
MLX90614 Device Driver
1.0.0

Generated by Doxygen 1.8.16

Thu Sep 26 2019 09:03:02

i

1 MLX90614 Device Driver 1

2 GNU GENERAL PUBLIC LICENSE 2

3 Class Index 10

3.1 Class List . 10

4 File Index 10

4.1 File List . 10

5 Class Documentation 10

5.1 CRC8 Class Reference . 10

5.1.1 Detailed Description . 11

5.1.2 Constructor & Destructor Documentation . 11

5.1.3 Member Function Documentation . 12

5.1.4 Member Data Documentation . 13

5.2 MLX90614 Class Reference . 14

5.2.1 Detailed Description . 16

5.2.2 Member Enumeration Documentation . 16

5.2.3 Constructor & Destructor Documentation . 17

5.2.4 Member Function Documentation . 17

5.2.5 Member Data Documentation . 34

5.3 Property< Type, ClassHolder > Class Template Reference . 36

5.3.1 Detailed Description . 37

5.3.2 Constructor & Destructor Documentation . 37

5.3.3 Member Function Documentation . 37

5.3.4 Member Data Documentation . 40

6 File Documentation 40

6.1 Crc8.cpp File Reference . 40

6.1.1 Detailed Description . 41

6.2 Crc8.cpp . 42

6.3 Crc8.h File Reference . 42

6.3.1 Detailed Description . 43

6.3.2 Macro Definition Documentation . 44

6.4 Crc8.h . 45

6.5 LICENSE.md File Reference . 45

6.6 MLX90614.cpp File Reference . 45

6.6.1 Detailed Description . 46

6.7 MLX90614.cpp . 47

6.8 MLX90614.h File Reference . 52

6.8.1 Macro Definition Documentation . 54

6.9 MLX90614.h . 60

6.10 Property.h File Reference . 62

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

1 MLX90614 Device Driver 1

6.11 Property.h . 62

6.12 README.md File Reference . 63

7 Example Documentation 63

7.1 MelexisTest.ino . 63

Index 67

1 MLX90614 Device Driver

This library was written to enable remote sensing of the temperature of the rotors of outrunner style brushless DC
motors used in remotely piloted aircraft, for the purpose of real time data logging and air to ground telemetry.

These sensors use the SMB bus protocol to communicate. This is similar, though not identical, to the I2C bus.
There is enough similarity to enable the Arduino standard Wire library to communicate with the device, however not
all features can be implemented, for example it is not possible to read the flags register with standard Wire functions.
2 pins are required to interface the device to an Arduino - the SDA and SCL lines.

Installing

Download the distribution package MLX90614.rar and decompress it.
Rename the uncompressed folder /mlx90614.
Check that the /mlx90614 folder contains the following files;

src/MLX90614.cpp
src/MLX90614.h
src/Crc8.cpp
src/Crc8.h
src/property.h
doc/MLX90614.chm
doc/MLX90614.pdf
Doxyfile
keywords.txt
library.properties
LICENSE.md
README.md

Place the /mlx90614 library folder into your arduinosketchfolder/libraries/ folder.
You may need to create the libraries subfolder if its your first library.
Restart the IDE.

You can also optionally install this library using the Arduino IDE built-in installer.

Documentation

MLX90614.chm and MLX90614.pdf contain the documentation for the classes.
A Doxygen script is included to enable generation of documentation. You will need the graph tool, the dot tool, and
the help compiler, in addition to editing the paths to these tools in the script to suit your environment.

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

2

Author

John Fitter B.E., Eagle Air Australia Pty. Ltd.
This library was inspired by a library written by Adafruit Industries.

License

This program is licensed under the terms of the GNU Lesser General Public License as published by the Free
Software Foundation. See the GNU Lesser General Public License for more details at http://www.gnu.←↩

org/copyleft/gpl.html

2 GNU GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. https://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed to take away your freedom to share and
change the works. By contrast, the GNU General Public License is intended to guarantee your freedom to share
and change all versions of a program–to make sure it remains free software for all its users. We, the Free Software
Foundation, use the GNU General Public License for most of our software; it applies also to any other work released
this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed
to make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that
you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free
programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights.
Therefore, you have certain responsibilities if you distribute copies of the software, or if you modify it: responsibilities
to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients
the same freedoms that you received. You must make sure that they, too, receive or can get the source code. And
you must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2)
offer you this License giving you legal permission to copy, distribute and/or modify it.

