
Suzhou Yosemite Technologies Ltd.

1

YOSEMITECH

Multi - Parameter Sensor

MODBUS RTU

Programmer Manuel

Suzhou Yosemite Technologies Ltd.

2

Table of Contents

1 MODBUS RTU Overview ... 3

1.1 Scope .. 3

1.2 MODBUS Command Structure ... 3

1.3 MODBUS RTU for YOSEMITECH’s Multi - Parameter Sensor.. 5

1.4 MODBUS RTU Function Code for YOSEMITECH’s Multi - Parameter Sensor 5

1.5 Data formats in Multi - Parameter sensor .. 7

2 MODBUS RTU Commands for Multi - Parameter Sensor ... 10

2.1 Overview ... 10

2.2 Command Description ... 10

3 Procedure to get all value ... 15

Suzhou Yosemite Technologies Ltd.

3

1 MODBUS RTU Overview

1.1 Scope

This document is about MODBUS of optical dissolved oxygen probes with software Rev1.6 or

later.

1.2 MODBUS Command Structure

Data format in this document:

 ----Binary number – shown with suffix B. For example: 10001B

 ----Decimal number – without nay suffix. For example: 256

 ----Hexadecimal number—shown with prefix 0x. For example: 0x2A

 ----ASCII character or string – shown with quotation marks. For example: ” YL0114010022”

1.2.1 Command Structure

MODBUS defines a simple protocol data unit (PDU), which is transparent to communication layer.

Figure 1: MODBUS Protocol Data Unit

The mapping of MODBUS protocol on a specific bus or network introduces some additional fields

on the Protocol Data Unit. The client that initiates a MODBUS transaction builds the MODBUS

PDU, and then adds fields in order to build the appropriate communication PDU.

Figure 2: MODBUS Structure for Serial Communication
On a MODBUS serial bus, address field only includes addresses for slave devices.

Note:

 Slave address range for optical dissolved oxygen sensor is: 1…247

 Master device sends a “request frame” with a targeted slave address. When slave device

responses, it has to put its own address in the “response frame”, so that master device

knows where the response comes from.

 Function code indicates type of operations

 CRC is the result of redundancy check.

1.2.2 MODBUS RTU Transmission Mode

Suzhou Yosemite Technologies Ltd.

4

When devices communicate on a MODBUS using RTU (remote terminal unit) mode, each 8-bit

byte contains two 4-bit hexadecimal characters. The main advantage of the RTU mode is that it

has higher character density, which enables better throughput compare to ASCII mode at same

baud rate. Each RTU message must be transmitted in a continuous string of characters.

RTU mode format for each byte (11 bits):

Encoding system 8 bit binary

 Each 8-bit presponseet contains 4-bit hexadecimal characters (0-9, A-F)

Bit per byte: 1 start bit

 8 data bits, least significant bit first

 No parity check

 1 stop bit

Baud rate: 9600bps

Serial transmission of characters:

Every character or byte is sent under this sequence (left to right):

Least Significant Bit (LSB)……Most Significant Bit(MSB)

Start 1 2 3 4 5 6 7 8 Stop

Figure 3: RTU Mode Bit Sequence

CRC Field Structure:

Redundancy check (CRC16)

Frame Structure:

Slave address Function

Code

Data CRC

1 byte 1 byte 0…252 bytes
2 bytes

CRC Low CRC High

Figure 4: RTU Message Frame Structure

Maximum size of MODBUS frame is 256 bytes.

1.2.3 MODBUS RTU Message Frame

In RTU mode, message frames need to be separated by an idle interval of at least 3.5 character

lengths. In rest of this document, this idle interval is called t3.5.

Figure 5: RTU Message Frame

Entire message frame must be sent as continuous stream of characters.

If idle time between two characters is longer than 1.5 characters, the message frame will be

considered incomplete, and will be discarded by receiving side.

Suzhou Yosemite Technologies Ltd.

5

Figure 6: Frame transmission

1.2.4 MODBUS RTU CRC Check

In RTU mode, the error checking field is based on a cyclical redundant checking (CRC) method.

