uMT version number
Kn_PrintInternals() Print on Serial some internal uMT data structure values (task list, semaphore list,

timer list, etc.)
isrKn_GetKernelTick() Return the uMT tick counter (usually equal to millis() call)
Tk_SetBlinkingLED() Control if the BUILTIN LED if used by IDLE task and timer tick routines

(uMT_AVR_wiring.c)
isrKn_IntLock() Disable interrupts and returns previous interrupt mask to be used in subsequent

isrKn_IntUnlock().
isrKn_IntUnlock() Restore previous interrupt mask
Tk_GetTaskInfo() Obtain task information
Tk_PrintInfo() Print on Serial the task information previously obtained with Tk_GetTaskInfo()

Getting Started with uMT

uMT v2.5.0 – Doc v2.5.0 – 07 June 2017 Page 18/24

Calling uMT during Interrupt Service Routines (ISR)
Few of the uMT primitives can also be called from ISR. Their name is in the form of isr_XX_YYYY() or
isr_p_XX_YYYY().

Here the current list:

CALL
isr_Kn_FatalError()
isr_Kn_Reboot()
isr_Kn_GetVersion()
isr_Kn_GetKernelTick()
isr_Kn_IntLock()
isr_Kn_IntUnlock(CpuStatusReg_t Flags)
isr_Sm_Release(SemId_t Sid)
isr_p_Sm_Release(SemId_t Sid)
isr_Sm_Claim(SemId_t Sid)
isr_Ev_Send(TaskId_t Tid, Event_t Event)
isr_p_Ev_Send(TaskId_t Tid, Event_t Event)
isr_Ev_Receive(Event_t eventin, Event_t *eventout);

Task preemption in ISR management for isr_XX_YYYY() calls.
To improve compatibility and simplify ISR development, calls to uMT isr_XX_YYYY() primitives will NOT
trigger a reschedule and will NOT preempt current caller routines (so control is always returned to caller
routine after uMT functionality completion).

If a call to uMT ISR isr_XX_YYYY() primitive is generating a logical preemption (e.g., higher priority task
becoming ready after Event delivery), this is either managed:

1. In Idle loop by triggering a Yield()
2. In the TimerTicks by triggering a reschedule().

See the dedicated section with measurements.

Task preemption in ISR management for isr_p_XX_YYYY() calls
These calls will preempt the caller if the awaked task has an higher priority of the current running task.

There is a implementation difference between AVR and SAM architecture:

· On AVR architecture, the caller must complete all the interrupt required steps before calling
isr_p_XX_YYYY() because the latter might not return control.

· On SAM/SAMD architecture, because task switching is only performed using pendSVHook()
exception processing, the caller routine will complete its interrupt processing if its interrupt priority is
higher than pendSVHook priority (uMT is initializing pendSVHook priority at lowest possible level).
As a consequence, it is suggested to use isr_p_XX_YYYY() because of the faster performance.

Getting Started with uMT

uMT v2.5.0 – Doc v2.5.0 – 07 June 2017 Page 19/24

ISR management performance
The “Test30_InterruptLatency.cpp” test has been designed to measure interrupt latency when using direct
interrupt handler (no uMT) and using uMT Events (isr_ and isr_p_ calls).

Times are in microseconds.

Board type Measurement
Type

No uMT isr_Ev_Send() isr_p_Ev_Send()

Uno micros() 8/12 64 20/24
Mega2560 micros() 12/16 68 24/28
Due micros() 4 22 20
Due SysTick->VAL 2 21 18

On AVR boards, the interrupt is generated by setting high a Port (PIN) every second. Note that on AVR
boards, micros() has a resolution of 4 microseconds.

On Due board, a timer is used to generate periodic interrupts.