For the developers' and authors' protection, the GPL clearly explains that there is no warranty for this free software.
For both users' and authors' sake, the GPL requires that modified versions be marked as changed, so that their
problems will not be attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the software inside them,
although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting users' freedom
to change the software. The systematic pattern of such abuse occurs in the area of products for individuals to use,
which is precisely where it is most unacceptable. Therefore, we have designed this version of the GPL to prohibit
the practice for those products. If such problems arise substantially in other domains, we stand ready to extend this
provision to those domains in future versions of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not allow patents to restrict
development and use of software on general-purpose computers, but in those that do, we wish to avoid the special
danger that patents applied to a free program could make it effectively proprietary. To prevent this, the GPL assures
that patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html
https://fsf.org/

2 GNU GENERAL PUBLIC LICENSE 3

TERMS AND CONDITIONS

0. Definitions. "This License" refers to version 3 of the GNU General Public License.

"Copyright" also means copyright-like laws that apply to other kinds of works, such as semiconductor masks.

"The Program" refers to any copyrightable work licensed under this License. Each licensee is addressed as "you".
"Licensees" and "recipients" may be individuals or organizations.

To "modify" a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission,
other than the making of an exact copy. The resulting work is called a "modified version" of the earlier work or a
work "based on" the earlier work.

A "covered work" means either the unmodified Program or a work based on the Program.

To "propagate" a work means to do anything with it that, without permission, would make you directly or secondarily
liable for infringement under applicable copyright law, except executing it on a computer or modifying a private copy.
Propagation includes copying, distribution (with or without modification), making available to the public, and in some
countries other activities as well.

To "convey" a work means any kind of propagation that enables other parties to make or receive copies. Mere
interaction with a user through a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays "Appropriate Legal Notices" to the extent that it includes a convenient and
prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no
warranty for the work (except to the extent that warranties are provided), that licensees may convey the work under
this License, and how to view a copy of this License. If the interface presents a list of user commands or options,
such as a menu, a prominent item in the list meets this criterion.

1. Source Code. The "source code" for a work means the preferred form of the work for making modifications to
it. "Object code" means any non-source form of a work.

A "Standard Interface" means an interface that either is an official standard defined by a recognized standards
body, or, in the case of interfaces specified for a particular programming language, one that is widely used among
developers working in that language.

The "System Libraries" of an executable work include anything, other than the work as a whole, that (a) is included
in the normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves
only to enable use of the work with that Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A "Major Component", in this context, means a major
essential component (kernel, window system, and so on) of the specific operating system (if any) on which the
executable work runs, or a compiler used to produce the work, or an object code interpreter used to run it.

The "Corresponding Source" for a work in object code form means all the source code needed to generate, install,
and (for an executable work) run the object code and to modify the work, including scripts to control those activi-
ties. However, it does not include the work's System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but which are not part of the work. For example,
Corresponding Source includes interface definition files associated with source files for the work, and the source
code for shared libraries and dynamically linked subprograms that the work is specifically designed to require, such
as by intimate data communication or control flow between those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate automatically from other parts of
the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

4

2. Basic Permissions. All rights granted under this License are granted for the term of copyright on the Program,
and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission
to run the unmodified Program. The output from running a covered work is covered by this License only if the output,
given its content, constitutes a covered work. This License acknowledges your rights of fair use or other equivalent,
as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions so long as your license
otherwise remains in force. You may convey covered works to others for the sole purpose of having them make
modifications exclusively for you, or provide you with facilities for running those works, provided that you comply
with the terms of this License in conveying all material for which you do not control copyright. Those thus making or
running the covered works for you must do so exclusively on your behalf, under your direction and control, on terms
that prohibit them from making any copies of your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not
allowed; section 10 makes it unnecessary.

3. Protecting Users' Legal Rights From Anti-Circumvention Law. No covered work shall be deemed part of an
effective technological measure under any applicable law fulfilling obligations under article 11 of the WIPO copyright
treaty adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to
the extent such circumvention is effected by exercising rights under this License with respect to the covered work,
and you disclaim any intention to limit operation or modification of the work as a means of enforcing, against the
work's users, your or third parties' legal rights to forbid circumvention of technological measures.

4. Conveying Verbatim Copies. You may convey verbatim copies of the Program's source code as you receive
it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright
notice; keep intact all notices stating that this License and any non-permissive terms added in accord with section
7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this
License along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection
for a fee.