The CRC field checks entire content of MODBUS message, regardless of the existence of parity

check bit. CRC16 checking method is utilized. CRC result is a 16-bit value with two 8-bit bytes, low

order 8-bit byte first followed by high order 8-bit byte.

1.3 MODBUS RTU for YOSEMITECH’s Multi -

Parameter Sensor

Based on standard MODBUS definition, message frame starts with t3.5 idle interval, and similarly,

ends with t3.5 idle interval. Device address and Function code are both 8-bit byte. Data character

string has n*8 bits, it contains information about register start/end address and number of

registers for read/write operation. CRC field is 16 bit in length.

 Start Device

address

Function

code

Data CRC End

Value Idle for 3.5

character

length

1-247 Comply

with

MODBUS

function

code format

Comply

with

MODBUS

data

format

CRC

Low

CRC

High

Idle for 3.5

character

length

Length

(byte)

3.5 1 1 n 1 1 3.5

Figure 7: Message frame structure for Yosemitech’s MODBUS

1.4 MODBUS RTU Function Code for YOSEMITECH’s

Multi - Parameter Sensor

YOSEMITECH’s Multi-Parameter sensor has two MODBUS function codes:

 0x03: Read registers 0x10： Write registers

1.4.1 MODBUS Function Code 0x03: Read Registers

This function code is to read a block of continuous registers from a remote device. Request PDU

defines start address and number of registers for the read operation. Register addressing starts

from 0. Therefore, addresses for register 1-16 are 0-15. Data for each register in Response

message have two bytes. For each register data, first byte is for high bits, and second byte for low

bits.

Suzhou Yosemite Technologies Ltd.

6

Request Frame:

Function code 1 Byte 0x03

Start address 2 Bytes 0x0000….0xfffff

Number of registers 2 Bytes 1…125

Figure 8: Request frame for read registers
Response Frame:

 N = number of registers

Figure 9: Response frame for read registers

Below is an example of Request and Response frames (Read register 108-110. Register 108 is read

only with 2-byte value of 0X022B. Registers 109-110 have values of 0X0000 and 0X0064).

Request Frame Response Frame

Data format Hexadecimal Data Format Hexadecimal

Function code 0x03 Function code 0x03

Start address(high bits) 0x00 Number of bytes 0x06

Start address (low bits) 0x6B Register value (high bits, 108) 0x02

Number of registers (high bits) 0x00 Register value (low bits, 108) 0x2B

Number of registers (low bits) 0x03 Register value (high bits, 109) 0x00

 Register value (low bits, 109) 0x00

Register value (high bits, 110) 0x00

Register value (low bits, 110) 0x64

Figure 10: Example of request and response frame for read operation

1.4.2 MODBUS Function Code 0x10: Write Registers

This function code is to write a block of continuous registers at a remote device. Request frame

contains register data. Each register data have two character bytes. Response frame contains

function code, start address, and number of registers that completed write operation.

Request Frame:

Function code 1 byte 0x10

Start address 2 bytes 0x0000….0xffff

Number of registers 2 bytes 0x0001….0x0078

Number of bytes 1 byte N×2

Register data N×2 bytes value

 N = number of registers

 Figure 11: Request frame for write operation

Response Frame

Function Code 1 byte 0x10

Start address 2 bytes 0x0000….0xffff

Number of registers 2 bytes 1…123(0x7B)

Figure 12: Response frame for write operation

Below is an example of Request frame and Response frame (write 0x000A and 0x0102 to two

registers starting from address 2):

Function code 1 byte 0x03

Number of byte 1 byte N×2

Register data N×2 bytes

Suzhou Yosemite Technologies Ltd.

