MySQL Connector/Arduino

Dr. Charles Bell
January 2016
vl.1l.1a

Have you ever wanted to connect your Arduino project to a database to either store the data you've
collected or retrieve data saved to trigger events in your sketch? Well, now you can connect your
Arduino project directly to a MySQL server without using an intermediate computer or a web- or
cloud-based service. Having direct access to a database server means you can store data acquired
from your project as well as check values stored in tables on the server.

This also means you can setup your own, local MySQL server to store your data further removing the
need for Internet connectivity. If that is not an issue, you can still connect to and store data on a
MySQL server via your network, Internet, or even in the cloud!

The MySQL Connector/Arduino is a library that permits you to do exactly that and more! This
document is intended to help you learn about the MySQL Connector/Arduino library and discover its
powerful capabilities. You will also discover important insight into how to use the library as well as
vital troubleshooting tips to overcome problems. Read on as we discover the capabilities and see
examples of how this library works.

Note This version of the connector is a major revision from the 1.0 branch. If you have
been using the 1.0.X version, you may want to read the section entitled, “Changes
from Previous Versions” to see what has changed.

Getting Started

If you have used some of the other methods of storing data from an Arduino such as writing data to
flash memory (e.g. a secure digital card) or an EEPROM device, you probably had to write additional
code to read that data for later use. If you wanted to use that data on a device other than the Arduino,
you probably had to manually copy the data in order to use it. Using a database to store the data can
eliminate the manual data copy and extraction method altogether. Similarly, if your project is such
that you cannot or do not want to connect to the Internet to save your data, the ability to write to a
local database server solves that problem as well.

Saving your data in a database will not only preserve the data for analysis at a later time, it also
means your project can feed data to more complex applications that make use of the data. Better still,
if you have projects that use large data values for calculations or lookups, you can store the data on
the server and retrieve only the data you need for the calculation or operation all without taking up
large blocks of memory on your Arduino. Clearly, this opens a whole new avenue of Arduino projects!

The technology is named Connector/Arduino (for use in this document simply, the connector). The
connector manages the MySQL client communication protocol in a library built for the Arduino
platform. In fact, all of the mechanisms for communicating with the MySQL server are hidden so you
do not need to learn the minutia of the protocol.

Note Henceforth we refer to Connector/Arduino when discussing general concepts and
features and refer to the actual source code using the term the Connector/Arduino
library or simply the library.

Sketches (programs) written to use the library permit you to encode SQL statements to insert data
and run small queries to return data from the database (e.g. using a lookup table).

You may be wondering how a memory and processing limited microcontroller can possibly support
code to insert data into a MySQL server. We can do this because the protocol for communicating with
a MySQL server is not only well known and documented, but also intentionally designed to be
lightweight. Which is one of the small details that make MySQL attractive for embedded developers.

In order to communicate with MySQL, the Arduino must be connected to the MySQL server via a
network. To do so, the Arduino must use an Ethernet or WiFi shield and be connected to the same
Ethernet network as the database server. In fact, the library is compatible with most new Arduino
Ethernet and compatible clone shields that support the standard Ethernet library.

Hardware Requirements

The connector requires an Arduino or Arduino clone with at least 32k of memory. If you are using an
older Arduino like the Duemilanove, be sure you have the version that uses the ATmega328p
processor.

If your sketch is more than a few lines long, you are using a lot of libraries, have a lot of sensors
attached, or want to complex queries, you should consider using one of the larger (as in memory, not
physical size) boards such as the Mega or Due. We will see why this is so in a later section.

The connector also requires the Arduino Ethernet shield or equivalent. This is because the library
references the Ethernet library written for the Ethernet shield. If you have some other form of
Ethernet shield, or the Ethernet shield you are using uses a different library, you will have to make a
slight modification to the library to use it.

Finally, the connector is written specifically for the Arduino Ethernet and WiFi shields or modules
that are compatible with the Ethernet class included with the Arduino IDE. If you have another shield
or module that requires an additional library, it is likely it will not work with this connector. Only
those shields that use the Arduino-supplied Ethernet class will work.

Caution Compatibility in this sense means you can use any shield or module that
implements the same class signature (methods) as the Arduino-supplied Ethernet
class. If you want to use the connector with another library, you will have to write
an intermediate class to translate the library you want to use to the Ethernet
Client class signature.

A Note About Memory

The connector is implemented as an Arduino library. While the protocol is lightweight, the library
does consume some memory. In fact, the library requires about 20k of flash memory to load. Thus, it
requires the ATmega328 or similar processor with 32k of flash memory.

That may seem like there isn’t a lot of space for programming your sensor node but as it turns out
you really don’t need that much for most sensors. If you do, you can always step up to a new Arduino
with more memory. For example, the latest Arduino, the Due, has 512k of memory for program code.
Based on that, a mere 20k is an insignificant amount of overhead.

However, memory limitations can easily be reached when you use additional libraries. Each library
you load will consume memory thereby reducing the available memory for dynamic variables. The
connector must allocate memory to store the query being sent (as a static string) as well as the
results returned (dynamic memory). Thus, if you have several queries you want to send, each one of
those will require space and if you return rows from a query, each row requires space. A combination
of these along can cause a moderately complex sketch on an Uno to run out of space.

You can do a lot to mitigate this problem. You can use a board with more memory, reduce the
number of variables, reduce the size of the rows returned (by specifying a list of columns instead of
SELECT *), and limit the use of libraries and unnecessary code. But the most important task you can
do is to check your sketch for memory leaks.

Memory leaks will cause your sketch to lockup when it runs out of memory. See the FAQ section
below for more details. As a rule, I suggest leaving at least 800 bytes of memory available for
dynamic variables. You can see this when you compile your sketch as shown below.

Sketch uses 20,654 bytes (64%) of program storage space. Maximum is 32,256
bytes.

Global wvariables use 1,186 bytes (57%) of dynamic memory, leaving 862 bytes for
local variables. Maximum is 2,048 bytes.

Here we see the sketch leaves only 862 bytes for local variables. This should be sufficient for most
small sketches that simply write data to the database.

However, consider what would happen if you wanted to retrieve a row from the database that was
400 bytes in length. The connector would need to allocate memory for that row and therefore leave
about 450 bytes left. Considering the Arduino uses this memory (e.g. the stack), this isn’t enough
memory to permit the sketch to run properly. The end result is the Arduino will likely hang.

Consider also a case where you fail to release the dynamic memory allocated. In this case, consider a
case where we want to retrieve a very small amount of data - say about 40 bytes. The sketch will
likely run fine for some time depending on how often we retrieve the data but each time it does, 40
more bytes will be allocated and not returned thus after about 10 or so queries, the Arduino will run
out of memory and freeze.

Networking Hardware

Your networking hardware should be the usual and normal devices typically found in a home or
small office. That is, you should have some sort of router or access point that permits you to connect
your Ethernet or WiFi shield to your network.

For example, a typical wireless access port or cable modem will have additional Ethernet ports that
you can use to connect an Ethernet shield using a normal Ethernet (CAT5 or similar) cable. Do not
use a crossover cable unless you know what one is and how to use it.

Similarly, if using a WiFi shield, your WiFi router should permit connections with the security
protocols supported (see https://www.arduino.cc/en/Main/ArduinoWiFiShield for
more details).