5. Conveying Modified Source Versions. You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the terms of section 4, provided that you also meet
all of these conditions:

• a) The work must carry prominent notices stating that you modified it, and giving a relevant date.

• b) The work must carry prominent notices stating that it is released under this License and any conditions
added under section 7. This requirement modifies the requirement in section 4 to "keep intact all notices".

• c) You must license the entire work, as a whole, under this License to anyone who comes into possession of
a copy. This License will therefore apply, along with any applicable section 7 additional terms, to the whole of
the work, and all its parts, regardless of how they are packaged. This License gives no permission to license
the work in any other way, but it does not invalidate such permission if you have separately received it.

• d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the
Program has interactive interfaces that do not display Appropriate Legal Notices, your work need not make
them do so.

A compilation of a covered work with other separate and independent works, which are not by their nature extensions
of the covered work, and which are not combined with it such as to form a larger program, in or on a volume of a
storage or distribution medium, is called an "aggregate" if the compilation and its resulting copyright are not used
to limit the access or legal rights of the compilation's users beyond what the individual works permit. Inclusion of a
covered work in an aggregate does not cause this License to apply to the other parts of the aggregate.

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

2 GNU GENERAL PUBLIC LICENSE 5

6. Conveying Non-Source Forms. You may convey a covered work in object code form under the terms of
sections 4 and 5, provided that you also convey the machine-readable Corresponding Source under the terms of
this License, in one of these ways:

• a) Convey the object code in, or embodied in, a physical product (including a physical distribution medium),
accompanied by the Corresponding Source fixed on a durable physical medium customarily used for software
interchange.

• b) Convey the object code in, or embodied in, a physical product (including a physical distribution medium),
accompanied by a written offer, valid for at least three years and valid for as long as you offer spare parts or
customer support for that product model, to give anyone who possesses the object code either

– (1) a copy of the Corresponding Source for all the software in the product that is covered by this License,
on a durable physical medium customarily used for software interchange, for a price no more than your
reasonable cost of physically performing this conveying of source, or

– (2) access to copy the Corresponding Source from a network server at no charge.

• c) Convey individual copies of the object code with a copy of the written offer to provide the Corresponding
Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object
code with such an offer, in accord with subsection 6b.

• d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer
equivalent access to the Corresponding Source in the same way through the same place at no further charge.
You need not require recipients to copy the Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source may be on a different server (operated
by you or a third party) that supports equivalent copying facilities, provided you maintain clear directions next
to the object code saying where to find the Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is available for as long as needed to satisfy
these requirements.

• e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the object
code and Corresponding Source of the work are being offered to the general public at no charge under
subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System
Library, need not be included in conveying the object code work.

A "User Product" is either (1) a "consumer product", which means any tangible personal property which is normally
used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling.
In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage. For
a particular product received by a particular user, "normally used" refers to a typical or common use of that class
of product, regardless of the status of the particular user or of the way in which the particular user actually uses, or
expects or is expected to use, the product. A product is a consumer product regardless of whether the product has
substantial commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of
use of the product.

"Installation Information" for a User Product means any methods, procedures, authorization keys, or other informa-
tion required to install and execute modified versions of a covered work in that User Product from a modified version
of its Corresponding Source. The information must suffice to ensure that the continued functioning of the modified
object code is in no case prevented or interfered with solely because modification has been made.

If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and
the conveying occurs as part of a transaction in which the right of possession and use of the User Product is
transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied by the Installation Information. But this
requirement does not apply if neither you nor any third party retains the ability to install modified object code on the
User Product (for example, the work has been installed in ROM).

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

6

The requirement to provide Installation Information does not include a requirement to continue to provide support
service, warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product
in which it has been modified or installed. Access to a network may be denied when the modification itself materially
and adversely affects the operation of the network or violates the rules and protocols for communication across the
network.

Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a
format that is publicly documented (and with an implementation available to the public in source code form), and
must require no special password or key for unpacking, reading or copying.

7. Additional Terms. "Additional permissions" are terms that supplement the terms of this License by making
exceptions from one or more of its conditions. Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent that they are valid under applicable law. If
additional permissions apply only to part of the Program, that part may be used separately under those permissions,
but the entire Program remains governed by this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any additional permissions from that
copy, or from any part of it. (Additional permissions may be written to require their own removal in certain cases
when you modify the work.) You may place additional permissions on material, added by you to a covered work, for
which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized
by the copyright holders of that material) supplement the terms of this License with terms:

• a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or

• b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in the
Appropriate Legal Notices displayed by works containing it; or

• c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such
material be marked in reasonable ways as different from the original version; or

• d) Limiting the use for publicity purposes of names of licensors or authors of the material; or

• e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks;
or

• f) Requiring indemnification of licensors and authors of that material by anyone who conveys the material
(or modified versions of it) with contractual assumptions of liability to the recipient, for any liability that these
contractual assumptions directly impose on those licensors and authors.