7

Request Frame Response Frame

Data Format Hexadecimal Data Format Hexadecimal

Function code 0x10 Function code 0x10

Start address (high bits) 0x00 Start address (high bits) 0x00

Start address (low bits) 0x01 Start address (low bits) 0x01

Number of registers (high bits) 0x00 Number of registers (high bits) 0x00

Number of registers (low bits) 0x02 Number of registers (low bits) 0x02

Number of bytes 0x04

Register value (high bits) 0x00

Register value (low bits) 0x0A

Register value (high bits) 0x01

Register value (low bits) 0x02

Figure 13: Example of Request frame and response frame for write operation

1.5 Data formats in Multi - Parameter sensor

1.5.1 Floating-point number

Definition: floating point number, comply with IEEE754 (single precision)

Note Sign Exponent Fraction Total

bit 31 30…23 22…0 32

Exponent deviation 127

Figure 14: Single floating point number definition (4 bytes, 2 MODBIS registers)

Example: Convert decimal number 17.625 to binary number

Step 1: Convert decimal number 17.625 to a floating point number with binary format

 First, convert integer to binary

17decimal = 16 + 1 = 1×24 + 0×23 + 0×22 + 0×21 + 1×20

Thus, integer 17 in binary format is 10001B

 Then convert decimal part to binary

 0.625decimal = 0.5 + 0.125 = 1×2-1 + 0×2-2 + 1×2-3

Thus, 0.625 in binary format is 0.101B

 Combine above together, 17.625 in binary format is 10001.010B

Step 2: Calculate exponent

Left shift the binary number 10001.010B until only bit left before the decimal point ---

10001.101B = 1.0001101 B× 24, so exponent value is 4. By adding 127, we have 131, which

is 10000011B in binary format

Step 3: Get fraction

Fraction is simply the number after decimal point. Thus from 1.0001101B, fraction

number is 0001101B. IMPORTANT NOTE about the 23 bit fraction number: the first bit

which on the left side of decimal point is hidden bit and does not need to be compiled.

Step 4: Sign definition

Sign bit is 0 if the number is positive. Sign is 1 if the number is negative. For 17.625, sign

Suzhou Yosemite Technologies Ltd.

8

bit is 0.

Step 5: Convert to floating point number

1 Sign bit + 8-bit exponent + 23-bit fraction

 0 10000011 00011010000000000000000B

(Corresponding hexadecimal number is 0x418D0000)

Sample code:

1. If your compiler has similar library functions, it can be called directly. For example if C

language is used, we can directly call memcpy() function in C library to convert floating point

number. Sample code:

float floatdata;//floating point data to be converted

void* outdata;

memcpy(outdata,&floatdata,4);

If floatdata=17.625,

In little-endian storage mode after the function is called:

Value at address of outdata is 0x00

Value at address of (outdata+1) is 0x00

Value at address of (outdata+2) is 0x8D

Value at address of (outdata+3) is 0x41

In big-endian storage mode after the function is called:

Value at address of outdata is 0x41

Value at address of (outdata+1) is 0x8D

Value at address of (outdata+2) is 0x00

Value at address of (outdata+3) is 0x00

2. If your complier doesn’t have the conversion function, then the following function can be

used:

void memcpy(void *dest,void *src,int n)

{

char *pd = (char *)dest;

char *ps = (char *)src;

for(int i=0;i<n;i++) *pd++ = *ps++;

}

Then you can get same result by calling this function memcpy(outdata,&floatdata,4);

Example: Convert binary floating point number 0100 0010 0111 1011 0110 0110 0110 0110B to a

decimal number

Step 1: Separate this binary number 0100 0010 0111 1011 0110 0110 0110 0110B and get values

of Sign , exponent and fraction.

 0 10000100 11110110110011001100110B

 1 Sign bit 8-bit exponent 23-bit fraction

Sign bit(s): 0

Exponent(E):10000100B=1×27+0×26+0×25+0×24+0×23+1×22+0×21+0×20

Suzhou Yosemite Technologies Ltd.