Furthermore, your MySQL server and Arduino must reside on network segments that are reachable.
Ideally, they should be on the same subnet but that isn’t a hard requirement.

If you are not certain of your network configuration or you are attempting to build a solution in a
laboratory at a university, college, or at work, you should seek out the local IT support to help you
configure your hardware on the network.

MySQL Server

The requirements for the MySQL server for use with the Arduino are simple. First and foremost, you
must ensure you setup the MySQL server to permit network connections. See the online MySQL
reference manual for more details about platform-specific installation and setup
(http://dev.mysqgl.com/doc/).

Note The connector is designed to work with MySQL 5.0 and later using the latest client protocols.
If you want to use the connector with a newer, more secure version of the MySQL server, you
must ensure you are using the 5.X era authentication protocols. The connector will not work
with a custom authentication protocol.

More specifically, you must ensure your MySQL server is not setup to bind on a network address (by
commenting outbind address inmy.cfg) and that there are no firewalls or port blocking
software to prohibit access to the server. For example, it is not uncommon for aggressive anti-virus
and firewall software to block access to port 3306 (the default listening port for MySQL).

Finally, the connector is designed to work with the MySQL server. It does not work with other
database servers. Thus, you cannot use it with other database systems.

User Accounts

You will need a user account and password to use in your sketch. While we are not necessarily
concerned about strict security protocols (but there is nothing wrong with that) as the user and
password will be hard coded in the sketch (at least, in the examples below - you can use your own,
more secure methods if you prefer).

This is perhaps the first mistake users make. They either use the root account with no password (not
advisable) or they create a user that is not permitted to connect to the database. More precisely,
MySQL uses a combination of user and host to form a login. Examine the following statements. Are
these the same user or different users?

CREATE USER bob@localhost IDENTIFIED BY 'secret';
CREATE USER bob@'192.168.0.5"'" IDENTIFIED BY 'secret';

The answer may surprise you. They are two different users even though the user name and password
are the same! One is allowed to connect only through the local host machine. That is, the user must be
connected to the same host as the server. The other is allowed to connect to the server if and only if
that user is located on a machine with an IP address of 192.168.0.5.

Now consider your Arduino will be connected via an Ethernet (or WiFi shield) - see below. This
means your Arduino will receive its own IP address and any user connecting to the server must be
validated via the user and host name (IP). For example, if your Arduino is assigned the address of
192.168.0.11, you cannot connect using either of the user accounts created above! Furthermore, if
your Arduino uses DHCP to get an I[P address, you may not know what IP address is given. So how do
you overcome this? Use masking.

The simplest way to create the user is by using a wildcard for the host name as follows.

CREATE USER bob@’%’ IDENTIFIED BY 'secret';

Of course, this is not very secure since the user can connect from any host, but it will get you where
you need to be and is sufficient for most Arduino projects. However, if you want a more secure user
account, you could limit the hosts to a subnet as follows.

CREATE USER bob@’192.168.0.%" IDENTIFIED BY 'secret';

Privileges

You will also need to give the user access to whatever database(s) that you want to access. [won’t go
into all of the details here, but suffice to say you need to grant permissions to each user based on
what you want to do. For example, if you only want to read data, a simple SELECT permission is all
that is needed. In the following example, I go to the other extreme and grant all permissions to the
user. This is Ok since I am both restricting the user to a specific host and limiting access to a single
database. Observe.

GRANT ALL ON test arduino.* TO bob@’192.168.0.11";

Here I have give the user access and all permissions to any objectin the test arduino database.
Note that by default in the absence of any other GRANT statement, the user does not have access to
other databases on the system. This is why using the root user is a bad idea. If you make a mistake in
your sketch and update or delete the wrong row or worse delete the database, you will permanently
loose your data. Always use a newly create user account with minimal permissions for your Arduino
projects.

Test Access

Once your user account is setup and you have granted the correct permissions, you should check the
connection. This is perhaps the one thing that most new users skip and assume everything will work.
Furthermore, they make the mistake of testing the user account from the same host as the server.
This will mask a number of potential pitfalls and is not the best test.

The best way to check if your user account and permissions is to use another computer to login to the
MySQL server. Simply connect another computer to the same network and open the mysqgl client
and attempt to connect. If you do not have another computer to use, you can force the mysqgl client
to use the network to connect (as opposed to socket connections by default) by specifying the host
and port as shown below. The host in this case is the hostname or IP of the MySQL server, not the
Arduino.

mysqgl -ubob -psecret -hl192.168.0.2 --port=3306

Once you have connected, try accessing the database and attempt any operations you want to include
in your sketch. Now would be a good time to test the SQL statements you plan to include in your
sketch. Simply type them in and run them. For example, try inserting some dummy data, creating
objects, selecting rows - whatever you plan to do in your sketch. Not only will this verify your user
account has the correct permissions; it will also verify your SQL statements are properly written and
thus avoid strange errors when you run your script.

Once you can successfully connect and have verified you can access the correct database objects,
reset the data and transfer the login information to your sketch or write it down for later reference.

How To Get MySQL Connector/Arduino

The easiest way to start using the connector is to use the Library Manager to download and install
the connector. Simply open the Library Manager in the Arduino IDE from the Sketch->Include Library-
>Manage Libraries menu. This opens the Library Manager. In the filter your search box, enter
"MySQL" then choose the connector and click Install. In seconds, the new library is installed and
ready for use. You can also revisit the Library Manager and update the connector library whenever a
new version is released. Thus, you can more easily keep your libraries up-to-date!

If you do not want to use the Library Manager (or cannot because you're using a different IDE or
editor), you can also download it from GitHub, unzip it, and place it in your Arduino/Libraries
folder. You can download Connector/Arduino from GitHub
(https://github.com/ChuckBell/MySQL Connector Arduino).Thelibrary is open
source, licensed as GPLv2, and owned by Oracle Corporation. Thus, any modifications to the library
that you intend to share must meet the GPLv2 license.

Once you have downloaded the library, you need to copy or move it to your Arduino/Libraries folder.
Place the folder from the .zip file named MySQL Connector Arduino to your sketches library
folder.

You can find where this is by examining the preferences for the Arduino environment as shown in
Figure 1. For example, my sketches folder on my Macis /Users/cbell/Documents/Arduino.
Thus, [copied the folder to /Users/cbell/Documents/Arduino/Libraries/.

Note You need only one copy of the connector in your Libraries folder. Do not place the
MySQL_* files in your sketch folder or place a second copy elsewhere. Doing so will result
in compilation errors as the IDE won’t know which library files to use.

e 00O Preferences

Sketchbook location:

/Users/cbeII/Documems/Arduino| (_Browse)
Editor language: '_'System Default T] (requires restart of Arduino)
Editor font size: .10 - (requires restart of Arduino)

Show verbose output during: __ compilation [upload
@ Verify code after upload

[l Use external editor

@ Check for updates on startup

™ Update sketch files to new extension on save (.pde -> .ino)

/Users/cbell /Library/Arduino/preferences.txt

Q OK) (Cancel

Figure 1: Arduino Preferences Dialog

Tip If you copy a library to your Libraries folder while the Arduino application is running, you
must restart it to detect the new library.

