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1 Introduction
I created this documentation to summarize and explain the functionalities of my custom-made library for
the ADS1256 24-bit, 8 channel analog-to-digital converter (ADC). This ADC can provide 30000 samples
per second (SPS) data rate on a single channel and it can run at 4374 Hz when the inputs are cycled via the
input multiplexer. The ADC communicates via SPI, so it is easy to connect it to any of today’s popular
microcontroller units (MCUs). Since the ADS1256 uses the SPI, the user has to consult the datasheet of
the MCU for the SPI pins (MISO, MOSI and SCK pins). Other, application-specific pins (DRDY, CS,
SYNC/PDWN and RESET) are further discussed in this document.

In this document I am going to show how each functions are implemented for Arduino-compatible mi-
crocontrollers. I personally prefer to use MCUs with a native USB support. For example ATmega32U4,
Teensy 4.0, STM32F103C8T6 ("blue pill")...etc.

I also designed a printed circuit board (PCB) that utilizes an ATmega32U4 and I think it is just fine to
drive this ADC 1. The custom board can be purchased from me. For more details, drop me an email.
The address can be found in the contact section of my website. Alternatively, you can buy the PCB from
PCBWay using my affiliate link.

Figure 1: Custom-made ADS1256 data logger board driven by an ATmega32U4 microcontroller.

If you think that this document helped your work, please consider supporting me on Patreon or via PayPal.

If you use the document or the code for your publications, don’t forget to cite this document:

Curious, Scientist. ADS1256 Arduino Library Documentation And Manual. 2022.
https://curiousscientist.tech/ads1256-custom-library

Disclaimer:
I have written this document and the library and made the circuit with honest and good intentions.
Despite my best efforts, mistakes and errors can occur. In any case, I am not responsible for any damage,
harm causedy by the use of the published resources.

1I am not an electrical engineer, I am just an enthusiastic scientist, so any recommendations to improve the design is
welcome!
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2 ADS1256 Analog-to-digital converter
This chip is made by Texas Instruments. I am not going to detail all of its functions here, so if you want
to dive deeper than this document, please refer to the official datasheet of the chip[1].

This ADC has 8 input channels. They can be used in single-ended mode which means that the positive
terminal is one of these 8 input channels and the negative terminal is the common ground connection.
Another mode to utilize the input channels is to use them in differential mode. In this case both the
positive and negative terminals are one of the 8 input channels, thus the total number of input channels
is 4 in this case. The inputs have a buffer circuit which significantly increases the input impedance of the
device but limits the input voltage. In typical applications where +5 V is the supply voltage, using the
buffer would lead to 0 − 3 V measurement range. Of course, with proper precision voltage dividers[2],
one can extend the measurement range while still maintaining good resolution. There is also a way to go
the other way around: one can utilize the built in programmable gain amplifier (PGA) which provides
more resolution when measuring smaller input signals (see Table 1). When using the PGA it is always
recommended to use the one closest to the measured voltage. For example, if the maximum measured
voltage range is ±1 V, PGA = 4 is recommended.

PGA Full-scale input voltage (Vin)
(Vref = 2.5 V)

1 ±5 V
2 ±2.5 V
4 ±1.25 V
8 ±625 mV
16 ±312.5 mV
32 ±156.25 mV
64 ±78.125 mV

Table 1: ADS1256 PGA settings and the corresponding input voltage ranges.

As it was mentioned in the first section, this chip is capable of measuring one channel at 30 kSPS data
rate. Further, slower data rates (and higher resolution) can be achieved by applying the programmable
filter of the circuit. The data rate is provided by the following equation:

DRATE =

(
fclkin

256

)
·
(

1

AVG

)
, (1)

where DRATE is the data rate in SPS, fclkin is the crystal frequency (typically, fclkin = 7.68 MHz), and
AVG is the number of averages taken of the reading.
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The available sampling rates, filter values and register values (binary and decimal) are shown in Table 2.
I also added the decimal equivalent of the binary values to the table because the original datasheet of
the ADS1256 only published the register values in binary numbers, however it is easier for us to send a
decimal number to the serial terminal to change the register setting.

Data rate
(SPS) Number of averages Register value

(binary)
Register value

(decimal)

30000 1 (no averaging) 1111000 240
15000 2 1110000 224
7500 4 11010000 204
3750 8 11000000 192
2000 15 10110000 176
1000 30 10100001 161
500 60 10010010 146
100 300 10000010 130
60 500 01110010 114
50 600 01100011 99
30 1000 01010011 83
25 1200 01000011 67
15 2000 00110011 51
10 3000 00100011 35
5 6000 00010011 19
2.5 12000 00000011 3

Table 2: ADS1256 DRATE settings and corresponding register values.

The above table is only valid for single-channel data acquisition. If we want to utilize all the 8 (or 4)
channels, the input multiplexer has to be used to cycle through the inputs. This involves several steps
which will make sure that while the data is being retrieved, the next input is already prepared for capturing.
This process has a downside: the data rate significantly drops. Up to 100 SPS we can get the same data
rates as we set using the DRATE register, but above these values, due to the cycling, the effective DRATE
becomes lower, and the maximum DRATE at 30000 SPS becomes 4374 Hz. The list of DRATE vs.
throughput values are shown in Table 3 below.
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Data rate (SPS) Cycling throughput (Hz)
30000 4374
15000 3817
7500 3043
3750 2165
2000 1438
1000 837
500 456
100 98
60 59
50 50
30 30
25 25
15 15
10 10
5 5
2.5 2.5

Table 3: ADS1256 Multiplexer throughput values for different DRATE settings.

Once we have the PGA and DRATE values, we can proceed to acquire data. To be able to interpret the
data, we need to know a little about the data format. The data is a 24-bit number which we capture in
three, 8-bit packets (essentially, 3 bytes). The full process is shown in Section 4.5 . The LSB has a weight
of

LSB =
2 · Vref

PGA · 223 − 1
, (2)

where Vref is the value of the reference voltage and PGA is the selected PGA value (1, 2, 4..., 64).

A positive full-scale input produces an output code of 7FFFFFh (decimal: 8388607) and the negative full
scale input produces an output code of 800000h (decimal: 8388608).

8388607 + 8388608 = 224 − 1

Side note: For precise measurements, it is crucial to precisely know the value of the reference voltage
(Vref). If Vref is not precisely 2.500000 V, don’t use 2.5 V as the value of the reference voltage in the
formulas. Try to measure Vref with a good, preferably calibrated multimeter. I added a tab on my PCB
for probing the output of the voltage reference chip. Commercial boards typically don’t have this feature.
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3 Registers
Reading a register is one of the fundamental tasks that we have to do when using the ADS1256 with a
microcontroller. There are 11 registers in total and all of them can be accessed by communicating with the
ADC via the SPI. Reading a register allows us to check if we have the correct settings on the ADS1256.

3.1 Reading a register

Reading a register is done by two command bytes (2× 8 bits):

• 1st byte: 0001 rrrr, where rrrr is the address of the register to read

• 2nd byte: 0000 nnnn, where nnnn is the number of bytes to read minus one

With the above instructions we can easily construct the first byte by applying a logical OR operation
between the 0001 0000 byte2 and the address of the register to read (rrrr).

For example: 0001 0000 | 0000 0011 = 0001 0011 command will result in reading the 4th register which
is the DRATE register. Also, the 2nd byte might be a little bit tricky to understand. For example, if we
want to read only one register’s value at a time, the 2nd byte has to be 0: 0000 0000. If we want to read
two registers, it has to be 1: 0000 0001 and so on. This is the "minus one" part mentioned above.

The reading of a register is implemented in the following way:

1 long ADS1256::readRegister(uint8_t registerAddress)
2 {
3 waitForDRDY();
4 SPI.beginTransaction(SPISettings(1920000, MSBFIRST, SPI_MODE1));
5 digitalWrite(_CS_pin, LOW);
6 SPI.transfer(0x10 | registerAddress);
7 SPI.transfer(0);
8 delayMicroseconds(5);
9 _registerValuetoRead = SPI.transfer(0xFF);
10 digitalWrite(_CS_pin, HIGH);
11 SPI.endTransaction();
12 delay(100);
13 return _registerValuetoRead;
14 }

The function works in the following way after the waitForDRDY() function finished:

1.) The SPI communication is initiated

2.) The chip select pin is pulled to low to indicate the beginning of the SPI transaction

3.) The 1st command byte (0x10) combined with the register address is sent to the ADC

4.) The 2nd command byte (0x00) is sent to the ADC separately

5.) We wait t6, then send an empty byte to the ADC to shift out the value of the register

6.) We pull the chip select pin up and finish the SPI transaction

7.) After waiting 100 ms, the function returns the obtained register value

2I added a space in the middle of the number to make it easier to read. When you use the numbers in binary format,
avoid using spaces!
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In my library, I created a shorthand definiton for all the 11 registers in the ads1256.h header file, so they
are much easier to call.