All other non-permissive additional terms are considered "further restrictions" within the meaning of section 10. If
the Program as you received it, or any part of it, contains a notice stating that it is governed by this License along
with a term that is a further restriction, you may remove that term. If a license document contains a further restriction
but permits relicensing or conveying under this License, you may add to a covered work material governed by the
terms of that license document, provided that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a
statement of the additional terms that apply to those files, or a notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated
as exceptions; the above requirements apply either way.

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

2 GNU GENERAL PUBLIC LICENSE 7

8. Termination. You may not propagate or modify a covered work except as expressly provided under this License.
Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this
License (including any patent licenses granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently,
if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the
cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies
you of the violation by some reasonable means, this is the first time you have received notice of violation of this
License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies or
rights from you under this License. If your rights have been terminated and not permanently reinstated, you do not
qualify to receive new licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies. You are not required to accept this License in order to receive
or run a copy of the Program. Ancillary propagation of a covered work occurring solely as a consequence of using
peer-to-peer transmission to receive a copy likewise does not require acceptance. However, nothing other than this
License grants you permission to propagate or modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of
this License to do so.

10. Automatic Licensing of Downstream Recipients. Each time you convey a covered work, the recipient
automatically receives a license from the original licensors, to run, modify and propagate that work, subject to this
License. You are not responsible for enforcing compliance by third parties with this License.

An "entity transaction" is a transaction transferring control of an organization, or substantially all assets of one,
or subdividing an organization, or merging organizations. If propagation of a covered work results from an entity
transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the
work the party's predecessor in interest had or could give under the previous paragraph, plus a right to possession
of the Corresponding Source of the work from the predecessor in interest, if the predecessor has it or can get it with
reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For
example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License,
and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim
is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it.

11. Patents. A "contributor" is a copyright holder who authorizes use under this License of the Program or a work
on which the Program is based. The work thus licensed is called the contributor's "contributor version".

A contributor's "essential patent claims" are all patent claims owned or controlled by the contributor, whether already
acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using,
or selling its contributor version, but do not include claims that would be infringed only as a consequence of further
modification of the contributor version. For purposes of this definition, "control" includes the right to grant patent
sublicenses in a manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential
patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its
contributor version.

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

8

In the following three paragraphs, a "patent license" is any express agreement or commitment, however denomi-
nated, not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent
infringement). To "grant" such a patent license to a party means to make such an agreement or commitment not to
enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is
not available for anyone to copy, free of charge and under the terms of this License, through a publicly available
network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be
so available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3)
arrange, in a manner consistent with the requirements of this License, to extend the patent license to downstream
recipients. "Knowingly relying" means you have actual knowledge that, but for the patent license, your conveying
the covered work in a country, or your recipient's use of the covered work in a country, would infringe one or more
identifiable patents in that country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring
conveyance of, a covered work, and grant a patent license to some of the parties receiving the covered work
authorizing them to use, propagate, modify or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered work and works based on it.

A patent license is "discriminatory" if it does not include within the scope of its coverage, prohibits the exercise of,
or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License.
You may not convey a covered work if you are a party to an arrangement with a third party that is in the business
of distributing software, under which you make payment to the third party based on the extent of your activity of
conveying the work, and under which the third party grants, to any of the parties who would receive the covered
work from you, a discriminatory patent license (a) in connection with copies of the covered work conveyed by you
(or copies made from those copies), or (b) primarily for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28
March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringe-
ment that may otherwise be available to you under applicable patent law.

12. No Surrender of Others' Freedom. If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License.
If you cannot convey a covered work so as to satisfy simultaneously your obligations under this License and any
other pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms
that obligate you to collect a royalty for further conveying from those to whom you convey the Program, the only way
you could satisfy both those terms and this License would be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License. Notwithstanding any other provision of this License,
you have permission to link or combine any covered work with a work licensed under version 3 of the GNU Affero
General Public License into a single combined work, and to convey the resulting work. The terms of this License
will continue to apply to the part which is the covered work, but the special requirements of the GNU Affero General
Public License, section 13, concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License. The Free Software Foundation may publish revised and/or new versions
of the GNU General Public License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of
the GNU General Public License "or any later version" applies to it, you have the option of following the terms and
conditions either of that numbered version or of any later version published by the Free Software Foundation. If the
Program does not specify a version number of the GNU General Public License, you may choose any version ever
published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be
used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version
for the Program.