Writing Sketches using Connector/Arduino

Ok, now that you've downloaded the connector, what do you do with it? This section will explain the
steps needed to write your first, simple sketch. We will also see some examples of more advanced
sketches to give you an idea of what is possible. But first, let’s discuss some requirements from the
MySQL side of things then move on to the physical and network connection. Paying attention here
will save you tons of time troubleshooting later!

[begin with the trivial sketch - simply connecting to the database server. [then present examples on
how to write sketches to do the most common options. Keep in mind these are examples and that
your specific needs may require additional changes.

Getting Connected Using the Ethernet Shield

The very first thing to do when setting up a new sketch to use the connector is to include the right
libraries and variables. Typically, we place the initial calls to the connector for startup in the

setup () method. This includes not only the startup code but also the call to connect to the server. I
present all of these in step-wise order starting with a new sketch. If you want to follow along, open
your Arduino IDE and create a new, blank sketch.

While this and the following examples demonstrate how to use the library, keep in mind there are
several variations of coding style and even choice of flow that are also valid examples. | recommend
trying these as written before adapting them to your own style.

First, add the required include files. These will include all of the libraries needed to compile and run a
sketch using the library. Notice we have included the Ethernet library, which is a built-in library
that you do not need to download. Next we include the MySQL Connector library in the form of

including the header file. Recall the header and source files are part of the .zip file you downloaded
that includes the connector.

#include "Ethernet.h"
#include "MySQL Connector.h"

Next, there are a couple of statements needed to initialize and work with the Ethernet class. These
are shown below. These include the media access control (mac?!) address of the Arduino and the IP
address of the MySQL server. This is not the IP address of the Arduino! The mac address can be any
valid, 6-position hexadecimal address that does not already appear on your network. Thus, you can
use the one in this example but for projects with multiple Arduino Ethernet nodes you will want to
make each mac address unique.

byte mac _addr[] = { OxDE, O0xAD, OxBE, OxEF, OxFE, OxED };
IPAddress server ip (10, 0, 1, 35);

The next section defines a class instance of the Ethernet client and the connection class for the
connector. Here we must define the Ethernet client first as it is passed to the MySQL connector class
as a required parameter.

EthernetClient client;
MySQL Connection conn((Client *)e&client);

Tip This is one of them many improvements in the newest version. Now, so long as the
class is compatible with the Ethernet Client class, you can use any class to initiate
the connector. Which means you can use another, non-Arduino library too - just
as long as it has the Ethernet Client as its ancestor.

The next section includes the variables we will use to supply the user credentials for the connection.
In this case, we need a variable to instantiate the connector, a user name, and a password. Be sure to
use the user account and password that you tested previously.

char user[] = "root"; // MySQL user login username
char password[] = "secret"; // MySQL user login password

Now we are ready to initiate the Ethernet class and make the connection to the database server. The
following contains the complete code to do this in the setup () method. I explain each line following

the example.

void setup () {
Serial.begin(115200);
while (!Serial); // wait for serial port to connect
Ethernet.begin(mac_addr);
Serial.println("Connecting...");
if (conn.connect (server ip, 3306, user, password)) {

delay (1000);

// You would add your code here to run a query once on startup.
}
else

Serial.println("Connection failed.");
conn.close () ;

1https://en.wikipedia.org/wiki/MACiaddress

The first line initiates the serial class. Next, we initiate the Ethernet class. Here we pass in the mac
address we specified earlier. Next, we issue a print statement stating we will be attempting to
connect. Note that use of print statements - however old school - is a valid way to track the progress
of your sketch should something go wrong. Keep in mind these strings you are printing use up
memory so make sure you don’t overuse them, especially on smaller Arduino boards.

The next construct is a conditional statement where we call the method to connect to the server. In
this case, the method is connect () and takes the following parameters; the server IP address (or
host name), server port, user name, and password. If the connection is successful, the method will
return a value that is evaluated as “true” and it will print the success message. Should the connection
fail, the method will return a value that is evaluated as “false” and the failed message will print.

The following shows an example of the statements produced in the serial monitor while running this
sketch. If you're following along with your own Arduino board, you should see something similar.

Connecting...
Connected to server version 5.7.9-log
Query Success!

Notice that we see the messages from the sketch indicating a successful connection. We also see a
response from the library that prints the version of the server to which it connected. This can be
helpful in diagnosing failed queries later on. Listing 1 shows the completed sketch for your reference.
Feel free to copy it substituting your specific data (server address, etc.).

Listing 1: Sample Connection Test - Ethernet

/*
MySQL Connector/Arduino Example : connect

*/

#include <Ethernet.h>

#include <MySQL Connection.h>

byte mac_addr[] = { OxDE, O0xAD, OxBE, OxEF, OxFE, OxED };

IPAddress server addr(10,0,1,35); // IP of the MySQL *server* here
char user[] = "root"; // MySQL user login username
char password[] = "secret"; // MySQL user login password

EthernetClient client;
MySQL Connection conn((Client *)e&client);

void setup () {
Serial.begin(115200);
while (!Serial); // wait for serial port to connect
Ethernet.begin(mac_addr);
Serial.println("Connecting...");
if (conn.connect (server addr, 3306, user, password)) {
delay (1000);
// You would add your code here to run a query once on startup.
}

else

Serial.println("Connection failed.");
conn.close () ;

void loop () {
}

Notice the last line of code in our sketch. The close () method is used to disconnect from the server
and free any memory used. [t is always a good idea to call this method to disconnect from the server
in a clean manner. If you plan to let your sketch sleep for a long period of time, you can use the
connect () and close () methods inside the 1oop () to connect only so long as you need to
perform data operations then disconnect.

Getting Connected Using the WiFi Shield

This example shows the same operation - simple connection - but this time using a WiFi shield2 To
use the WiFi shield, you only need to change one small thing in your sketch. Simply provide include
the header file for the WiFi library and instantiate a class for the WiFi client. That’s right - you no
longer have to make changes to the library files to use the WiFi shield. Yippee!

#include <WiFi.h> // Use this for WiFi instead of Ethernet.h

WiFiClient client; // Use this for WiFi instead of EthernetClient
MySQL Connection conn((Client *)s&client);

Now we must make some changes to our sketch. We need to specify two more variables; the SSID and
password as follows. This should match the settings of your wireless access portor wireless
router.

// WiFi card example
char ssid[] = "my lonely ssid";
char pass[] = "horse no name";

Next, we need to setup code to detect that the WiFi shield is enabled and connected. Most of the time
this isn’t a problem but if you turn on your router and then fire up your Arduino, the WiFi shield may
not have time to initialize properly. You could also use a delay as I've done. Notice we do not use the
Ethernet.begin () method.

Serial.begin(115200);
while (!Serial); // wait for serial port to connect. Needed for Leonardo only

// Begin WiFi section

int status = WiFi.begin(ssid, pass);

if (status != WL CONNECTED) {
Serial.println("Couldn't get a wifi connection");
while (true);

}

// print out info about the connection:

else {
Serial.println("Connected to network");
IPAddress ip = WiFi.localIP();

> https://www.arduino.cc/en/Guide/ArduinoWiFiShield

Serial.print ("My IP address is: ");
Serial.println(ip);

}

// End WiFi section

Serial.println("Connecting...");

if (conn.connect (server addr, 3306, user, password)) {
delay (1000);

}

else
Serial.println("Connection failed.");

conn.close () ;

Here we see the code to check to see if the WiFi is ready and if it is, we retrieve the IP address
assigned. This can be very helpful in determining whether there is a problem with subnets between
your Arduino and the MySQL server. Following this code, we connect as usual. A complete sketch is
shown in listing 2 below.