1 #define STATUS_REG 0x00
2 #define MUX_REG 0x01
3 #define ADCON_REG 0x02
4 #define DRATE_REG 0x03
5 #define IO_REG 0x04
6 #define OFC0_REG 0x05
7 #define OFC1_REG 0x06
8 #define OFC2_REG 0x07
9 #define FSC0_REG 0x08
10 #define FSC1_REG 0x09
11 #define FSC2_REG 0x0A

For example, if we want to read the DRATE register to find out the sampling rate, we can send the
following command to the MCU and the code will return the value of the register:

1 readRegister(DRATE_REG);

The return value will be the decimal equivalent value of the register. For example, the return value 114
corresponds to 60 SPS sampling speed.
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3.2 Writing a register

The code snippet below is the function that allows us to write a specific value to a specific register. The
function does not have any return value, it only performs a task. The function expects two 8-bit integers
(2 bytes) as the parameter: the address of the register to be written and the value to be written to the
register.

• 1st byte: 0101 wwww, where wwww is the address of the register to be written

• 2nd byte: 0000 nnnn, where nnnn is the number of bytes to read minus one

• 3rd byte: 0000 0000, this is the desired value of the register

1 void ADS1256::writeRegister(uint8_t registerAddress, uint8_t registerValueToWrite)
2 {
3 waitForDRDY();
4 SPI.beginTransaction(SPISettings(1920000, MSBFIRST, SPI_MODE1));
5 digitalWrite(_CS_pin, LOW);
6 delayMicroseconds(5);
7 SPI.transfer(0x50 | registerAddress);
8 SPI.transfer(0);
9 SPI.transfer(registerValueToWrite);
10 digitalWrite(_CS_pin, HIGH);
11 SPI.endTransaction();
12 delay(100);
13 }

The function works in the following way after the waitForDRDY() function finished:

1.) The SPI communication is initiated

2.) The chip select pin is pulled to low to indicate the beginning of the SPI transaction

3.) The 1st command byte (0x50) combined with the register address is sent to the ADC

4.) The 2nd command byte (0x00) is sent to the ADC separately.

5.) Then we send the register value to the ADC

6.) We pull the chip select pin up and finish the SPI transaction

7.) We wait 100 ms and exit the function

A quick way of using the implemented fuction can be the following:

1 writeRegister(DRATE_REG, DRATE_50SPS);

This line will set the sampling rate to 50 SPS by writing the equivalent 8-bit value to the DRATE register.

You can also directly pass integer numbers to this function:

1 writeRegister(1, 35);

The above command will write the value 35 (0010 0011) to the 1st register. The 1st register is the MUX
register and 35 (0010 0011) means the we want to select the A2 and A3 pins as the (differential) input
pins.
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3.3 Status register - Address: 0

This is the first register in series with the address of zero. Its value map is really simple because 5 out of
the 8 bits are read-only.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ID ID ID ID ORDER ACAL BUFEN DRDY

Table 4: Status register and its contents.

Bit 7-4 are read-only bits, so they are omitted here. Bit 3 decides the order of the output bits: 0 - MSB
(default), 1 - LSB. Bit 2 is the auto-calibration bit: 0 - disabled (default), 1 - enabled. Bit 1 is the analog
input buffer: 0 - disabled (default), 1 - enabled. The last bit, bit 0 replicates the state of the DRDY pin,
this is also a read-only pin.

I typically use the following settings:

• ORDER: 0 - MSB

• ACAL: 1 - Enabled

• BUFEN: 1 - Enabled

By combining these settings, we get the following byte: 0000 0110 (decimal = 6).

I made six separate routines to individually get and set the ORDER bit, the ACAL bit, and the BUFEN
bit. They can be called in the following way:

1 setByteOrder(0);
2 getByteOrder();
3 setAutoCal(0);
4 getAutoCal();
5 setBuffer(0);
6 getBuffer();

Each of the set functions accept either 0 or 1 in the argument. The effect of these numbers are already
explained above. When the get functions are used, they will print a text on the serial terminal. The get
functions don’t accept any arguments.
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One of the above three set functions is shown below. If the setByteOrder() function receives a 0 or 1, it
will overwrite the third bit of the _STATUS variable which stores the value of the STATUS register, then
it will also send this value to the STATUS register. It is important that we first read the value from the
status register, so we work with its most recent value.

1 void ADS1256::setByteOrder(uint8_t byteOrder)
2 {
3 _STATUS = readRegister(STATUS_REG);
4

5 if(byteOrder == 0)
6 {
7 bitWrite(_STATUS, 3, 0);
8 }
9 else if(byteOrder == 1)
10 {
11 bitWrite(_STATUS, 3, 1);
12 }
13 else{}
14 writeRegister(STATUS_REG, _STATUS);
15 delay(100);
16 }

Also, let’s have an example of one of the three get functions. The function below retrieves the value of
the status register and then by reading the third bit, it decides whether we have MSB or LSB byte order
enabled.

1 void ADS1256::getByteOrder()
2 {
3 uint8_t statusValue = readRegister(STATUS_REG);
4

5 if(bitRead(statusValue, 3) == 0)
6 {
7 Serial.println("Byte order is MSB (default)");
8 }
9 else
10 {
11 Serial.println("Byte order is LSB");
12 }
13 }
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3.4 MUX register - Address: 1

This is the input multiplexer register that allows us to select arbitrary terminals as the inputs of the ADC.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Pos 3 Pos 2 Pos 1 Pos 0 Neg 3 Neg 2 Neg 1 Neg 0

Table 5: MUX register and its values.

Bit 7-4 select the positive input channel, and bit 3-0 select the negative input channel. By carefully
combining the input channels we can create either 8 single-ended inputs (AIN0-AIN7 + AINCOM) or 4
differential inputs (AIN0-7 + AIN0-7). The inputs are not read simultaneously, but one after another. For
example, first we define an input pin-pair (A0+A1), then we read a conversion, then we create another input
pin-pair (A2+A3), and read another conversion, now from this new input...and so on. With this method
we scan through the input channels and read them in succession. This is essentially the multiplexing.

Bit 7-4 or Bit 3-0 Input
0000 AIN0
0001 AIN1
0010 AIN2
0011 AIN3
0100 AIN4
0101 AIN5
0110 AIN6
0111 AIN7
1111 AINCOM (GND)

Table 6: MUX register values and corresponding input pins.

In Table 6 the possible values of the bits are shown. The bit 7-4 determine the positive input pin (e.g.
AIN0). The 3-0 bits determine the negative pin (e.g. AINCOM (GND)). It should also be obvious that
the positive and negative inputs cannot be the same channel!

A full command byte, for example 0010 0011 looks like this:

0010︸︷︷︸
Positive input is AIN2

Negative input is AIN3︷︸︸︷
0011 (3)

An example of selecting a single-ended input pair where the positive channel is AIN2 and the negative
channel is AINCOM (GND):

1 writeRegister(MUX_REG, SING_2);

An example of selecting a differential input pair where the positive channel is AIN2 and the negative
channel is AIN3:

1 writeRegister(MUX_REG, DIFF_2_3);

I have written predefined differential input channel-pairs in a sensible way by pairing up adjacent input
pins (A0+A1, A2+A3...etc.). However, nothing hinders you from, for example creating a pair where the
positive input channel is A2 (0010) and the negative input channel is A6 (0110). In this case, you have to
manually create the command for the MUX register:

1 writeRegister(MUX_REG, B00100110);
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In my library I predefined eight single-ended, and four differential input channels. The arrangement of
the single-ended channels is straightforward because they are always a combination of one of the AINx

(x = 0− 7) pin (positive) and the AINCOM pin (negative, GND).

1 #define SING_0 0b00001111 //A0 + GND
2 #define SING_1 0b00011111 //A1 + GND
3 #define SING_2 0b00101111 //A2 + GND
4 #define SING_3 0b00111111 //A3 + GND
5 #define SING_4 0b01001111 //A4 + GND
6 #define SING_5 0b01011111 //A5 + GND
7 #define SING_6 0b01101111 //A6 + GND
8 #define SING_7 0b01111111 //A7 + GND

The differential channels are somewhat arbitrary but they still make sense. I decided to pair the adjacent
inputs as differential input pairs which means that AIN0+AIN1 becomes an input pair, AIN2+AIN3
becomes and input pair, and so on. They are defined in the ads1256.h header file and they can be called
as it is shown below.

