

http://www.RinkyDinkElectronics.com/ (C)2015 Rinky-Dink Electronics, Henning Karlsen

WiiChuck
Nintendo Wii NunChuck Arduino and chipKit library

Manual

Library Manual: WiiChuck Page 1

Introduction:
This library has been made to easily interface and use the Nintendo Wii NunChuck with an
Arduino or chipKit.

This library will default to I2C Fast Mode (400 KHz) when using the hardware I2C interface.

The library has not been tested in combination with the Wire library and I have no idea if
they can share pins. Do not send me any questions about this. If you experience problems with
pin-sharing you can move the NunChuck SDA and SCL pins to any available pins on your
development board. This library will in this case fall back to a software-based, TWI-/I2C-like
protocol which will require exclusive access to the pins used.

If you are using a chipKit Uno32 or uC32 and you want to use the hardware I2C interface you
must remember to set the JP6 and JP8 jumpers to the I2C position (closest to the analog pins).

You can always find the latest version of the library at http://www.RinkyDinkElectronics.com/

For version information, please refer to version.txt.

This library is licensed under a CC BY-NC-SA 3.0 (Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 Unported) License.

For more information see: http://creativecommons.org/licenses/by-nc-sa/3.0/

Library Manual: WiiChuck Page 2

Functions:

WiiChuck(SDA, SCL);
The main class constructor.

Parameters: SDA: Pin connected to the SDA-pin of the Nintendo Wii NunChuck

SCL: Pin connected to the SCL-pin of the Nintendo Wii NunChuck

Usage: WiiChuck myChuck(SDA, SCL); // Start an instance of the WiiChuck class using the hardware I2C int.

Notes: You can connect the NunChuck to any available pin but if you use any other than hardware I2C pin the
library will fall back to a software-based, TWI-like protocol which will require exclusive access to
the pins used, and you will also have to use appropriate, external pull-up resistors on the data and
clock signals. External pull-up resistors are always needed on chipKit boards.

begin();

Initialize the WiiChuck for use.

Parameters: None

Usage: myChuck.begin(); // Initialize the WiiChuck object

readData();

Read the data from the WiiChuck.
Must be called before reading any of the joystick, accelerometer or button values.

Parameters: None

Usage: myChuck.readData(); // Read the data from the WiiChuck

Library Manual: WiiChuck Page 3

getJoyX();

Get the current X position of the joystick.

Parameters: None

Returns: (int) -100 to 100: The position of the joystick in % from the center

Usage: int joyX = myChuck.getJoyX(); // Get the current X position of the joystick

Notes: Negative values indicate that the joystick is to the left of the center while positive values
indicate that the joystick is to the right.

getJoyY();

Get the current Y position of the joystick.

Parameters: None

Returns: (int) -100 to 100: The position of the joystick in % from the center

Usage: int joyY = myChuck.getJoyY(); // Get the current Y position of the joystick

Notes: Negative values indicate that the joystick is below the center while positive values indicate that
the joystick is above center.

Library Manual: WiiChuck Page 4

getRollAngle();

Get the roll angle of the NunChuck.

Parameters: None

Returns: (int) -179 to 180: Roll angle in degrees

Usage: int roll = myChuck.getRollAngle(); // Get the current roll angle of the NunChuck

Notes: Negative values indicate that the NunChuck is rolled to the left while positive values indicate that
the NunChuck is rolled to the right.

getPitchAngle();

Get the pitch angle of the NunChuck.

Parameters: None

Returns: (int) -179 to 180: Pitch angle in degrees

Usage: int pitch = myChuck.getPitchAngle(); // Get the current pitch angle of the NunChuck

Notes: Negative values indicate that the NunChuck is pitched backwards (towards the lead) while positive
values indicate that the NunChuck is pitched forwards.

getAccelX();

Get the raw accelerometer data for the X axis adjusted for offset.

Parameters: None

Returns: (int) -511 to 512

Usage: int accelX = myChuck.getAccelX(); // Get the X axis data from the accelerometer

Notes: The range is theoretical. Normal maximum values are usually a fair amount lower.

getAccelY();

Get the raw accelerometer data for the Y axis adjusted for offset.

Parameters: None

Returns: (int) -511 to 512

Usage: int accelY = myChuck.getAccelY(); // Get the Y axis data from the accelerometer

Notes: The range is theoretical. Normal maximum values are usually a fair amount lower.

getAccelZ();

Get the raw accelerometer data for the Z axis adjusted for offset.

Parameters: None

Returns: (int) -511 to 512

Usage: int accelZ = myChuck.getAccelZ(); // Get the Z axis data from the accelerometer

Notes: The range is theoretical. Normal maximum values are usually a fair amount lower.

Library Manual: WiiChuck Page 5

checkButtonC();

Check if the C button is depressed.

Parameters: None

Returns: (boolean) TRUE if the button is depressed, otherwise FALSE

Usage: Boolean myChuck.checkButtonC(); // Check if the C button is depressed

checkButtonZ();

Check if the Z button is depressed.

Parameters: None

Returns: (boolean) TRUE if the button is depressed, otherwise FALSE

Usage: Boolean myChuck.checkButtonZ(); // Check if the Z button is depressed