Listing 2: Sample Connection Test - WiFi

/*
MySQL Connector/Arduino Example : connect by wifi

*/

#include <WiFi.h> // Use this for WiFi instead of Ethernet.h

#include <MySQL Connection.h>
#include <MySQL Cursor.h>

byte mac _addr[] = { OxDE, O0xAD, OxBE, OxEF, OxFE, OxED };
IPAddress server addr(10,0,1,35); // IP of the MySQL *server* here
char user[] = "root"; // MySQL user login username

char password[] = "secret"; // MySQL user login password

// WiFi card example

char ssid[] = "horse pen"; // your SSID
char pass[] = "noname"; // your SSID Password
WiFiClient client; // Use this for WiFi instead of EthernetClient

MySQL Connection conn((Client *)&client);

void setup () {
Serial.begin(115200);
while (!Serial); // wait for serial port to connect. Needed for Leonardo only

// Begin WiFi section

int status = WiFi.begin(ssid, pass);

if (status != WL CONNECTED) {
Serial.println("Couldn't get a wifi connection");
while (true);

}

// print out info about the connection:

else {
Serial.println("Connected to network");
IPAddress ip = WiFi.localIP();
Serial.print ("My IP address is: ");

Serial.println(ip);
}
// End WiFi section

Serial.println("Connecting...");

if (conn.connect (server addr, 3306, user, password)) {
delay (1000);

}

else
Serial.println("Connection failed.");

conn.close () ;

void loop () {
}

If you have problems getting your WiFi shield to work, double check your SSID and password to
ensure you are using the correct values. Try these values on another computer to test them. You
should also refer to the documentation for your WiFi shield as some Arduino compatible WiFi shields
require slightly different startup code.

Now let’s see how we do a simple data collection by adding an INSERT query.

Basic Insert

This example demonstrates how to issue a query to the database. In this case, it is a simple INSERT
that records the connection by simply inserting a row in a table. You can use the previous example as
a template. But first, we need to create a test database and table. Issue the following commands on
your MySQL server.

CREATE DATABASE test arduino;

CREATE TABLE test arduino.hello_arduino (
num integer primary key auto_ increment,
message char (40),
recorded timestamp

);

These commands will create the test arduino database and a simple table named
hello arduino thathas an auto increment column, a text string, and a timestamp. Since the first
and last columns are automatically generated, we need supply only a text string.

To do so, we need to use an SQL query such as the following INSERT statement.
INSERT INTO test arduino.hello arduino (message) VALUES ('Hello, Arduino!');

Go ahead and open a mysq]l client, connect and test that query. Then issue a SELECT query and see
the results. They should be similar to the following. If you run the command several times, you will
see multiple rows in the result set.

mysgl> SELECT * FROM test arduino.hello arduino;
Fo———= Frmm e Fmm +
| num | message | recorded |
Fo———= Frmm e Fmm +

| 1 | Hello, Arduino! | 2015-07-27 14:39:13 |
- fomm - fmm - +
1 row in set (0.00 sec)

As you can see, each time we insert this data we will get a new row in the table complete with a
unique key (auto generated) and a timestamp of when the row was inserted. Cool! Now, let’s add this
to our sketch.

To do so, we add a new string variable to contain the query then use the MySQL Cursor class to
execute the query. To use the cursor, we add another include directive to include the cursor header
file, then dynamically allocate the object with a new operation, perform the query, then use a
delete operation to free the object and all of its memory. The following shows the steps in order.

#include <MySQL Cursor.h>

MySQL Cursor *cur mem = new MySQL Cursor (&conn);
cur mem->execute (INSERT SQL) ;
delete cur mem;

Notice call the execute () method to run the query. Listing 3 shows the completed sketch. Notice

we only added three lines of code and changed the one print statement to clarify the flow (shown in
bold).

Listing 3: Simple Data Insert Sketch

/*
MySQL Connector/Arduino Example : basic insert

*/

#include <Ethernet.h>

#include <MySQL Connection.h>

#include <MySQL Cursor.h>

byte mac _addr[] = { OxDE, O0xAD, OxBE, OxEF, OxFE, OxED };

IPAddress server addr(10,0,1,35); // IP of the MySQL *server* here
char user[] = "root"; // MySQL user login username
char password[] = "secret"; // MySQL user login password

// Sample query
char INSERT SQL[] = "INSERT INTO test_arduino.hello_arduino (message) VALUES
('Hello, Arduino!')";

EthernetClient client;
MySQL Connection conn((Client *)e&client);

void setup () {
Serial.begin(115200);
while (!Serial); // wait for serial port to connect
Ethernet.begin(mac_addr);
Serial.println("Connecting...");
if (conn.connect (server addr, 3306, user, password)) {

delay (1000);

else
Serial.println("Connection failed.");

void loop () {
delay (2000);

Serial.println("Recording data.");

// Initiate the query class instance

MySQL Cursor *cur_mem = new MySQL Cursor (&conn);

// Execute the query

cur_mem->execute (INSERT_SQL) ;

// Note: since there are no results, we do not need to read any data
// Deleting the cursor also frees up memory used

delete cur_mem;

Notice also we put the code to run the query in the 1oop () method, which means it will execute
repeatedly until power down your Arduino. This is because larger, more meaningful sketches that
insert data periodically the data recording code would be put in the 1oop () method.

Go ahead and run this several times then issue the SELECT query again. You should now see one row
for each time the sketch ran (plus how ever many tests you did previously).

Now let’s see a more complex data insert with variables.

Complex Insert

The most frequent use of the connector is recording data collected by the Arduino. This could be a
sensor (or several) such as temperature, latch occurrence (door open/closed), button pressed, etc. As
such, we only need to record the data and move on. However, the data in this case is likely to be
something read or generated rather than a static string.

To insert data that is generated (or read), one must build the query string before issuing the query.
We do this using the sprintf () method. The following example simulates reading a sensor. The
query is still inside the setup () method as we only want to do this once as a test.

Before we being, let’s create a new table that will store the results of an integer and float value read.
We will also keep the text string to label the observation - in this case a simulated sensor node. Since
most sensors produce floating-point numbers, I include one field to demonstrate how to convert
floating-point numbers.

CREATE TABLE test arduino.hello sensor (
num integer primary key auto_ increment,
message char (40),
sensor num integer,
value float,
recorded timestamp

The following is called a format string used by the sprintf () method to form the string. This
works by substituting values from variables for the special characters in the format string itself. As
you may surmise, we will be building a new string and thus will be allocating more memory for this.
As I eluded to earlier, the more of these special strings you must build, the more memory you are
likely to consume and thus if using a smaller Arduino board you must be miserly with your variables.
The following is the format string for this example.