1 #define DIFF_0_1 0b00000001 //A0 + A1
2 #define DIFF_2_3 0b00100011 //A2 + A3
3 #define DIFF_4_5 0b01000101 //A4 + A5
4 #define DIFF_6_7 0b01100111 //A6 + A7

I further simplified the procedure of modifying the MUX register to select the input pins by writing my
own routine. With this simplified routine one only needs to call the setMUX() function and provide one
of the above defined pin definitions (e.g. SING_5) in the argument, like it is shown below:

1 setMUX(SING_5);

The above command will select the single-ended input as AIN5 + AINCOM (GND).

The setMUX() function also accepts integers. If you know the decimal (or binary) value for the register to
select a certain input, you can also just pass a number to the function. For example, the example below
selects A4+A5 as input:

1 setMUX(69);
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3.5 ADCON register - Address: 2

The ADCON register has three main roles. By modifying bit 6-5 we can set up the clock out rate for the
D0 pin of the ADS1256 chip. Modifying bit 4-3 sets up the sensor detect circuitry. Finally, bit 2-0 can
change the PGA settings. For average users, these last three bits (bit 2-0) are the most relevant and most
important bits. The rest is for more advanced applications.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 CLK1 CLK0 SDCS1 SDCS0 PGA2 PGA1 PGA0

Table 7: ADCON register bits. This register controls the PGA.

Bit 7 is a read-only bit, so we omit it. Bit 6-5 sets the CLKOUT (D0) pin. The value 00 turns the
clock out OFF, which is the recommended usage. The value 01 makes the output to provide the fclkin

frequency on D0, 10 results in fclkin/2 and 11 results in fclkin/4 on D0. Bit 4-33 sets the sensor detect
current sources. The value 00 means it is OFF. The value 01 ; means that the sensor detect current is set
to 0.5 µA. When it is set to 10, the current is 2 µA and when it is 11, the current is 10 µA. The last three
bits, bit 2-0 are responsible for the PGA setting.

PGA Measurement range (V) Bit 2-0
1 ±5 000
2 ±2.5 001
4 ±1.25 010
8 ±0.625 011
16 ±0.3125 100
32 ±0.15625 101
64 ±0.078125 110
64 ±0.078125 111

Table 8: PGA and register values with the corresponding measurement ranges.

3There’s a typo in the original datasheet. The original datasheet says "Bits 4-2", which is wrong.
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Since this register controls three different things: CLK, SDCS and PGA, three routines belong to this
register.

1 void ADS1256::setCLKOUT(uint8_t clkout)
2 {
3 _ADCON = readRegister(ADCON_REG);
4

5 if(clkout == 0)
6 {
7 bitWrite(_ADCON, 6, 0);
8 bitWrite(_ADCON, 5, 0);
9 }
10 else if(clkout == 1)
11 {
12 bitWrite(_ADCON, 6, 0);
13 bitWrite(_ADCON, 5, 1);
14 }
15 else if(clkout == 2)
16 {
17 bitWrite(_ADCON, 6, 1);
18 bitWrite(_ADCON, 5, 0);
19 }
20 else if(clkout == 3)
21 {
22 bitWrite(_ADCON, 6, 1);
23 bitWrite(_ADCON, 5, 1);
24 }
25 else{}
26

27 writeRegister(ADCON_REG, _ADCON);
28 delay(100);
29 }

The above routine changes the bit 6-5 (CLK1 and CLK0) in the ADCON register. In the Arduino code it
should be called in the following way:

1 setCLKOUT(0);

The above line will set the CLKOUT part of the ADCON register to 00 which will turn the clock out
OFF. Further values can be 1 (01 ), 2 (10 ) and 3 (11 ).
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The next part of the register to be written is the SDCS part which also has four values:
1 (00 ), 2 (01 ), 3 (10 ) and 4 (11 ).

1 void ADS1256::setSDCS(uint8_t sdcs)
2 {
3 _ADCON = readRegister(ADCON_REG);
4

5 if(sdcs == 0)
6 {
7 bitWrite(_ADCON, 4, 0);
8 bitWrite(_ADCON, 3, 0);
9 }
10 else if(sdcs == 1)
11 {
12 bitWrite(_ADCON, 4, 0);
13 bitWrite(_ADCON, 3, 1);
14 }
15 else if(sdcs == 2)
16 {
17 bitWrite(_ADCON, 4, 1);
18 bitWrite(_ADCON, 3, 0);
19 }
20 else if(sdcs == 3)
21 {
22 bitWrite(_ADCON, 4, 1);
23 bitWrite(_ADCON, 3, 1);
24 }
25 else{}
26

27 writeRegister(ADCON_REG, _ADCON);
28 delay(100);
29 }

The register is updated via the following command which in this example sets the corresponding part of
the ADCON register to 00 :

1 setSDCS(0);

Finally, the last part of the ADCON register is about the PGA setting. The PGA values and the corre-
sponding effects are listed in Table 1.
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This code has been reiterated since the last update because it had a bug which messed with the rest of
the _ADCON-related things.

First, we read the most recent value of the ADCON register and pass it to the _ADCON variable. Then,
the left hand side operation (_ADCON & 0b11111000 ) clears all the PGA bits, and the right hand side
operation (pga & 0b00000111 ) sets all the PGA bits while leaving the rest of the bits untouched. Then
these two results are combined together using the logical OR operation. The result is sent to the ADCON
register.

1 void ADS1256::setPGA(uint8_t pga)
2 {
3 _PGA = pga;
4 _ADCON = readRegister(ADCON_REG);
5 _ADCON = (_ADCON & 0b11111000) | (pga & 0b00000111);
6

7 writeRegister(ADCON_REG, _ADCON);
8 delay(200);
9 }

The function is used on the following way:

1 setPGA(PGA_8);

The above line will set the PGA value to PGA_8 which corresponds to ±625 mV input voltage range.

There’s also a function to get the actual PGA value. This function simply reads the ADCON register and
it returns only the PGA value.

1 uint8_t ADS1256::getPGA() //Reading PGA from the ADCON register
2 {
3 uint8_t pgaValue = 0;
4

5 pgaValue = readRegister(ADCON_REG) & 0b00000111;
6

7 return(pgaValue);
8 }

Since the function returns a simple decimal number, it is a good idea to print its return value on the serial
port as it is shown in the example below:

1 Serial.println(getPGA());
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3.6 DRATE register - Address: 3

This register controls the sampling rate between 2.5 SPS up to 30000 SPS. The data rates and the cor-
responding register values are shown in Table 2. Keep in mind, that these data rates are valid for a
single-channel acquisition. When multiplexing (switching between inputs) is used, the data rates are dif-
ferent due to the time needed for switching between the inputs.

I defined simple variables to call a certain data rate from the code:

1 #define DRATE_30000SPS 0b11110000
2 #define DRATE_15000SPS 0b11100000
3 #define DRATE_7500SPS 0b11010000
4 #define DRATE_3750SPS 0b11000000
5 #define DRATE_2000SPS 0b10110000
6 #define DRATE_1000SPS 0b10100001
7 #define DRATE_500SPS 0b10010010
8 #define DRATE_100SPS 0b10000010
9 #define DRATE_60SPS 0b01110010
10 #define DRATE_50SPS 0b01100011
11 #define DRATE_30SPS 0b01010011
12 #define DRATE_25SPS 0b01000011
13 #define DRATE_15SPS 0b00110011
14 #define DRATE_10SPS 0b00100011
15 #define DRATE_5SPS 0b00010011
16 #define DRATE_2SPS 0b00000011

The function that takes care of setting the data rate looks like this:

1 void ADS1256::setDRATE(uint8_t drate)
2 {
3 _DRATE = drate;
4 writeRegister(DRATE_REG, _DRATE);
5 delay(200);
6 }

The value of the data rate (DRATE) is received by the function as the argument. This value and the
address of the DRATE register (DRATE_REG) is passed to the writeRegister() function. Then, after
waiting for 200 ms, the function exits without a return value.