9

=128+0+0+0+0+4+0+0=132

Fraction(M)：11110110110011001100110B =8087142

Step 2: Calculate decimal value

 D = (-1)S×(1.0+M/223)×2E-127

= (-1)0×(1.0+8087142/223)×2132-127

= 1×1.964062452316284×32

 = 62.85

Reference code:

float floatTOdecimal(long int byte0, long int byte1, long int byte2, long int byte3)

{

 long int realbyte0,realbyte1,realbyte2,realbyte3;

char S;

long int E,M;

float D;

realbyte0 = byte3;

realbyte1 = byte2;

realbyte2 = byte1;

realbyte3 = byte0;

if((realbyte0&0x80)==0)

{

S = 0; //Positive

}

else

{

S = 1; //Negative

}

E = ((realbyte0<<1)|(realbyte1&0x80)>>7)-127;

M = ((realbyte1&0x7f) << 16) | (realbyte2<< 8)| realbyte3;

D = pow(-1,S)*(1.0 + M/pow(2,23))* pow(2,E);

return D;

}

Note:

 Function parameters byte0, byte1, byte2 and byte3 represent the 4 sections of a binary

floating number.

 Return value is value of decimal number after conversion

For example when a command is sent to a sensor to get temperature value, response frame from

the sensor will have measured temperature. If the values are 4 byte floating point number

0x00,0x00,0x8d,0x41, then the following function can be used to get temperature in decimal

value:

float temperature = floatTOdecimal(0x00, 0x00, 0x8d, 0x41);

and temperature = 17.625.

Suzhou Yosemite Technologies Ltd.

10

1.5.2 Characters

Definition: Character is shown by ASCII code.

Example: String “YL” could be shown by corresponding ASCII codes (refer to ASCII character

chart)

“Y” is 0x59

“L” is 0x4C

2 MODBUS RTU Commands for Multi -

Parameter Sensor

2.1 Overview

In order to communicate with Multi-Parameter via MODBUS RTU, master terminal software will

be needed. MODBUS RTU is an open standard. There are free commercial software tools

available. For applications described in this document, MODBUS register address starts from 1.

However, slave address in MODBUS protocol starts from 0, and usually master software compiles

addresses. For example, register address 2090 will be compiled by master software as address

2089.

2.2 Command Description

2.2.1 Get measurement data

Function: Get each measurement data for the sensor.

Get measurement data can be get via MODBUS register starting from 0x2601:

Start address Number of registers Register 1~16 MODBUS Function code

0x2601 0x10 All Senser value 0x03

Below is an example of request and response frames for sending a get measurement data

command with slave address 0x01.

Table 1 Get the measurement data request frame

Definition Slave id Function Start address Quantity CRC

Byte 0 1 2 ~ 3 4 ~ 5 6 ~ 7

Value 0x01 0x03 0x26 0x01 0x00 0x10

Table 2 Get the measurement data response frame

Definition Slave id Function Count Value CRC

Byte 0 1 2 3 ~ 38 39 ~ 40

Value 0x01 0x03 0x20 Value

Value is as follow:

Suzhou Yosemite Technologies Ltd.

11

Byte 3 ~ 6 7 ~ 10 11 ~ 14 15 ~ 18 19 ~

22

23 ~

26

27 ~

30

31 ~ 34

Value DO

(mg /

L)

Tur CT pH Temp Orp Chl BGA

If the probe is not exist , the corresponding value is 0.

For example, DO value is 7.90 mg/L:

Byte 3 4 5 6

Value CD CC FC 40

2.2.2 Get SN

Function: Get sensor’s serial number (SN). Each sensor probe has a unique SN.

Serial Number can be read from 6 continuous MODBUS registers starting from address 0x1400

Start Address Number of registers Register 1-6 MODBUS Function code

0x1400 0x06 SN 0x03

The frame structure is as follow:

Table 3 Get SN request frame

Definition Slave id Function Start address Quantity CRC

byte 0 1 2 ~ 3 4 ~ 5 6 ~ 7

Value 0x01 0x03 0x14 0x00 0x00 0x06

Table 4 Get SN response frame

Definition Slave id Function Count Value CRC

Byte 0 1 2 3 ~ 14 15 ~ 16

Value 0x01 0x03 0x0C “YL0114010022”

Note: SN value is in ASCII code as below:

Byte 4 5 6 7 8 9 10 11 12 13 14 15

Value 0x59 0x4C 0x30 0x31 0x31 0x34 0x30 0x31 0x30 0x30 0x32 0x32

2.2.3 Error Flag

Function: Ask for sensor error, default value 00 means correct.