INSERT INTO test arduino.hello sensor (message, sensor num, value) VALUES
('%s',%d, %s)

Notice we have three variables here. The first, a message, is just a string we pass. The second is the
sensor number (and integer). The last is a floating-point number. While we use a % s to signify a
string and a %d to signify the integer for substitution, we have another string s for the floating-point
value. This is because the Arduino library does not currently support converting floating-point
numbers in sprintf (). Thus, we must use the dtostrf () * method as illustrated in the code
snippet below.

dtostrf (50.125, 1, 1, temperature);
sprintf (query, INSERT DATA, "test sensor", 24, temperature);
conn.execute (query) ;

Here we are converting the floating point value 50.125 to a string and storing it a variable named
temperature, which we later use in the sprintf () call along with our message (test sensor) and

sensor number (24). Thus, keep in mind that floating-point numbers are a bit messy to deal with. The
good news is this code works really well. You should end up with a result similar to the output below.

mysgl> select * from test arduino.hello sensor;

+-———- fom - fom - tom— R e e e +
| num | message | sensor num | value | recorded |
+-———- fomm - fom - tom— R e e e +
| 1 | test sensor | 24 | 50.1 | 2015-07-27 15:12:38 |
+-———- fom - fom - tom— R e e e +
1 row in set (0.00 sec)

The variables we need for this sketch include one for a buffer to store the formatted query, the query
format string, and a buffer for the temperature. Listing 4 shows the complete sketch with the new
statements in bold.

Listing 4: Complex Insert Sketch

/*
MySQL Connector/Arduino Example : complex insert

*/

#include <Ethernet.h>

#include <MySQL Connection.h>

#include <MySQL Cursor.h>

byte mac_addr[] = { OxDE, O0xAD, OxBE, OxEF, OxFE, OxED };
IPAddress server addr(10,0,1,35); // IP of the MySQL *server* here
char user[] = "root"; // MySQL user login username

3http://www.atmel.com/webdoc/AVRLibcReferenceManual/index.html (Search for dtostrf)

char password[] = "secret"; // MySQL user login password

// Sample query

char INSERT DATA[] = "INSERT INTO test_arduino.hello_sensor (message,
sensor_num, value) VALUES ('%s',%d,%s)";

char query[128];

char temperature[10];

EthernetClient client;
MySQL Connection conn((Client *)e&client);

void setup () {
Serial.begin(115200);
while (!Serial); // wait for serial port to connect
Ethernet.begin(mac_addr);
Serial.println("Connecting...");
if (conn.connect (server addr, 3306, user, password)) {

delay (1000);

// Initiate the query class instance

MySQL Cursor *cur_mem = new MySQL Cursor (&conn);

// Save

dtostrf (50.125, 1, 1, temperature);

sprintf (query, INSERT DATA, "test sensor", 24, temperature);
// Execute the query

cur_mem->execute (query) ;

// Note: since there are no results, we do not need to read any data
// Deleting the cursor also frees up memory used

delete cur_mem;

Serial.println("Data recorded.");

}
else

Serial.println("Connection failed.");
conn.close () ;

void loop () {
}

You could make the buffers dynamic - and that would probably be a good idea - just make sure you
always release the memory after you're done otherwise you will run out of memory quickly. Also,
make sure the variables or memory allocated is large enough to store the formatted strings. The
sprintf () method will not fail and instead will overflow the memory which can cause all manner
of pain so be sure to double check your memory allocation (static or dynamic)!

As you can see, the hardest part of collecting data is managing the buffers needed for the queries and
making sure you release any allocated memory. You may think selecting data would be a bit easier,
and it is, but it requires a bit more work to make use of the data returned.

Basic Select

Sometimes it is necessary to retrieve data from your database for use in your sketch. Whether you
are reading from a table of values or reading the results of another Arduino project, the data required
will likely be used in some form of calculation.

This example shows a simple SELECT query that retrieves one row from the database and stores it in
a variable for use in the sketch. Like the other examples, I've made this as simple as possible by
placing the code in the setup () method.

Before we begin, let us consider what is happening here. First, we are issuing a SELECT statement

to the database, which will return one or more rows (depending on the query). But before that, the
database will return a list of columns and following that one row at a time until no more rows are
left. Thus, we must first read the columns then one row at a time. Let’s see how to do this in the
following example starting with the query.

Note This query is issued against the world sample database. You can download this
database from the following link (http://dev.mysqgl.com/doc/index~
other. html). To run this sketch, you will need to download the file, unzip it, and
follow the instructions on the website to install it. Once you install the world
database, you can run the query in a mysql client.

mysgl> SELECT population FROM world.city WHERE name = 'New York';

1 row in set (0.01 sec)

Notice there is one row returned. The following is the code we need to read this value.

MySQL Cursor *cur _mem = new MySQL Cursor (&conn) ;
// Execute the query
cur_mem->execute (query);
// Fetch the columns (required) but we don't use them.
column names *columns = cur mem->get columns();
// Read the row (we are only expecting the one)
do {

row = cur mem->get next row();

if (row != NULL) {

head count = atol (row->values[0]);

}
} while (row != NULL);
// Deleting the cursor also frees up memory used
delete cur_mem;
// Show the result
Serial.print (" NYC pop = ");
Serial.println(head count);

Notice we first execute the query then read the columns. This is a special function in the library. If
you want to read the column names, you can but that is a rarely used operation. We will see how to
do this in the next example.

Next, we read the rows one at a time. Since we know the query returns only one row, you may be
tempted to code only the one get next row () call, but do not do this. While we only see the one
row in the result, there is an acknowledgement or trailing packet after the last row read and thus you
must code the loop even if there is only one row returned.

Once the row is read, we use the atol () method to save the value read from the row from the first
column (starts counting at 0). You can use the row variable to reference any column you need if the
row returns more than a single column. But be careful because the more columns returned, the more
memory will be consumed. That is why we specified the one column in the query - to save space and
request only the data needed and nothing more. You should adopt this misery practice when writing
sketches.

Finally, we print out the results we read from the row. Listing 5 shows the completed sketch. Try it
yourself to ensure you get the same value from the database. Once again, the new lines of code are
highlighted in bold.

Listing 5: Simple Select Sketch

/*
MySQL Connector/Arduino Example : basic select

*/

#include <Ethernet.h>

#include <MySQL Connection.h>

#include <MySQL Cursor.h>

byte mac _addr[] = { OxDE, O0xAD, OxBE, OxEF, OxFE, OxED };

IPAddress server addr(10,0,1,35); // IP of the MySQL *server* here
char user[] = "root"; // MySQL user login username
char password[] = "secret"; // MySQL user login password

// Sample query
char query[] = "SELECT population FROM world.city WHERE name = 'New York'";

EthernetClient client;

MySQL Connection conn((Client *)e&client);

// Create an instance of the cursor passing in the connection
MySQL Cursor cur = MySQL Cursor (&conn);

void setup () {
Serial.begin(115200);
while (!Serial); // wait for serial port to connect
Ethernet.begin(mac_addr);
Serial.println("Connecting...");
if (conn.connect (server addr, 3306, user, password)) {

delay (1000);
}

else
Serial.println("Connection failed.");
}
void loop () {

row_values *row = NULL;
long head_count 0;

delay (1000);

Serial.println("1) Demonstrating using a cursor dynamically allocated.");

// Initiate the query class instance

MySQL Cursor *cur_mem = new MySQL Cursor (&conn);

// Execute the query

cur_mem->execute (query) ;

// Fetch the columns (required) but we don't use them.
column_names *columns = cur_mem->get_columns();

// Read the row (we are only expecting the one)
do {
row = cur_mem->get_next row();
if (row '= NULL) {
head_count = atol (row->values[0]);

}
} while (row != NULL);
// Deleting the cursor also frees up memory used
delete cur_mem;

// Show the result
Serial.print (" NYC pop = ");
Serial.println(head_count);

The next example combines the need to pass in variables to the SELECT query to retrieve data based
on dynamic information.