To apply a sampling rate, we only need to pass one of the above data rate variables to the setDRATE()
function as it is shown below:

1 setDRATE(DRATE_60SPS);

The above function sets the data rate to 60 SPS.
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3.7 I/O register - Address: 4

This register is a bit tricky, but it is not a big deal to understand it. Bit 7-4 sets the direction of the four
I/O pins (D0-D3). Then, bit 3-0 can be both read and written. If they are read, the return value will
reflect whether they are configured as an input (1 ) or as an output (0 ). If any of these pins are configured
as an output, writing a value to them will change their state. If they are configured as input, writing them
does not have an effect. Furthermore, the D0 pin has a special role because it also acts as the CLKOUT
pin. So, it can be used either as an I/O pin or it can also be used to output a certain clock signal.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DIR3 DIR2 DIR1 DIR0 DIO3 DIO2 DIO1 DIO0

Table 9: I/O register bits

There are three routines implemented for this register. One of them sets the I/O pins, another writes a
value on them, and a third one reads them. It is important that first the GPIO pins have to be set as
inputs or outputs and then we can write to them if applicable.

To set the GPIO pins of the ADS1256 as input or output, the bit 7-4 part is modified in the I/O register.
To set the value we can call the setGPIO() function as it is shown below:

1 setGPIO(0,1,0,0);

The above line sets bit 4 to 0, bit 5 to 1, bit 6 and bit 7 to 0. This means that D1 (bit 5 or DIR1) becomes
an input and the other pins (DIR0, DIR2 and DIR3) become outputs. Please notice that the order of the
parameters is according to the numerical order of DIR bits: the first parameter is DIR0 (bit 4), which is
then followed by DIR1 (bit 5), DIR2 (bit6) and DIR3 (bit7).

If any of the pins are defined as outputs we can set the value of those specific pins. Let’s continue the
previous example where D0, D2 and D3 were set as outputs. In this example, DIO0 (bit 0) and DIO1 (bit
1) will be set to 1 which means that their state will be HIGH. The other two pins DIO3 (bit 3) and DIO2
(bit 2) will be set to 0. The command will look like this:

1 writeGPIO(1,1,0,0);

The above line means that bit 0 (DIO0) and bit 1 (DIO1) of the I/O register become 1, or HIGH as an
output pin. Since bit 5 (DIR1) was set as an input previously, setting it to HIGH has no effect. Bit 2 and
bit 3 are set to 0, so DIR2 and DIR3 pins will set to LOW as outputs.
Finally, we can read the values of D0-D3 pins if they are set as inputs. This is done by the following
command:

1 readGPIO(2);

In the above example, the bit 2 (DIO2) is read and the function returns with the state (HIGH or LOW)
of the pin. This function reads only a single pin at a time. Another way to read the pin states at once is
to read the whole register and read the first four bits:

1 readRegister(IO_REG);

Of course, the above example only works if the corresponding bits are set as inputs.
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The setGPIO() function sets the four I/O pins as inputs (1 ) or outputs (0 ). The function takes four
arguments; the first argument sets the D0 and the fourth argument sets the D3 pin.

1 void ADS1256::setGPIO(uint8_t dir0, uint8_t dir1, uint8_t dir2, uint8_t dir3)
2 {
3 _GPIO = readRegister(IO_REG);
4 uint8_t GPIO_bit7, GPIO_bit6, GPIO_bit5, GPIO_bit4;
5 if(dir3 == 1)
6 {
7 GPIO_bit7 = 1;
8 }
9 else
10 {
11 GPIO_bit7 = 0;
12 }
13 bitWrite(_GPIO, 7, GPIO_bit7);
14 if(dir2 == 1)
15 {
16 GPIO_bit6 = 1;
17 }
18 else
19 {
20 GPIO_bit6 = 0;
21 }
22 bitWrite(_GPIO, 6, GPIO_bit6);
23 if(dir1 == 1)
24 {
25 GPIO_bit5 = 1;
26 }
27 else
28 {
29 GPIO_bit5 = 0;
30 }
31 bitWrite(_GPIO, 5, GPIO_bit5);
32 if(dir0 == 1)
33 {
34 GPIO_bit4 = 1;
35 }
36 else
37 {
38 GPIO_bit4 = 0;
39 }
40 bitWrite(_GPIO, 4, GPIO_bit4);
41 writeRegister(IO_REG, _GPIO);
42 delay(100);
43 }
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The writeGPIO() function takes four arguments. These are the logical values of the four pins between 0
and 1. These values are only valid if the pins are set as outputs using the setGPIO() function, otherwise
the values have no effect.

1 void ADS1256::writeGPIO(uint8_t dir0value, uint8_t dir1value, uint8_t dir2value, uint8_t dir3value)
2 {
3 _GPIO = readRegister(IO_REG);
4 uint8_t GPIO_bit3, GPIO_bit2, GPIO_bit1, GPIO_bit0;
5 if(dir3value == 1)
6 {
7 GPIO_bit3 = 1;
8 }
9 else
10 {
11 GPIO_bit3 = 0;
12 }
13 bitWrite(_GPIO, 3, GPIO_bit3);
14 if(dir2value == 1)
15 {
16 GPIO_bit2 = 1;
17 }
18 else
19 {
20 GPIO_bit2 = 0;
21 }
22 bitWrite(_GPIO, 2, GPIO_bit2);
23 if(dir1value == 1)
24 {
25 GPIO_bit1 = 1;
26 }
27 else
28 {
29 GPIO_bit1 = 0;
30 }
31 bitWrite(_GPIO, 1, GPIO_bit1);
32 if(dir0value == 1)
33 {
34 GPIO_bit0 = 1;
35 }
36 else
37 {
38 GPIO_bit0 = 0;
39 }
40 bitWrite(_GPIO, 0, GPIO_bit0);
41 writeRegister(IO_REG, _GPIO);
42 delay(100);
43 }
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The readGPIO() function reads the whole I/O register but only returns the value of the pin (or bit) re-
quested via the argument of the function.

1 int ADS1256::readGPIO(uint8_t gpioPin)
2 {
3 uint8_t GPIO_bit3, GPIO_bit2, GPIO_bit1, GPIO_bit0;
4

5 _GPIO = readRegister(IO_REG);
6

7 GPIO_bit3 = bitRead(_GPIO, 3);
8 GPIO_bit2 = bitRead(_GPIO, 2);
9 GPIO_bit1 = bitRead(_GPIO, 1);
10 GPIO_bit0 = bitRead(_GPIO, 0);
11 delay(100);
12

13 if(gpioPin == 0)
14 {
15 return(GPIO_bit0);
16 }
17 if(gpioPin == 1)
18 {
19 return(GPIO_bit1);
20 }
21 if(gpioPin == 2)
22 {
23 return(GPIO_bit2);
24 }
25 if(gpioPin == 3)
26 {
27 return(GPIO_bit3);
28 }
29 }
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3.8 Calibration registers - Address 5-10

This section discusses a set of registers. There are two types of registers related to the calibration, but
there are six actual registers, three for each type of calibration. One type is the offset-calibration register
(OFC, address: 5, 6 and 7) and another is the full-scale calibration register (FSC, address: 8, 9 and 10).
The onboard calibration circuitry of the ADS1256 helps to minimize the offset and gain errors. The two
previously mentioned registers OFC and FSC are actually made up of three 8-bit registers, so in total both
OFC and FSC registers are 24-bit registers.

The output after calibration can be described with the following equation:

Output =

(
PGA · Vin

2 · Vref
− OFC

α

)
· FSC · β, (4)

where PGA is the value of the PGA (1-64), Vin is the input voltage, Vref is the value of the voltage reference,
OFC is the value of the offset calibration register, FSC is the value of the full-scale calibration register,
and α and β vary with DRATE[1].

These registers can be manipulated by five different commands:

• SELFCAL – Self offset and self gain calibration

• SELFOCAL – Self offset calibration

• SELFGCAL – Self gain calibration

• SYSOCAL – System offset calibration

• SYSGCAL –System gain calibration

SELFCAL first performs a self offset calibration (SELFOCAL), then a self gain calibration (SELFGCAL).
During self calibration, the inputs are disconnected from the signal source. The self calibration time is
proportional to the actual DRATE setting. In the slowest case (DRATE = 2.5 SPS), the self calibration
takes 1.2272 seconds.

The SELFCOCAL performs a self offset calibration. In this process, the inputs are disconnected from
the signal source and they receive AVDD/2 voltage. The SELFGCAL performs a self gain calibration.
The inputs are disconnected from the signal source like in the case of the offset calibration, but they are
connected to VREFP and VREFN. Important notice that the buffer is still involved which means that if a
higher than AVDD− 2 voltage is used as the reference voltage, the buffer must be turned OFF. If AVDD
is 5 V and VREF is 2.5 V, this is not an issue, there is still half a Volt headroom.