Later license versions may give you additional or different permissions. However, no additional obligations are
imposed on any author or copyright holder as a result of your choosing to follow a later version.

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

2 GNU GENERAL PUBLIC LICENSE 9

15. Disclaimer of Warranty. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMIT←↩

TED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCH←↩

ANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU A←↩

SSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN W←↩

RITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPE←↩

CIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE
OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE
WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16. If the disclaimer of warranty and limitation of liability provided above
cannot be given local legal effect according to their terms, reviewing courts shall apply local law that most closely
approximates an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption
of liability accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to
achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to
most effectively state the exclusion of warranty; and each file should have at least the "copyright" line and a pointer
to where the full notice is found.

<one line to give the program's name and a brief idea of what it does.>
[program] Copyright (C) [year] [name of author]

This program is free software: you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation, either version 3 of the License,
or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not,
see https://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it starts in an interactive mode:

[program] Copyright (C) [year] [name of author] This program comes with ABSOLUTELY NO WARR←↩

ANTY; for details type "show w".
This is free software, and you are welcome to redistribute it under certain conditions; Type "show c" for
details.

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

https://www.gnu.org/licenses/

10

The hypothetical commands "show w" and "show c" should show the appropriate parts of the General Public Li-
cense. Of course, your program's commands might be different; for a GUI interface, you would use an "about
box".

You should also get your employer (if you work as a programmer) or school, if any, to sign a "copyright disclaimer"
for the program, if necessary. For more information on this, and how to apply and follow the GNU GPL, see
https://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into proprietary programs. If your
program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first,
please read https://www.gnu.org/licenses/why-not-lgpl.html.

3 Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

CRC8 10

MLX90614 14

Property< Type, ClassHolder > 36

4 File Index

4.1 File List

Here is a list of all files with brief descriptions:

Crc8.cpp
8 bit CRC helper/utility class - CPP Source file 40

Crc8.h
8 bit CRC helper/utility class - CPP Header file 42

MLX90614.cpp
Melexis MLX90614 Family Device Driver Library - CPP Source file 45

MLX90614.h 52

Property.h 62

5 Class Documentation

5.1 CRC8 Class Reference

#include <Crc8.h>

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

https://www.gnu.org/licenses/
https://www.gnu.org/licenses/
https://www.gnu.org/licenses/why-not-lgpl.html

5.1 CRC8 Class Reference 11

Public Member Functions

• CRC8 (uint8_t polynomial=CRC8_DEFAULTPOLY)

CRC8 class constructor.

• uint8_t crc8 (void)

Return the current value of the CRC.

• uint8_t crc8 (uint8_t data)

Update the current value of the CRC.

• void crc8Start (uint8_t poly)

Initialize the CRC8 object.

Private Attributes

• uint8_t _crc
• uint8_t _poly

5.1.1 Detailed Description

Definition at line 37 of file Crc8.h.

5.1.2 Constructor & Destructor Documentation

5.1.2.1 CRC8() CRC8::CRC8 (

uint8_t poly = CRC8_DEFAULTPOLY)

CRC8 class constructor.

Parameters

in poly 8 bit CRC polynomial to use.

Definition at line 36 of file Crc8.cpp.
00036 {crc8Start(poly);}

References crc8Start().

Here is the call graph for this function:

CRC8::CRC8 CRC8::crc8Start

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

12

5.1.3 Member Function Documentation

5.1.3.1 crc8() [1/2] uint8_t CRC8::crc8 (

uint8_t data)

Update the current value of the CRC.

Parameters

in data New 8 bit data to be added to the CRC.

Returns

8 bit CRC current value.

Definition at line 49 of file Crc8.cpp.
00049 {
00050 uint8_t i = 8;
00051
00052 _crc ^= data;
00053 while(i--) _crc = _crc & 0x80 ? (_crc « 1) ^ _poly : _crc « 1;
00054 return _crc;
00055 }

References _crc, and _poly.

5.1.3.2 crc8() [2/2] uint8_t CRC8::crc8 (

void)

Return the current value of the CRC.