Complex Select

This example shows how to use a SELECT query with a WHERE clause formed from a calculation. In
this case, we simulate the calculation with the use of an arbitrary number. However, you can simply
replace that logic with the reading from user input, a sensor, another Arduino, calculations in your
sketch, etc.

We still use the world database but in this case we want to select those countries with a specific
population (i.e., greater than a specific value provided). The query we want to use is the following.

SELECT name, population FROM world.city
WHERE population > 9000000
ORDER BY population DESC;

There is a lot going on here! Notice not only do we specify the population, we also sort the result by
population. We will therefore see how to navigate a multiple row result set as well as see how to
print the column names returned.

Notice the size of the variable we want to set for the WHERE clause. Here we will use another
sprintf () call to format the string. In this case, we need a long integer thus we use $1u (unsigned
long).

Listing 6 shows the code needed to read the columns, print them out, then read the rows and display
the values with the pertinent code in bold.

Listing 6: Complex Select Sketch

/*

MySQL Connector/Arduino Example : complex select
*/
#include <Ethernet.h>
#include <MySQL Connection.h>
#include <MySQL Cursor.h>

byte mac_addr[] = { OxDE, O0xAD, OxBE, OxEF, OxFE, OxED };

IPAddress server addr(10,0,1,35); // IP of the MySQL *server* here
char user[] = "root"; // MySQL user login username
char password[] = "secret"; // MySQL user login password

// Sample query

//

// Notice the "%lu" - that's a placeholder for the parameter we will

// supply. See sprintf() documentation for more formatting specifier

// options

const char QUERY POP[] = "SELECT name, population FROM world.city WHERE
population > %$lu ORDER BY population DESC;";

char query[128];

EthernetClient client;
MySQL Connection conn((Client *)e&client);

void setup () {

Serial.begin(115200);

while (!Serial); // wait for serial port to connect

Ethernet.begin(mac_addr);

Serial.println("Connecting...");

if (conn.connect (server addr, 3306, user, password)) {
delay (1000);

}

else
Serial.println("Connection failed.");

void loop () {
delay (1000);

Serial.println ("> Running SELECT with dynamically supplied parameter");

// Initiate the query class instance

MySQL Cursor *cur_mem = new MySQL Cursor (&conn);

// Supply the parameter for the query

// Here we use the QUERY POP as the format string and query as the
// destination. This uses twice the memory so another option would be
// to allocate one buffer for all formatted queries or allocate the
// memory as needed (just make sure you allocate enough memory and
// free it when you're done!).

sprintf (query, QUERY POP, 9000000) ;

// Execute the query

cur_mem->execute (query) ;

// Fetch the columns and print them

column_names *cols = cur_mem->get columns();

for (int £ = 0; £ < cols->num_fields; f++) {
Serial.print(cols->fields[£f]->name) ;
if (f < cols->num_fields-1) {
Serial.print(',"');

}
Serial.println() ;
// Read the rows and print them
row_values *row = NULL;
do {
row = cur_mem->get_next row();
if (row '= NULL) {
for (int £ = 0; £ < cols->num_fields; f++) {
Serial.print (row->values[f]) ;
if (f < cols->num_fields-1) {
Serial.print(',"');

}
Serial.println() ;

}
} while (row != NULL);
// Deleting the cursor also frees up memory used
delete cur_mem;

Notice how the code is written to loop over the columns first then the values for each row. Now that
we've seen some examples of sketches and common uses of the library, the next section discusses
some tips and techniques for writing your sketches to interact with MySQL.

Tips for Writing Sketches with the Connector

This section contains a list of suggestions for making better sketches with the connector. In some
cases this is advice and in other cases it is suggested code or techniques. If your sketch will include
more complex queries than those shown above, you should read this section for incorporation into
your own sketches.

Use the Examples

There are many example sketches included with the connector. You should run one or more of these
to ensure you understand how the connector works before writing your own sketch. [recommend
starting with the connect,basic_insert,and basic select examples first. Get to know these
and test them to ensure your MySQL server is setup correctly and your Arduino can connect to it. If
you have trouble with these examples, do not blame the connector (at least not initially). Read the
troubleshooting section below to solve one or more of the common problems and try your example
again. Don’t forget to change the I[P address, user name and password!

Keep It Simple

This one I feel is a given for writing code for microprocessors, but you may be surprised at the
number of requests I've had for helping solve problems. The root cause or the significant factor for
much of the users’ trouble stems around making the sketch far more complex than it needs to be.

This is especially true for those that write their entire solution before testing it. That is, they write
hundreds of lines of code, get it to compile (sometimes not so much) then try to run it. In this case,
the user has failed to realize all aspects of their solution should be tested in a step-wise fashion.

For example, write the sketch to do the minimalist steps needed to demonstrate (test) each part. For
working with the MySQL database, start with a simple connection test then proceed to testing each
and every query using dummy data or simulated values.

Likewise, working with sensors or other devices should be done in isolation so that you can eliminate
major portions of the sketch for investigation should something go wrong.

If you adopt this philosophy, your sketches will be easier to write and you will have far more success
than the “code it once and pray it works” philosophy.

Connect/Close

Most sketches are written to connect once at startup. However, for complex solutions that collect or
interact with the database, the connection is critical for longer running projects. It is often the case
that networks can become unreliable. Indeed, there is nothing in the specification of the networking
protocols or equipment to suggest it is always lossless. In fact, the network is design to be “mostly”
reliable with some acceptable loss.

When loss occurs, it can sometimes cause errors in the connector when reading from the database or
can cause the Ethernet shield to drop its connection. In extreme cases, it can cause the sketch to hang
or loop out of control (depending on how the conditional statements are written).

To combat this, we can use a technique whereby we connect and close on each pass through the loop.
This will work, but there is a more elegant solution that allows you to reconnect whenever the
connection is dropped. The following demonstrates this concept.

void loop () {
delay (1000);

if (conn.connected()) {
// do something
} else {
conn.close () ;
Serial.println("Connecting...");
if (conn.connect (server addr, 3306, user, password)) {
delay (500);
Serial.println ("Successful reconnect!");
} else {
Serial.println("Cannot reconnect! Drat.");

Notice here we check the status of the connector and if it is not connected, we reconnect. This will
save you from cases where the connection is dropped to network or database errors.

Reboot Fix

Closely related to the connect/close technique is a technique to reboot the Arduino should something
bad happen. This can be really handy if you have a project that must work but is Ok if there are short
data gaps. For example, if you are monitoring something and performing calculations it is possible
your hardware could have periodic issues as well as logic errors or simple networking failures.