The sytem calibration differs from the self calibration in a sense that it requires an external calibration
signal. The SYSOCAL performs a system offset calibration where the user must supply a zero input
differential signal, i.e. the input must be shorted. I highlighted the word differential in the previous
sentence, because this method would not work in a unipolar (i.e. Ax + AINCOM) scenario, the input
must be a differential input (i.e. Ax + Ay).
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To not overcomplicate things, I only use the SELFCAL function. I send this command after initializing
the ADS1256. Actually, all five calibration procedures can be performed via the command definitions,
which are defined in the ads1256.h header file:

1 #define SELFCAL 0b11110000
2 #define SELFOCAL 0b11110001
3 #define SELFGCAL 0b11110010
4 #define SYSOCAL 0b11110011
5 #define SYSGCAL 0b11110100

To call one of the above commands, we just need to use it in the sendDirectCommand() function:

1 sendDirectCommand(SELFCAL);
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4 Coding
In the previous sections I summarized most of the important functions and functionalities related to the
ADS1256 24-bit ADC. In the following section and sub-sections I share and document each functions of
the library.

The code should work on Arduino-compatible microcontrollers using the regular Arduino IDE. Just unpack
the zip file into a folder called ADS1256 under the libraries folder of your Arduino folder. I tested the
code on Arduino Uno and Nano, ATmega32U4, Teensy 4.0, STM32F103C8T6 and STM32F401CCU6, and
ESP32-WROOM-32 (38 pin board) microcontrollers. Due to the native USB support, higher clock speeds
and larger memory I recommend the ST microcontrollers or the Teensy 4.0.

4.1 Constructor

The library works with a parameterized constructor. The constructor expects 5 parameters: DRDY
pin, RESET pin, SYNC/PDWN pin, CS pin and the value of the reference voltage (Vref). Due to the
construction of certain off-the-shelf ADS1256 boards, I made it possible to omit the RESET pin and the
SYNC/PDWN pin. Sometimes these pins don’t have any terminals on the PCB, or they can be simply
tied to the positive supply voltage by the user and there’s no need to switch them. If they are not used,
their value should be zero (0), so the code will know that it does not need to use those pins. The rest of
the pins on a commercial ADS1256 PCB are the SPI pins. Each MCU has its own pin layout, so check
their datasheet to see which pins are used for SPI communication. These pins are the MOSI, MISO and
SCK pins.

1 ADS1256::ADS1256(const byte DRDY_pin, const byte RESET_pin,
2 const byte SYNC_pin, const byte CS_pin, float VREF)
3 {
4 _DRDY_pin = DRDY_pin;
5 pinMode(_DRDY_pin, INPUT);
6

7 if(RESET_pin !=0)
8 {
9 pinMode(RESET_pin, OUTPUT);
10 }
11 _RESET_pin = RESET_pin;
12

13 if(SYNC_pin != 0)
14 {
15 pinMode(SYNC_pin, OUTPUT);
16 }
17 _SYNC_pin = SYNC_pin;
18

19 _CS_pin = CS_pin;
20 pinMode(CS_pin, OUTPUT);
21 _VREF = VREF;
22 }

Keep in mind that if you don’t take care of the RESET and SYNC/PDWN pins either in the code or
by connecting them to the positive voltage line, the ADS1256 will not communicate properly with the
microcontroller! The easiest way to notice this mistake is that you cannot write the registers and when
you read them, they return with 0 value; or when you try to read an acquisition, the code hangs.
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The constructor looks quite simple. It passes the parameters to the private variables if applicable as well
as it defines the pins as inputs or outputs. Finally, the value of the reference is saved in a private variable.

To create an instance, one can do as follows:

1 ADS1256 A(8, 10, 5, 9, 2.500);

The above line will create an instance called "A", where the DRDY pin is pin 8, the RESET pin is pin
10, the SYNC/PDWN pin is pin 5, the CS pin is pin 9 and the reference voltage is 2.500 V. The pins have
to be chosen carefully to not interfere with the fixed SPI pins of the selected microcontroller or with other
pins which might be used by other functions (TX/RX pins, or i2c pins...etc.).

Then, each function from the library can be called through this instance. For example, the DRATE can
be changed in the following way:

1 A.setDRATE(DRATE_500SPS);

The above line tells the ADS1256 to change the sampling rate to 500 SPS.

To make the creation of the instance more clear, here is another example:

1 ADS1256 ADS1256_ADC(8, 10, 5, 9, 2.500);

The above line created an instance called "ADS1256_ADC", and you can call the functions like this

1 ADS1256_ADC.setDRATE(DRATE_500SPS);
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4.2 Handling the DRDY signal

The code heavily relies on the DRDY signal since this signal tells the MCU when a conversion is ready
and it can fetch it. Since this signal can change several ten thousand times per second, depending on the
selected sample rate, it is crucial to catch the changes properly, and most importantly, catch all of them!

Faster microcontrollers can manage this with polling the DRDY pin, but slower ones, such as the Arduino
MCUs might struggle with it. Therefore, I implemented an interrupt-based supervision of the DRDY pin.

1 volatile bool DRDY_value = false;
2

3 #if defined(ESP32)
4 #pragma message "Compilation for ESP32"
5 void IRAM_ATTR DRDY_ISR()
6 {
7 DRDY_value = true;
8 }
9 #else
10 #pragma message "Compilation for NON-ESP32"
11 void DRDY_ISR()
12 {
13 DRDY_value = true;
14 }
15 #endif
16

17 void waitForDRDY()
18 {
19 while (DRDY_value == false) {}
20 noInterrupts();
21 DRDY_value = false;
22 interrupts();
23 }

First, a simple volatile boolean variable is created (DRDY_value) which stores the status of the DRDY
pin. Since the conversion is done when DRDY goes LOW, I decided to give false as the initial value which
also reflects a "not yet completed" conversion or "data is not ready". Then by using some if conditions I
had to distinguish ESP32-based and non-ESP32-based MCUs. The reason is because ESP32 MCUs handle
the interrupts a bit differently. So, I just simply added two ISR() functions and based on the selected
microcontroller in the Arduino IDE, the compiler will pick the correct one. I left the #pragma message
lines in the code on purpose because one can learn from them. These lines show up during compilation.
It is a good tool to keep track of the behaviour of the library during compilation. Here, I was just simply
curious if the compiler really selects the corresponding function.

Finally, there is the waitForDRDY() function. This function is placed in the code where the MCU needs
to wait for the DRDY signal to go LOW. First, the code waits in a while() loop until the ISR() changes
the DRDY_value to true (LOW). Then, it turns off the interrups and changes the DRDY_value back to
false. It is enough to change it in the software, because DRDY (the physical on in the ADS1256) goes
HIGH after the conversion is completed. Finally, the interrupts are turned back and the code is ready to
detect a new change on the DRDY pin.
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4.3 Initialization

After creating an instance, an initialization has to be done to set up the MCU and the ADC. This is done
by calling the InitializeADC() function:

1 A.InitializeADC();

The function pulls CS low to indicate that we want to communicate with the ADC via the SPI. Then, if
applicable a manual reset is performed by pulling the RESET pin LOW and keeping it LOW for at least
t16. This resets the whole ADC except CLK0 and CLK1 bits in the ADCON register. After releasing from
the RESET, a self-calibration is automatically performed by the ADC. Then, if applicable, the SYNC pin
is set to HIGH.

After resetting the ADC, the SPI and the interrupt are initialized. Then, most of the registers get some
initial values to prepare the ADC for conversions. The last command is another self-calibration. Finally,
there is a variable called _isAcquisitionRunning that keeps track of the acquisition. Certain parts of the
library should only run once when the sampling is started and this variable ensures that the code uses or
skips certain parts of the code when it is needed.
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1 void ADS1256::InitializeADC()
2 {
3 digitalWrite(_CS_pin, LOW);
4

5 if(_RESET_pin != 0)
6 {
7 digitalWrite(_RESET_pin, LOW);
8 delay(200);
9 digitalWrite(_RESET_pin, HIGH);
10 delay(1000);
11 }
12

13 if(_SYNC_pin != 0)
14 {
15 digitalWrite(_SYNC_pin, HIGH);
16 }
17 SPI.begin();
18 attachInterrupt(digitalPinToInterrupt(_DRDY_pin), DRDY_ISR, FALLING);
19 delay(200);
20

21 _STATUS = 0b00110110;
22 writeRegister(STATUS_REG, _STATUS);
23 delay(200);
24

25 _MUX = 0b00000001;
26 writeRegister(MUX_REG, _MUX);
27 delay(200);
28

29 _ADCON = 0b00000000;
30 writeRegister(ADCON_REG, _ADCON);
31 delay(200);
32

33 _DRATE = 0b10000010; //100SPS
34 writeRegister(DRATE_REG, _DRATE);
35 delay(200);
36

37 sendDirectCommand(0b11110000);
38 delay(200);
39

40 _isAcquisitionRunning = false;
41 }
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4.4 Converting the acquired value into voltage

Before the functions that do the conversion in different ways are described, an auxiliary function is intro-
duced which helps us to convert the raw 24-bit output data into voltage values in a form of floating-point
numbers. This function is called convertToVoltage(). The function requires a parameter, a 32-bit integer4
and it returns a floating-point number which is the measured voltage on the active input of the ADS1256.