Error Flag can be read via MODBUS registers address 0x0800

Start Address Number of registers Register 1 MODBUS Function code

0x0800 0x01 Error Flag 0x03

The frame structure is as follow:

Table 5 Get Error Flag request frame

Definition Slave id Function Start address Quantity CRC

Byte 0 1 2 ~ 3 4 ~ 5 6 ~ 7

Value 0x01 0x03 0x08 0x00 0x00 0x01

Table 6 Get Error Flag response frame

Definition Slave id Function Count Value CRC

Byte 0 1 2 3 4 5 ~ 6

Value 0x01 0x03 0x02 Flag

Suzhou Yosemite Technologies Ltd.

12

Error none Brush

problem

Humidity

communication

12V voltage

problem

Sensor is in

water

Flag 0x00 0x01 0x02 0x04 0x10

2.2.4 Get Brush Interval of time

Function: Get the interval of time for brush between each rotation, default time is 30 min.

The interval of time can be read from 1 MODBUS registers starting from address 0x0E00.

Start address Number of registers Register 1 MODBUS function code

0x0E00 0x01 Interval of time(min) 0x03

The frame structure is as follow:

Table 7 Request frame to get brush Interval of time

Definition Slave id Function Start address Quantity CRC

Byte 0 1 2 ~ 3 4 ~ 5 6 ~ 7

Value 0x01 0x03 0x0E 0x00 0x00 0x01

Table 8 Response frame to get brush Interval of time

Definition Slave id Function Count Value CRC

Byte 0 1 2 3 4 5 ~ 6

Value 0x01 0x03 0x02 1E 00

The rotation time is (00,1E) = 30min.

2.2.5 Set Brush Interval of time

Function: Set the interval of time for brush between each rotation, the unit is minute.

The interval of time can be set at 1 MODBUS registers starting from address 0x0E00.

Start address Number of registers Register 1 MODBUS function code

0x0E00 0x01 Interval of time(min) 0x10

Below is an example of request and response frames for setting brush interval of time,

assuming slave address is 0x01, time is 10min.

Table 9 Set brush Interval of time request frame

Definition Slave

id

Function Start

address

Quantity Count Value CRC

Byte 0 1 2 ~ 3 4 ~ 5 6 7 8 9 ~

10

Value 0x01 0x10 0x0E 0x00 0x00 0x01 0x02 0x0a 0x00

Table 10 Set brush Interval of time response frame

Definition Slave id Function Start address Quantity CRC

Byte 0 1 2 ~ 3 4 ~ 5 6 ~ 7

Value 0x01 0x10 0x0E 0x00 0x00 0x01

2.2.6 Set the time

Function: Set the Sensor real time.

The real time can be set at 1 MODBUS registers starting from address 0x1300.

Start address Number of registers Register 1-4 MODBUS function code

0x1300 0x04 Real time 0x10

Suzhou Yosemite Technologies Ltd.

13

The frame structure is as follow:

Table 11 Set the time request frame

Definition Slave

id

Function Start

address

Quantity Count Value CRC

Byte 0 1 2 ~ 3 4 ~ 5 6 7 ~ 14 15 ~

16

Value 0x01 0x10 0x13 0x00 0x00 0x04 0x08 Time

Table 12 Set the time response frame

Definition Slave id Function Start address Quantity CRC

Byte 0 1 2 ~ 3 4 ~ 5 6 ~ 7

Value 0x01 0x10 0x13 0x00 0x00 0x04

Time Format structure:

byte 7 8 9 10 11 12 13 14

Meaning Second Minute Hour Day Month 00 Year 00

Time is displayed in BCD type, for example, 0x59 means 59 seconds

2.2.7 Get the time

Function: Get the Sensor real time.

The real time can be get at 1 MODBUS registers starting from address 0x1300.

Start address Number of registers Register 1-4 MODBUS function code

0x1300 0x04 Real time 0x03

Below is an example of request and response frames for getting real time from a

device with slave address 0x01, assuming returned time is 16.04.26 13:05:17.