To overcome these situations, you can program the Arduino to reboot using the following code. Note
that this shows this technique used with the connect/close option as they are complimentary. After
all, if you cannot connect after N tries, a reboot cannot hurt and in most cases where it is a problem
with memory or the Ethernet shield or related, it works.

void soft reset() {
asm volatile("jmp 0O");

void loop () {
delay (1000);

if (conn.connected()) {
// do something
num_ fails = 0;
} else {
conn.close () ;
Serial.println("Connecting...");
if (conn.connect (server addr, 3306, user, password)) {
delay (500);
Serial.println ("Successful reconnect!");
num_ fails++;
if (num fails == MAX FAILED CONNECTS) {
Serial.println("Ok, that's it. I'm outta here. Rebooting...");

delay (2000) ;
soft reset();

Notice here we use an assembler call to jump to position 0. This effectively reboots the Arduino
microcode. Cool, eh? And you thought you’d have to slog out to the pig farm and press the wee little
reboot button.

Memory Checker

Another useful technique is monitoring or diagnosing memory problems by calculating how much
memory is remaining. We do this with the following method.

int get free memory ()
{
extern char bss end;
extern char * brkval;
int free memory;
if ((int) brkval == 0)
free memory = ((int)&free memory) - ((int)& bss end);
else

free memory = ((int)&free memory) - ((int) brkval);
return free memory;

You can use this method anywhere in the code. I like to use it with a print statement to print out the
value calculated as follows.

Serial.print (" RAM: ");
Serial.println(get free memory());

Placing this code strategically in the sketch and watching the results in the serial monitor can help
you spot memory leaks and situations where you run out of memory.

Do Your Homework!

It is at this point that [would like to clarify one thing about using libraries such as the connector. This
is advice for all who are learning how to program your Arduino. Be sure to do your homework and
your own research before asking questions. So many times I get questions about the most basic
things (well, basic to the experienced) that have nothing to do with the connector. For example,
working with memory, variables, and strings seem to be stumbling blocks for new users.

In the end, you will get far more useful help from library authors and other experienced Arduinistas
if you take some time to read a book, web page, or listen to a podcast before contacting the author for
help or complain about a compiler error. A small amount of learning on your part will reap dividends
when you can ask a specific question or seek help for a complex issue.

A case in point is this document. From my experience, this document is far more detailed than any
other library available for the Arduino (with notable exceptions). Part of the motivation for writing
this document was to consolidate the information about the connector and to ensure those new to
using the connector had a sufficiently detailed tutorial. The following section completes the body of
information about the connector by presenting the most common questions asked of users.

Troubleshooting

This section presents a short but proven practice for troubleshooting sketches that use the
connector. Should you have a situation where your sketch fails or doesn’t work when modified or
moved to another network, deployed, etc., following this process can help isolate the problem.

1. Verify the network. Try connecting another computer in place of the Arduino to ensure you
can connect to the network and the database sever. Correct any network issues before
moving on.

2. Verify your user account. With the same computer, try logging into the database using the
credentials in your sketch. Correct any issues with permissions and user accounts before
moving on.

3. Check permissions. If you restart your Arduino and still cannot connect, go back and verify
your permissions again.

4. Check network hardware. Make sure there are no firewalls, port scanners, etc. that are
blocking access to the database server.

5. Isolate your code. Once all connection problems are solved, check your code. Chances are
you can comment out or remove most of the code to check only the bare minimum parts. I

recommend breaking the code into sections and testing each until you encounter the section
with the problem.

6. Check your hardware. When all else fails, try another Arduino. I've seen cases where an
Arduino breaks or has a short or some other failure where it can boot and run simple
sketches but anything more than that it fails.

Frequently Asked Questions

The following are a list of questions that have been asked numerous times on the forums. They
address a lot of common pitfalls and explain a few new techniques not discussed above. Be sure to
scan this list before making new inquiries on the forums. The following are listed in no particular
order.

Can I use the connector to connect to other database servers?
No. The connector only works with MySQL server.
Can I use the connector with non-Arduino compatible Ethernet modules?

The connector only works with Ethernet shields and modules that support the Arduino Ethernet
class. If your module requires a new Ethernet class, it will not work with the connector.

My sketch is locking up. What do I do?

The problem can be one of several things, but the most likely cause is running out of memory or
dropping the network. Check your memory usage to ensure you have enough memory. You can
switch to a large Arduino if your sketch outgrows your board. For network issues, you can use the
connect/close or the reboot techniques above.

"

I'm getting “multiple definition of ‘Connector::check_ok_packet()
What’s wrong?

and similar compiler errors.

If you are seeing compiler errors about duplicate functions and similar, it is because you have the
connector code in more than one place. That is, you have duplicated the code in your Libraries or
sketch folder. On Windows machines, this is possible if you copy the archive to a temporary folder or
unzip it in multiple locations. Be sure only one copy of the mysqgl . * files existinthe Libraries
folder.

I'm getting “error: 'column_names' was not declared in this scope” and similar compiler errors.
What’s wrong?

You must enable WITH SELECT inmysql.h to enable the methods for processing result sets
(SELECT queries).

I'm getting compiler errors in the SHA1 libraries. What'’s wrong?

If you used an older version of the connector and upgraded recently, it is possible your SHA1 folder is
out of date. Be sure to copy the latest shal folder from the .zip archive and restart your IDE.

I get compiler errors when trying to do a query with variables.

Be sureto sprintf () and dtostrf () to format your query with variables. The code does not
support variable substitution.

What is the 3306 in the example code?

It is the port on which the MySQL server is listening. You can specify another port, but your MySQL
server must be setup to listen on the port. 3306 is the default setting.

My queries aren’t working!

You should test your queries using the mysql client before attempting to run your sketch. Many times
there are small syntax errors that you must fix before the query will work.

Why aren’t select queries enabled by default?

[purposefully disabled the code to process result sets to save a few bytes. That is, if your sketch (like
most) are just inserting data, it does not need the extra code taking up valuable memory.

I keep getting “Connection failed”.

If you are getting a connection failed message (as written into your sketch), it is most likely your
Arduino is not connected to the network properly or your user account and password is not correct
or the user does not have permissions to connect. Use a second computer and the credentials from
your sketch to check to see you can connect. Resolve any issues and retry your sketch.

I get the error, “Connector does not name a type”. What'’s wrong?

The most likely scenario is you have not placed the connector in your Arduino Libraries folder or you
have renamed it or you placed it in another folder. Be sure it is installed correctly and restart your
IDE.

Can I assign an IP to the Arduino?

Yes, use one of the alternative set of parameters for the Ethernet class to setup the IP manually. See
https://www.arduino.cc/en/Reference/EthernetBegin.

Can I use a hostname instead of an IP address for the server?

Yes, but it requires using the dns library as follows.

#include <Dns.h>

char hostname[] = "www.google.com”; // change to your server’s hostname/URL

IPAddress server ip;

DNSClient dns;

dns.begin (Ethernet.dnsServerIP());

dns.getHostByName (hostname, server ip);
Serial.println(server ip)
Serial.println("Connecting...");

if (conn.connect (server ip, 3306, user, password)) {

Can I use more than one query?
Yes, just make sure you have enough memory for the strings.
I get PACKET_ERROR. What's that?