1 float ADS1256::convertToVoltage(int32_t rawData)
2 {
3 if (rawData >> 23 == 1)
4 {
5 rawData = rawData - 16777216;
6 }
7

8 float voltage = ((2 * _VREF) / 8388608) * rawData / (pow(2, _PGA));
9

10 return(voltage);
11 }

First, the function checks if the first bit of the raw conversion value (rawData) is 1 by shifting the data
to the right by 23 places. This bit indicates if the conversion is a negative (1) or positive (0) number. If
it is negative (1), then the raw conversion value is "mirrored" around zero by subtracting 16777216 (224)
from it. Then, the corresponding formula from page 23, table 16 in the ADS1256 data sheet[1] is used to
convert the raw conversion into a voltage value. The unit is in Volts.

Since all the functions in the library return raw values, this function has to be used if the user wants to see
the conversion in Volts instead of raw digits. I implemented my library this way because oftentimes the
data fetched by the ADS1256 is directly forwarded to a computer for further processing. If it is the case,
it makes more sense to convert the values into Volts on the computer rather than on the MCU. However,
if the user wants to convert the values into Volts on the MCU, they have the opportunity by using this
function. It can come in handy when the voltage values are printed on a display, or they are further used
for something else where the conversion has to be expressed in Volts. A typical usage of this function looks
like this:

1 float outputVoltage = 0;
2 outputVoltage = convertToVoltage(readSingle());

In the above example, we first created a floating-point variable (outputVoltage) that stores the conversion
value. Then, we read a single conversion using the readSingle() function and we pass its return value to
the convertToVoltage() function. Thus, the outputVoltage variable contains the conversion in Volts.

4Of course, the conversion result will be only 24 bits, but there’s no such type as "int24_t". The 24-bit conversion result
is stored in a 32-bit variable. The 8 remaining bits (24-31) are zero and only 0-23 are occupied by the actual data.
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4.5 Reading a single conversion

One of the simplest conversion types is reading a single conversion using the readSingle() function. The
function does not have any parameters and it returns the raw 24-bit value of the conversion. This function
reads from the inputs selected by using the setMUX() function prior to calling this function. The return
value is either converted into a voltage value using the convertToVoltage() function from the previous
section or it is sent to a computer where further processing of the raw data is done.

1 long ADS1256::readSingle()
2 {
3 SPI.beginTransaction(SPISettings(1920000, MSBFIRST, SPI_MODE1));
4 digitalWrite(_CS_pin, LOW);
5 waitForDRDY();
6 SPI.transfer(B00000001);
7 delayMicroseconds(7);
8

9 _outputBuffer[0] = SPI.transfer(0);
10 _outputBuffer[1] = SPI.transfer(0);
11 _outputBuffer[2] = SPI.transfer(0);
12 _outputValue =
13 ((long)_outputBuffer[0]<<16) | ((long)_outputBuffer[1]<<8) | (_outputBuffer[2]);
14

15 digitalWrite(_CS_pin, HIGH);
16 SPI.endTransaction();
17

18 return(_outputValue);
19 }

The function works in the following way:

1.) The SPI communication is initiated and the chip select pin is pulled to low to indicate the beginning
of the SPI transaction

2.) The code is waiting for the DRDY pin to go LOW. It checks the status of the DRDY pin by polling
it using the digitalRead() function

3.) The code sends the RDATA command to the ADC after DRDY went LOW and it waits 7 µs

4.) The three bytes are shifted out from the ADS1256 by sending dummy bytes (0) to it and the values
are stored

5.) The three stored bytes that contain the conversion are put together into a single 24-bit number

6.) The chip select pin is set to HIGH and the SPI transaction is ended, the conversion is finished

7.) The function returns the 24-bit raw conversion value

The readSingle() function can be repeated indefinitely. For example, it can be put in a for() or a while()
loop. It can be called any time when a single conversion is needed. The readSingle() function always uses
a single input defined by the user using the setMUX() function. If there is a need for continuous con-
version and/or multiplexing the inputs, the readSingleContinuous(), cycleSingle(), and cycleDifferential()
functions are recommended.

30



4.6 Reading a single input continuously

This function reads a previously selected input channel continuously using the RDATAC command. This
function is called readSingleContinuous(). It does not have any parameters and it returns a conversion
value when it is called and a conversion is finished on the ADS1256.

1 long ADS1256::readSingleContinuous()
2 {
3 if(_isAcquisitionRunning == false)
4 {
5 _isAcquisitionRunning = true;
6 SPI.beginTransaction(SPISettings(1920000, MSBFIRST, SPI_MODE1));
7 digitalWrite(_CS_pin, LOW);
8 while (digitalRead(_DRDY_pin)) {}
9 SPI.transfer(B00000011);
10 delayMicroseconds(7);
11 }
12 else
13 {
14 waitForDRDY();
15 }
16 _outputBuffer[0] = SPI.transfer(0);
17 _outputBuffer[1] = SPI.transfer(0);
18 _outputBuffer[2] = SPI.transfer(0);
19 _outputValue =
20 ((long)_outputBuffer[0]<<16) | ((long)_outputBuffer[1]<<8) | (_outputBuffer[2]);
21

22 return _outputValue;
23 }

When the function is called for the first time, the _isAcquisitionRunning variable is false, which allows
the code to perform some setup, such as starting the SPI, pulling the chip select pin LOW and sending
the RDATAC command to the ADC. At the same time the _isAcquisitionRunning variable is set to true,
so when the code enters this function again, the above listed processed are not performed again. Then,
the code waits for a full DRDY level transition in the waitForDRDY() function. This function will "hang"
the code until an interrupt (change of the DRDY pin) releases it. Finally, the conversion value is being
captured and assembled similarly as in the readSingle() function.
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The readSingleContinuous() function has to be called continuously which means that it has to be put in
a for() or a while() loop:

1 long rawValue = 0;
2 for (long i = 0; i < 90000; i++)
3 {
4 rawValue = A.readSingleContinuous();
5 }

For example, the above code continuously reads the ADS1256 chip 90000 times. In each iteration, the
return value of the readSingleContinuous() is passed to the rawValue variable. Of course, the variable is
overwritten in each iteration, this is just an example of showing that the return value of the function has
to be passed to a variable or to a function [4.4] for further processing. For example, to convert the raw
digital values into voltage.

Keep in mind, that calling the readSingleContinuous() function in a for() loop as above is not the same
as calling the readSingle() function in the same loop. If we call the readSingle() function let’s say 90000
times, then we get 90000 samples with some arbitrary (as fast as possible) timing between the samples,
and that’s all. However, with the readSingleContinuous() function, the samples return with proper timing
according to the sampling rate set by the setDRATE() function. Also, after the above for() loop finishes
the 90000 iterations, the ADC is still doing the conversions. The RDATAC command must be terminated
by sending the SDATAC command to the ADC, and the SPI connection needs to be terminated as well.

4.7 Stopping continuous conversions

Now we know how to start a continuous conversion, but as it is mentioned in the previous section, in the
case of the continuous conversions which were started by the RDATAC command, we also need to stop
them using the SDATAC command. I wrote a very simple function for this which does not only stop the
conversion, but it also stops the SPI transaction as well as pulls the chip select pin HIGH.

1 void ADS1256::stopConversion()
2 {
3 waitForDRDY();
4 SPI.transfer(B00001111);
5 digitalWrite(_CS_pin, HIGH);
6 SPI.endTransaction();
7 _isAcquisitionRunning = false;
8 }

The above function first waits for DRDY to go low, then it sends the SDATAC command to the ADC,
then it pulls the chip select pin to HIGH, then it stops the SPI transfer and finally resets the _isAcquisi-
tionRunning variable’s status to false, so the code is ready to start another continuous conversion.