Table 13 Read the time request frame

Definition Slave id Function Start address Quantity CRC

Byte 0 1 2 ~ 3 4 ~ 5 6 ~ 7

Value 0x01 0x03 0x13 0x00 0x00 0x04

Table 14 Read the time response frame

Definition Slave id Function Count Value CRC

Byte 0 1 2 3 ~ 10 11 ~ 12

Value 0x01 0x03 0x08 Time

Byte 3 4 5 6 7 8 9 10

Meaning 0x17 0x05 0x13 0x26 0x04 0x00 0x16 00

2.2.8 Set Slave Device ID

Function: Set MODBUS slave address to a sensor probe. Range of address is 1~247.

Sensor probe slave address can be set via MODBUS register 0x3000:

Start address Number of registers Register 1 MODBUS Function code

0x3000 0x01 New Slave address 0x10

Below is an example of request and response frames for setting slave device ID command. Old

slave address is 0x01, new address is 0x14.

Anthony K Aufdenkampe

Suzhou Yosemite Technologies Ltd.

14

Table 15 Set Slave Device ID request frame

Definition Slave id Function Start

address

Quantity Count Value CRC

Byte 0 1 2 ~ 3 4 ~ 5 6 7 8 9 ~ 10

Value 0x01 0x10 0x30 0x00 0x00 0x01 0x02 0x14 0

Table 16 Set Slave Device ID response frame

Definition Slave id Function Start address Quantity CRC

Byte 0 1 2 ~ 3 4 ~ 5 6 ~ 7

Value 0x01 0x10 0x30 0x00 0x00 0x01

2.2.9 Get the supply voltage

Function: Get the current supply voltage value, in unit of V.

Supply voltage can be get via MODBUS register 0x1E00:

Start address Number of registers Register 1 MODBUS Function code

0x1E00 0x01 the supply voltage 0x03

The frame structure is as follow, assuming slave address is 0x01, the supply voltage is 12.31V:

Table 17 Get the power supply voltage request frame

Definition Slave id Function Start address Quantity CRC

Byte 0 1 2 ~ 3 4 ~ 5 6 ~ 7

Value 0x01 0x03 0x1E 0x00 0x00 0x02

Table 18 Get the power supply voltage response frame

Definition Slave id Function Count Value CRC

Byte 0 1 2 3 4 5 6 7 ~ 8

Value 0x01 0x03 0x04 0xC3 0xF5 0x44 0x41

2.2.10 Active Brush

Function: Make brush rotate. It is strongly recommend that brush should be active once power

on.

MODBUS register 0x2F00 is used.

Start address Number of registers MODBUS function code

0x2F00 0x00 0x10

Below is an example of request and response frames for a device with slave address 0x01 to

active brush.

Table 19 Active brush request frame

Definition Slave id Function Start address Quantity Count CRC

Byte 0 1 2 ~ 3 4 ~ 5 6 9 ~ 10

Value 0x01 0x10 0x2F 0x00 0x00 0x00 0x00

Table 20 Active brush response frame

Definition Slave id Function Address Quantity CRC

Byte 0 1 2 ~ 3 4 ~ 5 6 ~ 7

Value 0x01 0x10 0x2F 0x00 0x00 0x00

Suzhou Yosemite Technologies Ltd.

15

3 Procedure to get all value

When you need to get the value of one or more probes, send the corresponding frame command in turn.

Process Corresponding frame command

Figure 15 Get the flowchart for each measured value

Delay> = 60s

Get All value Get measurement data

0x26 0x06

Y

	1 MODBUS RTU Overview
	1.1 Scope
	1.2 MODBUS Command Structure
	1.3 MODBUS RTU for YOSEMITECH’s Multi - Parameter Sensor
	1.4 MODBUS RTU Function Code for YOSEMITECH’s Multi - Parameter Sensor
	1.5 Data formats in Multi - Parameter sensor

	2 MODBUS RTU Commands for Multi - Parameter Sensor
	2.1 Overview
	2.2 Command Description

	3 Procedure to get all value

