Wi 1Chuck

Nintendo Wit NunChuck Arduino and chipKit library

Manual

Rinky-Dink Electronics

http://www._RinkyDinkElectronics.com/ (C)2015 Rinky-Dink Electronics, Henning Karlsen



Introduction:

This library has been made to easily interface and use the Nintendo Wii NunChuck with an
Arduino or chipKit.

This library will default to I°C Fast Mode (400 KHz) when using the hardware 1°C interface.

The library has not been tested in combination with the Wire library and | have no idea if
they can share pins. Do not send me any questions about this. If you experience problems with
pin-sharing you can move the NunChuck SDA and SCL pins to any available pins on your
development board. This library will in this case fall back to a software-based, TWI-/1%C-like
protocol which will require exclusive access to the pins used.

If you are using a chipKit Uno32 or uC32 and you want to use the hardware 1°C interface you
must remember to set the JP6 and JP8 jumpers to the 1°C position (closest to the analog pins).

You can always find the latest version of the library at http://www.RinkyDinkElectronics.com/

For version information, please refer to version.txt.

This library is licensed under a CC BY-NC-SA 3.0 (Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 Unported) License.

For more information see: http://creativecommons.org/licenses/by-nc-sa/3.0/

Library Manual: WiiChuck Page 1



Functions:

WiiChuck(SDA, SCL);
The main class constructor.

Parameters: SDA: Pin connected to the SDA-pin of the Nintendo Wii NunChuck

SCL: Pin connected to the SCL-pin of the Nintendo Wii NunChuck
Usage: WiiChuck myChuck(SDA, SCL); // Start an instance of the WiiChuck class using the hardware I1°C int.
Notes: You can connect the NunChuck to any available pin but if you use any other than hardware I?C pin the

library will fall back to a software-based, TWI-like protocol which will require exclusive access to
the pins used, and you will also have to use appropriate, external pull-up resistors on the data and
clock signals. External pull-up resistors are always needed on chipKit boards.

begin();
Initialize the WiiChuck for use.
Parameters: None
Usage: myChuck.begin(); /7 Initialize the WiiChuck object
readData();

Read the data from the WiiChuck.
Must be called before reading any of the joystick, accelerometer or button values.

Parameters: None

Usage: myChuck.readData(); // Read the data from the WiiChuck

Library Manual: WiiChuck Page 2



getJoyX();
Get the current X position of the joystick.

Parameters: None

Returns: (int) -100 to 100: The position of the joystick in % from the center

Usage: int joyX = myChuck.getJoyX(); // Get the current X position of the joystick

Notes: Negative values indicate that the joystick is to the left of the center while positive values

indicate that the joystick is to the right.

getJoyY();
Get the current Y position of the joystick.
Parameters: None
Returns: (int) -100 to 100: The position of the joystick in % from the center
Usage: int joyY = myChuck.getdoyY(); // Get the current Y position of the joystick
Notes: Negative values indicate that the joystick is below the center while positive values indicate that

the joystick is above center.

Library Manual: WiiChuck Page 3




getRollAngle();
Get the roll angle of the NunChuck.

Parameters: None

Returns: (int) -179 to 180: Roll angle in degrees

Usage: int roll = myChuck.getRollAngle(); // Get the current roll angle of the NunChuck

Notes: Negative values indicate that the NunChuck is rolled to the left while positive values indicate that

the NunChuck is rolled to the right.

getPitchAngle();
Get the pitch angle of the NunChuck.

Parameters: None

Returns: (int) -179 to 180: Pitch angle in degrees

Usage: int pitch = myChuck.getPitchAngle(); // Get the current pitch angle of the NunChuck

Notes: Negative values indicate that the NunChuck is pitched backwards (towards the lead) while positive

values indicate that the NunChuck is pitched forwards.

getAccelX(Q);
Get the raw accelerometer data for the X axis adjusted for offset.

Parameters: None

Returns: (int) -511 to 512

Usage: int accelX = myChuck.getAccelX(); // Get the X axis data from the accelerometer
Notes: The range is theoretical. Normal maximum values are usually a fair amount lower.

getAccelY();
Get the raw accelerometer data for the Y axis adjusted for offset.

Parameters: None

Returns: (int) -511 to 512

Usage: int accelY = myChuck.getAccelY(); // Get the Y axis data from the accelerometer
Notes: The range is theoretical. Normal maximum values are usually a fair amount lower.

getAccelz();
Get the raw accelerometer data for the Z axis adjusted for offset.

Parameters: None

Returns: (int) -511 to 512

Usage: int accelZ = myChuck.getAccelZ(); // Get the Z axis data from the accelerometer
Notes: The range is theoretical. Normal maximum values are usually a fair amount lower.

Library Manual: WiiChuck Page 4




checkButtonC();
Check if the C button is depressed.

Parameters: None

Returns: (boolean) TRUE if the button is depressed, otherwise FALSE

Usage: Boolean myChuck.checkButtonC(); // Check if the C button is depressed
checkButtonZ();

Check if the Z button is depressed.

Parameters: None

Returns: (boolean) TRUE if the button is depressed, otherwise FALSE

Usage: Boolean myChuck.checkButtonZ(); // Check if the Z button is depressed

Library Manual: WiiChuck Page 5