Returns

8 bit CRC current value.

Definition at line 42 of file Crc8.cpp.
00042 {return _crc;}

References _crc.

Referenced by MLX90614::read16(), and MLX90614::write16().

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

5.1 CRC8 Class Reference 13

Here is the caller graph for this function:

CRC8::crc8

MLX90614::read16

MLX90614::write16

MLX90614::readEEProm

MLX90614::readTemp

MLX90614::writeEEProm

MLX90614::getAddr

MLX90614::getEmissivity

MLX90614::getFIRcoeff

MLX90614::getIIRcoeff

MLX90614::readID

MLX90614::setFIRcoeff

MLX90614::setIIRcoeff

MLX90614::MLX90614

MLX90614::setAddr

MLX90614::setEmissivity

5.1.3.3 crc8Start() void CRC8::crc8Start (

uint8_t poly)

Initialize the CRC8 object.

Parameters

in poly 8 bit CRC polynomial to use.

Definition at line 61 of file Crc8.cpp.
00061 {
00062 _poly = poly;
00063 _crc = 0;
00064 }

References _crc, and _poly.

Referenced by CRC8().

Here is the caller graph for this function:

CRC8::crc8StartCRC8::CRC8

5.1.4 Member Data Documentation

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

14

5.1.4.1 _crc uint8_t CRC8::_crc [private]

Definition at line 44 of file Crc8.h.

Referenced by crc8(), and crc8Start().

5.1.4.2 _poly uint8_t CRC8::_poly [private]

Definition at line 45 of file Crc8.h.

Referenced by crc8(), and crc8Start().

The documentation for this class was generated from the following files:

• Crc8.h
• Crc8.cpp

5.2 MLX90614 Class Reference

#include <MLX90614.h>

Collaboration diagram for MLX90614:

MLX90614

Property< uint8_t,
 MLX90614 >

 Get
Class
Set

 crc8
pec

rwError
busAddr

Public Types

• enum tempUnit_t { MLX90614_TK, MLX90614_TC, MLX90614_TF }
• enum tempSrc_t { MLX90614_SRCA, MLX90614_SRC01, MLX90614_SRC02 }

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

5.2 MLX90614 Class Reference 15

Public Member Functions

• MLX90614 (uint8_t i2caddr=MLX90614_I2CDEFAULTADDR)

MLX90614 Device class constructor.

• boolean begin ()

Initialize the device and the i2c interface.

• boolean isReady (void)
• uint64_t readID (void)

Retrieve the chip ID bytes.

• uint8_t getIIRcoeff (void)

Get the coefficients of the IIR digital filter.

• uint8_t getFIRcoeff (void)

Get the coefficients of the FIR digital filter.

• float getEmissivity (void)

Get the emissivity (ε) of the object.

• void setIIRcoeff (uint8_t csb=4)

Set the coefficients of the IIR digital filter.

• void setFIRcoeff (uint8_t csb=7)

Set the coefficients of the FIR digital filter.

• void setEmissivity (float emiss=1.0)

Set the emissivity (ε) of the object.

• uint16_t readEEProm (uint8_t)

Return a 16 bit value read from EEPROM.

• void writeEEProm (uint8_t, uint16_t)

Write a 16 bit value to EEPROM after first clearing the memory.

• double readTemp (tempSrc_t=MLX90614_SRC01, tempUnit_t=MLX90614_TC)

Return a temperature from the specified source in specified units.

• double convKtoC (double)

Convert temperature in °K to °C.

• double convCtoF (double)

Convert temperature in °C to °F.

Public Attributes

• Property< uint8_t, MLX90614 > busAddr
• Property< uint8_t, MLX90614 > rwError
• Property< uint8_t, MLX90614 > crc8
• Property< uint8_t, MLX90614 > pec

Private Member Functions

• uint16_t read16 (uint8_t)

Return a 16 bit value read from RAM or EEPROM.

• void write16 (uint8_t, uint16_t)

Write a 16 bit value to memory.

• uint8_t getRwError (void)
• uint8_t getCRC8 (void)
• uint8_t getPEC (void)
• uint8_t getAddr (void)

Return the device SMBus address.

• void setAddr (uint8_t)

Set device SMBus address.

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

16

Private Attributes

• boolean _ready
• uint8_t _addr
• uint8_t _rwError
• uint8_t _crc8
• uint8_t _pec

5.2.1 Detailed Description

Examples

MelexisTest.ino.