As one can notice, there is no SPI.beginTransaction() call in this function. The reason is because the SPI
communication was already started when the continuous acquisition was started. Since the acquisition is
continuous, the SPI is not closed until the acquisition is stopped. So in this function, we just simply send
a new command (SDATAC) to the ADS1256 chip which will then stop the sampling. Then, the SPI can
be stopped.
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4.8 Multiplexing through the 8 single-ended inputs

This function implements the multiplexing through the eight single-ended inputs from A0 to A7. The
cycleSingle() function also continuously converts the data, so after the code finished returning the value
on the A7 input, it starts over from the A0 again. The continuous conversion has to be stopped using the
stopConversion() function.

1 long ADS1256::cycleSingle()
2 {
3 if(_isAcquisitionRunning == false)
4 {
5 _isAcquisitionRunning = true;
6 _cycle = 0;
7 SPI.beginTransaction(SPISettings(1920000, MSBFIRST, SPI_MODE1));
8 SPI.transfer(0x50 | 1);
9 SPI.transfer(0x00);
10 SPI.transfer(SING_0);
11 digitalWrite(_CS_pin, HIGH);
12 delay(50);
13 digitalWrite(_CS_pin, LOW);
14 }
15 else{}
16

17 if(_cycle < 8)
18 {
19 _outputValue = 0;
20 waitForDRDY();
21 switch (_cycle)
22 {
23 case 0: //Channel 2
24 SPI.transfer(0x50 | 1);
25 SPI.transfer(0x00);
26 SPI.transfer(SING_1);
27 break;
28

29 case 1: //Channel 3
30 SPI.transfer(0x50 | 1);
31 SPI.transfer(0x00);
32 SPI.transfer(SING_2);
33 break;
34

35 case 2: //Channel 4
36 SPI.transfer(0x50 | 1);
37 SPI.transfer(0x00);
38 SPI.transfer(SING_3);
39 break;
40

41 case 3: //Channel 5
42 SPI.transfer(0x50 | 1);
43 SPI.transfer(0x00);
44 SPI.transfer(SING_4);
45 break;
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46

47

48

49 case 4: //Channel 6
50 SPI.transfer(0x50 | 1);
51 SPI.transfer(0x00);
52 SPI.transfer(SING_5);
53 break;
54

55 case 5: //Channel 7
56 SPI.transfer(0x50 | 1);
57 SPI.transfer(0x00);
58 SPI.transfer(SING_6);
59 break;
60

61 case 6: //Channel 8
62 SPI.transfer(0x50 | 1);
63 SPI.transfer(0x00);
64 SPI.transfer(SING_7);
65 break;
66

67 case 7: //Channel 1
68 SPI.transfer(0x50 | 1);
69 SPI.transfer(0x00);
70 SPI.transfer(SING_0);
71 break;
72 }
73

74 SPI.transfer(B11111100);
75 delayMicroseconds(4);
76 SPI.transfer(B11111111);
77 SPI.transfer(B00000001);
78 delayMicroseconds(7);
79

80 _outputBuffer[0] = SPI.transfer(0x0F);
81 _outputBuffer[1] = SPI.transfer(0x0F);
82 _outputBuffer[2] = SPI.transfer(0x0F);
83 _outputValue =
84 ((long)_outputBuffer[0]<<16) | ((long)_outputBuffer[1]<<8) | (_outputBuffer[2]);
85

86 _cycle++;
87 if(_cycle == 8)
88 {
89 _cycle = 0;
90 }
91 }
92

93 return _outputValue;
94 }

34



This function does not differ too much from the readSingleContinuous() function. The main difference is
that the MUX register is manipulated "on the go" during the conversion. First, the code checks if the
_isAcquisitionRunning variable is false. When the code enters the function for the first time, the variable
is false, therefore the value of the _cycle is set to 0. The SPI is started and the SING_0 input is pre-
selected, then chip select pin is pulled to LOW. Then the code progresses and it waits for the DRDY to go
LOW. Then, based on the value of the _cycle variable, an input is selected by writing the corresponding
value to the MUX register. After this, a SYNC, then a WAKEUP command is sent to the ADC which is
then followed by the RDATA command. Following a brief delay, the conversion value is shifted out and
assembled into a 24-bit value. Then, the value of the _cycle variable is increased by one, it becomes 1
after the first iteration.

Since this function also runs indefinitely, the next iteration runs again, but now without the initialization
of the SPI and the manipulation of the chip select pin. However, the value of the _cycle variable is now
1, so the code will select the SING_2 input. The function increments the _cycle up until 8. When it
reaches 8 (which means that we just read the A7 pin), it is immediately reset to 0 after the conversion, so
the multiplexing starts over from 0 (A0 pin) in the next iteration.

I think a convenient way to handle the continuous multiplexing of the 8 single-ended channel looks like
this:

1 while (Serial.read() != ’s’)
2 {
3 for (int i = 0; i < 8; i++)
4 {
5 Serial.print(A.convertToVoltage(A.cycleSingle()), 4);
6 Serial.print("\t");
7 }
8 Serial.println();
9 }
10 A.stopConversion();

The above code runs indefinitely until we send an s letter to the Arduino via the serial port. The for()
loop runs eight times and each time it prints the conversion value in Volts with 4-digits precision and with
a tab as a delimiter character. After the 8th iteration, the code prints a line break and a new series of 8
conversions starts again in a new line. The output should look like this:

1 2.1293 2.3457 1.2346 3.3345 1.2765 0.1245 0.0223 2.6712
2 0.7548 1.3587 2.4326 0.1234 3.1120 1.2901 2.3720 2.3475

Once the MCU receives the letter s from the serial port, it stops the conversion and ends the printing. It
must be noted that with the above implementation, the code is only performing whatever is included in
the while() loop. The code is "locked" inside the while() loop until the user send the s letter to the MCU.

35



4.9 Multiplexing through the 4 differential inputs

Essentially, the principles are the same as for the previous case for single-ended inputs. The main difference
is that the code selects differential input channel pairs instead of single-ended ones. Thus, we only have 4
channels because the differential input channels are always created as a combination of two positive input
terminals; for example A0 and A1.

1 long ADS1256::cycleDifferential()
2 {
3 if(_isAcquisitionRunning == false)
4 {
5 _cycle = 0;
6 _isAcquisitionRunning = true;
7 SPI.beginTransaction(SPISettings(1920000, MSBFIRST, SPI_MODE1));
8 digitalWrite(_CS_pin, LOW);
9 SPI.transfer(0x50 | 1);
10 SPI.transfer(0x00);
11 SPI.transfer(DIFF_0_1);
12 digitalWrite(_CS_pin, HIGH);
13 delay(50);
14 digitalWrite(_CS_pin, LOW);
15 }
16 else
17 {}
18

19 if(_cycle < 4)
20 {
21 _outputValue = 0;
22 waitForDRDY();
23

24 switch (_cycle)
25 {
26 case 0:
27 SPI.transfer(0x50 | 1);
28 SPI.transfer(0x00);
29 SPI.transfer(DIFF_2_3);
30 break;
31

32 case 1:
33 SPI.transfer(0x50 | 1);
34 SPI.transfer(0x00);
35 SPI.transfer(DIFF_4_5);
36 break;
37

38 case 2:
39 SPI.transfer(0x50 | 1);
40 SPI.transfer(0x00);
41 SPI.transfer(DIFF_6_7);
42 break;
43
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44 case 3:
45 SPI.transfer(0x50 | 1);
46 SPI.transfer(0x00);
47 SPI.transfer(DIFF_0_1);
48 break;
49 }
50

51 SPI.transfer(0b11111100);
52 delayMicroseconds(4);
53 SPI.transfer(0b11111111);
54 SPI.transfer(0b00000001);
55 delayMicroseconds(7);
56

57 _outputBuffer[0] = SPI.transfer(0);
58 _outputBuffer[1] = SPI.transfer(0);
59 _outputBuffer[2] = SPI.transfer(0);
60

61 _outputValue =
62 ((long)_outputBuffer[0]<<16) | ((long)_outputBuffer[1]<<8) | (_outputBuffer[2]);
63

64 _cycle++;
65 if(_cycle == 4)
66 {
67 _cycle = 0;
68 }
69 }
70 return _outputValue;
71 }