This error occurs when the connector receives the wrong packet header or an unexpected response

from the server. It occurs most often when using select queries where there are additional rows that
are not read. See the examples above to ensure you are processing the entire result set. You can also
use a WHERE or LIMIT clause to help restrict the number of rows returned.

I see garbage characters in the serial monitor.

Check to make sure the baud rate of the serial monitor matches your sketch. Change one or the other
to match and you should see valid characters.

I get Connection Failed. What could be wrong?
You have one or more of the following incorrect:

* server address

* using static IP (try DHCP)

* the network connection isn't viable or behind a switch
¢ the user credentials do not work

Your best diagnostic is to use a second computer on the same Ethernet line with the same credentials
(server address, user, password) and attempt to connect. If you can, then you may have a problem
with your hardware.

I still cannot get the connection to work, what else can I try?

You should use one of the examples that come with the Arduino IDE such as the Web Client sketch.
Try this and if that works, you know your Ethernet shield is working. You can do the same for the
WiFi shield. Once you verify the shield works, go back and check your MySQL server and test
connecting to it from another computer until the credentials and permissions are correct.

I am using a second computer but I still cannot login to the database.
The top causes are:

¢ the IP address of the server has changed

* thereis a firewall blocking incoming connections on 3306

* the network port/router/switch doesn't work

* the user and host permissions are not correct (Cannot login)

How can I find my MySQL server IP address?

There are many ways. If you are running Linux, Unix, or Mac OS X, use this:

ifconfig

For Windows use this:

ipconfig
You will find the IP address in the output of these commands.

You can also do this in a mysq]l client:

show variables like 'hostname';

Then use ping (from a terminal) to ping the hostname shown. The output will show the IP address.
Does the connector work with GPRS modules?

No. Only the Arduino Ethernet or WiFi shields.

How do I record the date and time of my event?

Use a timestamp column in your table. This will be updated with the current time and date when the
row is inserted.

How do I use PROGMEM for storing strings?

Include the program memory space header then declare your string with the keyword as shown.
Remember to use the optional second parameter in the execute () method when passing in these
strings for queries.

#include <avr/pgmspace.h>

const PROGMEM char query[] = "SELECT name, population FROM world.city";

conn.execute (query, true);
Can I use the new WiFi Shield 101?

Yes. There is an example on how to use the new WiFi Shield 101. See the File->Examples->MySQL
Connector Arduino menu.

Cam I use the Ethernet Shield 2?

Yes and no. Yes, the connector will work with the new shield but you will need to make a minor
change to the MySQL Packet.h file. Open the MySQL Packet.h file and change:

#include <Ethernet.h>

to:

#include <Ethernet2.h>

And no because you cannot use the new shield (currently) with the Arduino IDE from arduino.cc.
You must download the arduino . org software, not the software from arduino. cc. Yes, there is a

difference. I won't go into that here, but suffice to say there are differences. To download the IDE, go
tohttp://www.arduino.org/software. You can run it along side another version, just make

sure you install it in another location. Once installed, you can compile your sketch but first change the
include directives to list the following.

#include <SPI.h> // <--—-- Add this include

#include <Ethernet2.h> // <--—-- Change to use the new library :)

Limitations

Given the target platform - a small microcontroller with limited memory - there are some limitations
to using a complex library on the Arduino platform. The first thing you should know about the
connector is it isn't a small library and can consume a lot of memory. While the library uses dynamic
memory to keep memory use to a minimum, how much memory is used depends on how you use the
connector.

More specifically, you will need to limit how many string constants you create. If you are issuing
simple data insertion commands (INSERT INTO), an easy way to calculate this is the connector
uses a bit more than the maximum the size of the longest query string in addition to the sum of all of
your strings. If you are querying the server for data, the connector uses a bit more than the
cumulative size of a row of data returned.

There are other limitations to consider but most notable is memory usage. If you are using the latest
Arduino Due this may not be an issue. But there are other considerations. The following lists the
known limitations of the Connector/Arduino.

* Query strings (the SQL statements) must fit into memory. This is because the class uses an
internal buffer for building data packets to send to the server. It is suggested long strings be
stored in program memory using PROGMEM.

* Result sets are read one row-at-a-time and one field-at-a-time.

* The combined length of a row in a result set must fit into memory. The connector reads one
packet-at-a-time and since the Arduino has a limited data size, the combined length of all
fields must be less than available memory.

* Server error responses are processed immediately with the error code and text written via
Serial.print.

Changes from Previous Versions

This section describes the changes from one version to another that developers will need to know in
order to convert any existing code to use the new version. While typically no major changes are
introduced during a major.minor version release cycle, it is likely changes will be made when the
major or minor version is incremented.

Version 1.0.4->1.1.X

The theme for the 1.1.X version was to make a leap forward in making the connector easier to use
and to conform to newer guidelines for writing libraries for the Arduino. As such, many of the
method names changed as well as new classes were added to help improve usability. The following
lists the major changes developers need to know in order to adapt the new version.

* New Connection Class : A new MySQL Connection class was added. This class inherits
from aMySQL Packet class, which contains all of the packet handling code. Thus, the new
connection class is smaller with only a few methods making it easier to use. This class
requires an instance of a Client class compatible with the Ethernet or WiFi Arduino libraries.
As a side benefit, the connector can now be used with any class that implements the same

methods as the original Ethernet Client method. For example, if you bought a newer Ethernet
shield that uses a new chipset (like the one from SeeedStudio), you can use it with the
connector because the base class for the new Ethernet2 library is the same as the Ethernet
Client library. Just include the new class and initialize the connector with a new instance of
the client.

* New Cursor Class : Anew MySQL Cursor class was added. This class permits users to
run queries. It made a separate class mainly to remove the conditional compilation but also
to simplify memory handling.

* New Examples : The original code examples have been rewritten to correspond with the
new documentation examples. There are also a host of new examples to help users get
started more quickly.

* Simplified Memory Handling: The original code required the caller to manage memory
allocated by the connector. With the new version, users need not include the free memory
methods, which are now handled internally by the connector and cursor class.

* Methods Renamed : In order to conform to more traditional MySQL connector libraries,
several methods were renamed. The following summarizes the new names. Some minor
functionality is slightly different as shown.

0ld Method (WERN New Method
mysgl connect () MySQL Connection connect ()
disconnect () MySQL Connection close()
is_connected() MySQL Connection connected ()
cmd _query () MySQL Cursor execute ()

ex: execute (query):;

cmd _query P () MySQL Cursor execute ()
ex: execute (query, true);

free * () MySQL Cursor close()

For More Information

There is a forum setup to answer questions about the connector, which includes questions about use
and problems using it (http://forums.mysqgl.com/list.php?175).

You may also respond to my blogs (http://drcharlesbell.blogspot.com/), butkeep in
mind some of these entries are getting quite long and many repeat the same questions over and over.

So before asking your question, be sure you've read this document in its entirety (especially the FAQ)
before submitting a new question. Chances are, others have seen your problem and a solution
already exists.

[will accept special requests emailed to me directly at drcharlesbell@gmail . com or
chuck.bell@oracle.com, butlreserve the right to delay my response until time permits. Thus,
do not expect an immediate answer (but sometimes I will respond within 24 hours).