Please note that this is a best case scenario when not very many interrupts are executing at the same time.
For SAM/SAMD boards, the pendSVHook interrupt is set to the lowest level so a task switching will occur
only when all pending interrupts have been serviced.
As a final consideration, direct interrupt handling is significantly faster than uMT Event management. It is then
a trade-off between exceptional performance (direct) and high-performance with rich functionalities (uMT) the
final decision for which route to take.

For both architecture, the overall software schema for latency measurement is the following:

static void interruptHandler()
{

time0 = MICROS();
digitalWrite(interruptPin, LOW);

if (ISR_mode == 0)
return;

if (ISR_mode == 1)
Kernel.isr_Ev_Send(ARDUINO_TID, EVENT_A);

else
Kernel.isr_p_Ev_Send(ARDUINO_TID, EVENT_A);

}

void LoopWithoutKernel(int idx) // ISR_Mode 0
{

unsigned long elapsed;
time0 = 0L;

while (time0 == 0)
;

// Read the timer
elapsed = MICROS() - time0;

Serial.print(F("No uMT: counter = "));
Serial.print(idx);
Serial.print(F(" - Elapsed micros = "));

Getting Started with uMT

uMT v2.5.0 – Doc v2.5.0 – 07 June 2017 Page 20/24

Serial.println(elapsed);
Serial.flush();

}

static void Receiver() // ISR_Mode 1 and 2
{

unsigned counter = 0;

while (1)
{

SystemTick_t elapsed;
Event_t eventout;

Kernel.Ev_Receive(EVENT_A, uMT_ANY, &eventout);

// Read the timer
elapsed = MICROS() - time0;

Serial.print(F("Receiver(): counter = "));
Serial.print(counter++);
Serial.print(F(" - Elapsed micros = "));
Serial.println(elapsed);
Serial.flush();

}
}

Getting Started with uMT

uMT v2.5.0 – Doc v2.5.0 – 07 June 2017 Page 21/24

Dynamic Memory Management
To enhance flexibility and to provide compatibility with new/delete C++ mechanisms (and malloc(), realloc(),
free() for C), uMT is providing extensive support for dynamic memory allocation.

On the AVR platform, the standard dynamic memory allocation is using the loop() stack pointer as an upper
limit for Heap management. This is very inconvenient because the stacks of all the newly created tasks will
be locate below the heap area, triggering a failure in the malloc() call. uMT implementation (or configuration)
of dynamic memory allocation is avoiding this problem and also providing thread safe functionality.

AVR Platform
Ideally, uMT would need to replace the malloc()/realloc()/free() calls with its own version which are using a
thread safe approach. Unfortunately in uMT version 2 the Author has been unable (!) to replace them from
the AVR library so a different schema is used.

AVR malloc() can be configured by setting the 2 variables: "__malloc_heap_start" and __malloc_heap_end"
to the START and to the END of the memory area used for dynamic memory management. This setting must
be performed before the first call to malloc(). However, because we only need to change the end of the range
(__malloc_heap_end) this can only be done afterwards. As a consequence, in Kn_Start() the
"__malloc_heap_end" is set to the end of the RAM (RAMEND) minus the size of the Arduino loop() stack size
as defined in the uMT configuration (static or dynamic).

On the AVR platform, the standard malloc()/free() routines (dynamic memory allocation) are not using at the
moment a thread safe approach. To achieve the same result, uMT is providing a new set of calls which will
be fully reentrant still calling the original malloc()/realloc()/free(). The c++ new operator has been redefined
to take advantage of the new routines.

uMT CALL AVR equivalent
uMTmalloc malloc()
uMTrealloc() realloc()
uMTfree() free()

Reentrance is controlled by the uMT_USE_MALLOC_REENTRANT configuration flag.

It is then advised to redefine malloc/realloc/free with the uMT version (e.g., with a #define in a proper place
of selected .h files).

SAM/SAMD Platform
On the SAM/SAMD platform, the standard malloc()/free() routines have been replaced with the equivalent
coming from the AVR library. These routines are fully reentrant (provided that uMT_USE_MALLOC_REENTRANT
configuration flag is set to 1).