Definition at line 104 of file MLX90614.h.

5.2.2 Member Enumeration Documentation

5.2.2.1 tempSrc_t enum MLX90614::tempSrc_t

Enumerations for temperature measurement source.

Enumerator

MLX90614_SRCA Chip (ambient) sensor

MLX90614_SRC01 IR source #1
MLX90614_SRC02 IR source #2

Definition at line 134 of file MLX90614.h.
00140 :
00141 boolean _ready;

5.2.2.2 tempUnit_t enum MLX90614::tempUnit_t

Enumerations for temperature units.

Enumerator

MLX90614_TK degrees Kelvin

MLX90614_TC degrees Centigrade

MLX90614_TF degrees Fahrenheit

Definition at line 129 of file MLX90614.h.
00131 {MLX90614_SRCA, /**< Chip (ambient) sensor */
00132 MLX90614_SRC01, /**< IR source #1 */

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

5.2 MLX90614 Class Reference 17

5.2.3 Constructor & Destructor Documentation

5.2.3.1 MLX90614() MLX90614::MLX90614 (

uint8_t i2caddr = MLX90614_I2CDEFAULTADDR)

MLX90614 Device class constructor.

Parameters

in i2caddr Device address (default: published value).

Definition at line 50 of file MLX90614.cpp.
00050 {
00051
00052 busAddr.Set_Class(this);
00053 busAddr.Set_Get(&MLX90614::getAddr);
00054 busAddr.Set_Set(&MLX90614::setAddr);
00055
00056 rwError.Set_Class(this);
00057 rwError.Set_Get(&MLX90614::getRwError);
00058
00059 pec.Set_Class(this);
00060 pec.Set_Get(&MLX90614::getPEC);
00061
00062 crc8.Set_Class(this);
00063 crc8.Set_Get(&MLX90614::getCRC8);
00064
00065 _addr = i2caddr;
00066 _ready = false;
00067 }

References _addr, _ready, busAddr, crc8, getAddr(), getCRC8(), getPEC(), getRwError(), pec, rwError,
Property< Type, ClassHolder >::Set_Class(), Property< Type, ClassHolder >::Set_Get(), Property< Type, ClassHolder >::Set_Set(),
and setAddr().

Here is the call graph for this function:

MLX90614::MLX90614

MLX90614::getAddr

MLX90614::getCRC8

MLX90614::getPEC

MLX90614::getRwError

Property::Set_Class

Property::Set_Get

Property::Set_Set

MLX90614::setAddr

MLX90614::readEEProm

MLX90614::read16

CRC8::crc8

MLX90614::writeEEProm MLX90614::write16

5.2.4 Member Function Documentation

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

18

5.2.4.1 begin() boolean MLX90614::begin (

void)

Initialize the device and the i2c interface.

Examples

MelexisTest.ino.

Definition at line 72 of file MLX90614.cpp.
00072 {
00073
00074 _rwError = _pec = _crc8 = 0;
00075 return _ready = true;
00076 }

References _crc8, _pec, _ready, and _rwError.

5.2.4.2 convCtoF() double MLX90614::convCtoF (

double degC)

Convert temperature in °C to °F.

Parameters

in degC Temperature in °C.

Returns

Temperature in °F.

Examples

MelexisTest.ino.

Definition at line 395 of file MLX90614.cpp.
00395 {return (degC * 1.8) + 32.0;}

Referenced by readTemp().

Here is the caller graph for this function:

MLX90614::convCtoFMLX90614::readTemp

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

5.2 MLX90614 Class Reference 19

5.2.4.3 convKtoC() double MLX90614::convKtoC (

double degK)

Convert temperature in °K to °C.

Parameters

in degK Temperature in °K.

Returns

Temperature in °C.

Examples

MelexisTest.ino.

Definition at line 388 of file MLX90614.cpp.
00388 {return degK - 273.15;}

Referenced by readTemp().

Here is the caller graph for this function:

MLX90614::convKtoCMLX90614::readTemp

5.2.4.4 getAddr() uint8_t MLX90614::getAddr (

void) [private]

Return the device SMBus address.

SMB bus address getter

Remarks

• Must be only device on the bus.

• Sets the library to use the new found address.

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

20

Returns

Device address.