The first thing to do after entering the function is to check the status of the_isAcquisitionRunning variable.
If it is false, we start the SPI communication, we set the first input channel to DIFF_0_1 (A0+A1 pins)
and toggle the chip select pin. Then, the code waits for the DRDY pin to go LOW. Then, according to
the value of the _cycle register an input pin pair is selected. Then a SYNC and a WAKEUP command
is sent to the ADC, followed by the RDATA command. After a brief delay, the conversion is shifted out
and assembled into a 24-bit value. The cycles repeat until the last input pin pair (A6+A7, _cycle == 4)
is selected. Then after the conversion, the value of the _cycle variable is reset to zero. So, with the next
iteration, the conversion will be obtained again from the A0+A1 input pin pair. Fetching and formatting
the conversions can be done in the exact same way as for the cycleSingle() function:

1 while (Serial.read() != ’s’)
2 {
3 for (int j = 0; j < 4; j++)
4 {
5 Serial.print(A.convertToVoltage(A.cycleDifferential()), 4);
6 Serial.print("\t");
7 }
8 Serial.println(" ");
9 }
10
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5 Testing the code
In this section I show some test results with my library and my custom build ADS1256 voltage logger
board. These are not extremely scientific tests, but they are good enough to show that the code and the
ADC performs reasonably well. The idea is to show how precisely we can read the voltage of a 2.5 V
voltage reference with and without the input buffer. Then I also want to show that the ADC can provide
the expected sampling rates.

5.1 Precision

For these investigations I was using my AD584-based voltage reference and its 2.5 V output. To check
its output voltage, I was using my 6.5-digit Solartron 7060 digital voltmeter [2]. Obviously, none of these
are freshly calibrated, but they are used as my "in-house reference" for this investigation. All devices in
the experiment were running for more than an our before doing the measurements. If a user needs the
ADS1256 for more accurate studies, a proper calibration is recommended.

Figure 2: Picture of the value measured by my Solartron 7060 multimeter.

5.1.1 With input buffer

In this test, I turned the input buffer on and did 100 measurements at 100 SPS and took the average of
the samples. The PGA was set to default (0).

According to my multimeter, the reference voltage was 2.50116 V, and according to ADS1256 it was
2.49963 V. The difference in the readings is 0.00153 V or 1.53 mV.

5.1.2 Without input buffer

Turning the input buffer off causes a serious disturbance in the measured voltage. I repeated a similar
experiment that I performed with the input buffer being on. The only difference is that I did a self-
calibration using the SELFCAL command after changing the buffer.

The multimeter was still showing the same value, (2.50116 V) however, the average of the 100 readings
gave 2.09241 V. This is nearly half a Volt difference, 0.40875 V, to be precise. I tried to play around
with the different settings and calibration, but I was not able to get rid of this nearly half a Volt offset.
Therefore, I believe that this significant difference is really caused by the input buffer. It makes sense as
the input impedance is significantly higher with the enabled buffer (80 MΩ). With the disabled buffer
the input impedance becomes 150 kΩ. This impedance can be low enough to cause a voltage drop and
influence the results.
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5.2 Sampling rate measurement

I made a simple script that tests my code and checks the sampling rate. The principle of the script
is simple, I start a timer, then after a certain number of collected samples, I stop the timer, stop the
conversion and based on the elapsed time and the number of acquired conversions I calculate the "real
sampling rate".

1 long numberOfSamples = 150000;
2 long finishTime = 0;
3 long startTime = micros();
4

5 for (long i = 0; i < numberOfSamples; i++)
6 {
7 A.readSingleContinuous();
8 }
9

10 finishTime = micros() - startTime;
11

12 A.stopConversion();
13

14 Serial.print("Total conversion time for the samples: ");
15 Serial.print(finishTime);
16 Serial.println(" us");
17

18 Serial.print("Sampling rate: ");
19 Serial.print(numberOfSamples * (1000000.0 / finishTime), 3);
20 Serial.println(" SPS");

In the example code above, the variables are adjusted for 30 kSPS sampling speed. The code collects
150000 samples, so it is expected to finish in about 5 seconds. Longer sampling would probably improve
the results to some extent as the sampling speed would be averaged for a longer time period. In Table 10
I summarized my results. There is a slight undershoot at 30 kSPS nominal sampling rate that I could
not figure out so far, but losing 200 SPS is not mission-critical for me, so I am not too worried about the
discrepancy. However, I suspect that the 16 MHz microcontrollers might be a bit too slow for this task, or
my code is not efficient enough. Testing the same code on an STM32F103C8T6 (72 MHz), on a Teensy 4.0
(600 MHz) and on an ESP32-WROOM-32 (240 MHz) gave results slightly above 30000 samples per second.

As a side note, I want to emphasize, that this test in only testing the microcontroller’s capability of fetch-
ing the conversions from the ADS1256 via SPI. As you can see, I just have a for() loop that iterates the
readSingleContinuous() function n-times. The data is not being transferred to the computer!

If you need to get those 30000 samples to the computer in real time, then keep in mind that you need
to send 30000 × 32 bits (120 kilobytes) every second. The function Serial.println() will probably not be
able to keep up with such speed. It is a better idea to send the raw 32-bit data using the Serial.write()
function and then reconstruct the values on the receiving side. A fast and efficient data transfer to the
computer, however, is outside of the scope of this paper.
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Nominal DRATE
(SPS)

Number
of samples

Sampling length
(µs)

Measured DRATE
(SPS)

30000 150000 5032096 29808.7
15000 75000 4999708 15000.9
7500 37500 4999640 7500.5
3750 18750 4999472 3750.4
2000 10000 4998844 2000.5
1000 5000 4998244 1000.4
500 2500 4996316 500.4
100 500 4980844 100.4
60 300 4967256 60.4
50 250 4961504 50.4
30 150 4934324 30.4
25 125 4922852 25.4
15 75 4868452 15.4
10 50 4806848 10.4
5 25 4774140 5.2
2.5 12.5 5026844 2.5

Table 10: Nominal and measured sampling rates on my ATMega32U4-based board.

The above results are visualized in Figure 3 below. The image shows a nice agreement between the nominal
and measured sampling rates.

Figure 3: Nominal SPS vs measured SPS: Visualization of Table 10.
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6 List of tested microcontrollers
In this section you can read the list of the microcontrollers I tested with the library.

• Arduino Uno

• Arduino Uno R4 WiFi5

• Arduino Nano

• Arduino Mega 2560

• ATmega32U4

• Teensy 4.0

• STM32F103C8T6

• STM32F401CCU6

• ESP32-WROOM-32 (38 pin board)

5Thanks for MaxMax-embedded for testing and contribution!
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7 Versions and changelog

7.1 First release - 2022-07-14

This is the first release of the library. Probably there are several mistakes in the code that I could not
spot, but based on the feedbacks I hopefully will receive, these mistakes will be fixed. This handbook
could also contain mistakes and errors, but they will be fixed in the upcoming versions as well.

7.2 Changed PayPal link - 2023-01-20

I had to change PayPal link due to administrative reasons, therefore a new document has been compiled.

7.3 Updates - 2023-11-10

Fixed a few typos in the text. Thank you for the feedbacks!

I also modified the text a little bit here and there to make it more consistent. I reworked the code to
detect the DRDY pin change via an interrupt. Therefore I added a small section about this part of the code.

I also added a little explanation around the ESP32 chip. The library is now also compatible with the
ESP32 chip after a little modification.

Thanks for Abraão Queiroz for testing the library and for recommending corrections!

Finally, the library is available on my GitHub! The code will be maintained there in the future so other
programmers can play around with the library in a better environment.

7.4 Updates - 2024-02-08

A few bugs were fixed. Thank you for the feedbacks!

I fixed a bug regarding setting the PGA value. The PGA value is a part of the whole ADCON register,
and when I modified the PGA value, I accidentally messed up the whole register’s value. This should be
fixed now.

Since the STATUS register has three important bits that can be set individually (byte order, auto-
calibrarion and analog input buffer), I decided to also implement a "get function" for them which can
be used to individually query the settings of these STATUS bits. It is a convenient shortcut.

Further "set functions" which only modify parts of the register value are modified in a way that we first
fetch the most recent value of the register.

When the ADS1256 is initialized, we first pass the initial register values to the corresponding variables
and then write these values on the registers, using the freshly assigned variables. This and the above fixes
should solve a few more "not yet discovered" bugs. In some cases, the registers were updated without
updating their values in their corresponding variables, however, other functions used these variables. This
could lead to conflicting/confusing settings.

These new changes are published as v1.1. The update should be visible in the Official Arduino Library
Manager as well.
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