Reentrancy
Thread safe is achieved by encapsulating malloc/realloc/free functionality with Kernel.isr_Kn_IntLock() and
Kernel.isr_Kn_IntUnlock() calls. This is the safest approach although it is sacrificing real-time response in
the system.

Getting Started with uMT

uMT v2.5.0 – Doc v2.5.0 – 07 June 2017 Page 22/24

System Timer Tick, Rebooting and Built-in LED

AVR architecture
For AVR architecture, uMT is relying on the standard TIMER0 system tick to generate its base system tick.
For this reason the standard “wiring.c” file has been modified (in “uMT_AVR_wiring.c”) and new code has
been developed to implement preemption, timesharing and Timers management (in
“uMT_AVR_SysTick.cpp”).

For AVR architecture, the Watchdog timer (WDT) is used to generate a system reboot (in isr_Kn_Reboot()).

SAM/SAMD architecture
For SAM/SAMD architecture, uMT is relying on the standard SysTick management by providing a
sysTickHook() implementation and it is using pendSVHook() exception processing to perform task
switching.

For SAM/SAMD architecture, the NVIC_SystemReset() call is used to generate a system reboot (in
isrKn_Reboot()).

SAMD architecture porting
An adaptation for SAMD architecture (Arduino Zero) has been performed however the board has not been
tested (not being available).

The modifications for SAMD are:

1. On SAMD, PUSH/POP operations are limited to R0-R7 registers. So a different PUSH/POP instruction
set have been used (this has been tested with SAM board so it should work).

2. On SAMD, memory size is limited to 32K (this has been modified but not tested).
3. On SAMD, NVIC interrupt priority is limited to 32 (this has been modified but not tested).
4. On SAMD, millis() is used to get current SysTick (GetTickCount() on SAM). Not tested.
5. On SAMD, the symbol “__end__” has been used for start of Heap for malloc(). SAM is using “_end”.

Not tested.
6. Arduino IDE correctly compile the uMT software and all the tests when set as SAMD (Arduino Zero)

board.

Overall, the Author does expect the Zero board to work but, again, it has not been tested.

BUILTIN LED
The BUILTIN LED (usually input/output #13) is used by uMT in the timer tick routine and in the IDLE task.

In the timer tick routing, the BUILTIN LED is turned ON/OFF every second (to give a visual indication that the
underlying kernel is working).

IDLE task is setting the LED to ON when it runs (again, to give an easy visual indication that no application
task is ready to run).

Both functions can be disabled in the configuration file at compile or run time.

Getting Started with uMT

uMT v2.5.0 – Doc v2.5.0 – 07 June 2017 Page 23/24

Change Log
Version 2.5.0 – June 2017

1. Added support for Arduino Zero (SAMD - Atmel ARM Cortex-M0 CPU) board.
2. Measured interrupt latency.
3. Added Task info and task’s run counter

Version 2.0.0 – June 2017
4. Added full support for Arduino DUE (SAM - Atmel SAM3X8E ARM Cortex-M3 CPU) board.
5. Added support for isrp_XX_YYYY() calls (ISR level uMT calls with task preemption).
6. Fixed Sm_Release() parameter list (it was incorrectly never preempting the calling task).
7. Revised lock/unlock critical region strategy (hopefully now more robust…)
8. Implemented Static and Dynamic Configurations
9. Implemented dynamic memory allocation for uMT objects and tasks’ stacks.
10. Implemented re-entrant malloc()/realloc()/free()

Version 1.5.0 – May 2017
1. Initial public release

Getting Started with uMT

uMT v2.5.0 – Doc v2.5.0 – 07 June 2017 Page 24/24

Author and Contacts
Author: Antonio Pastore - Italy
Contact: go0126@alice.it

Copyright
uMT – a multi tasker for the Arduino platform

Copyright (C) <2017> Antonio Pastore, Torino, ITALY.

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