Definition at line 256 of file MLX90614.cpp.
00256 {
00257 uint8_t tempAddr = _addr;
00258
00259 _rwError = 0;
00260
00261 // It is assumed we do not know the existing slave address so the broadcast address is used.
00262 // This will throw a r/w error so errors will be ignored.
00263 _addr = MLX90614_BROADCASTADDR;
00264
00265 // Reload program copy with the existing slave address.
00266 _addr = lowByte(readEEProm(MLX90614_ADDR));
00267
00268 return _addr;
00269 }

References _addr, _rwError, MLX90614_ADDR, MLX90614_BROADCASTADDR, and readEEProm().

Referenced by MLX90614().

Here is the call graph for this function:

MLX90614::getAddr MLX90614::readEEProm MLX90614::read16 CRC8::crc8

Here is the caller graph for this function:

MLX90614::getAddrMLX90614::MLX90614

5.2.4.5 getCRC8() uint8_t MLX90614::getCRC8 (

void) [inline], [private]

8 bit CRC getter

Definition at line 154 of file MLX90614.h.

Referenced by MLX90614().

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

5.2 MLX90614 Class Reference 21

Here is the caller graph for this function:

MLX90614::getCRC8MLX90614::MLX90614

5.2.4.6 getEmissivity() float MLX90614::getEmissivity (

void)

Get the emissivity (ε) of the object.

Emissivity getter

Remarks

The emissivity is stored as a 16 bit integer defined by the following:
ε = dec2hex[round(65535 x emiss)]

Returns

Physical emissivity value in range 0.1 ...1.0

Definition at line 126 of file MLX90614.cpp.
00126 {
00127
00128 _rwError = 0;
00129 uint16_t emiss = readEEProm(MLX90614_EMISS);
00130 if(_rwError) return (float)1.0;
00131 return (float)emiss / 65535.0;
00132 }

References _rwError, MLX90614_EMISS, and readEEProm().

Here is the call graph for this function:

MLX90614::getEmissivity MLX90614::readEEProm MLX90614::read16 CRC8::crc8

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

22

5.2.4.7 getFIRcoeff() uint8_t MLX90614::getFIRcoeff (

void)

Get the coefficients of the FIR digital filter.

IIR coefficient getter

Remarks

The FIR digital filter coefficient N is bits 10:8 of ConfigRegister1
The value of N is set as follows: N = 2 ∧ (csb + 3)
The manufacturer does not recommend N < 128

Definition at line 214 of file MLX90614.cpp.
00214 {
00215
00216 _rwError = 0;
00217
00218 // Get the current value of ConfigRegister1 bits 10:8
00219 uint8_t fir = (readEEProm(MLX90614_CONFIG) » 8) & 7;
00220
00221 if(_rwError) return 7;
00222 return fir;
00223 }

References _rwError, MLX90614_CONFIG, and readEEProm().

Here is the call graph for this function:

MLX90614::getFIRcoeff MLX90614::readEEProm MLX90614::read16 CRC8::crc8

5.2.4.8 getIIRcoeff() uint8_t MLX90614::getIIRcoeff (

void)

Get the coefficients of the IIR digital filter.

IIR coefficient getter

Remarks

The IIR digital filter coefficients are set by the LS 3 bits of ConfigRegister1

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

5.2 MLX90614 Class Reference 23

Returns

Filter coefficient table index. Range 0...7

Definition at line 172 of file MLX90614.cpp.
00172 {
00173
00174 _rwError = 0;
00175
00176 // Get the current value of ConfigRegister1 bits 2:0
00177 uint8_t iir = readEEProm(MLX90614_CONFIG) & 7;
00178
00179 if(_rwError) return 4;
00180 return iir;
00181 }

References _rwError, MLX90614_CONFIG, and readEEProm().

Here is the call graph for this function:

MLX90614::getIIRcoeff MLX90614::readEEProm MLX90614::read16 CRC8::crc8

5.2.4.9 getPEC() uint8_t MLX90614::getPEC (

void) [inline], [private]

PEC getter

Definition at line 155 of file MLX90614.h.

Referenced by MLX90614().

Here is the caller graph for this function:

MLX90614::getPECMLX90614::MLX90614

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

24

5.2.4.10 getRwError() uint8_t MLX90614::getRwError (

void) [inline], [private]

R/W error flags getter

Definition at line 153 of file MLX90614.h.

Referenced by MLX90614().

Here is the caller graph for this function:

MLX90614::getRwErrorMLX90614::MLX90614

5.2.4.11 isReady() boolean MLX90614::isReady (

void) [inline]

Definition at line 109 of file MLX90614.h.
00126 {MLX90614_TK, /**< degrees Kelvin */

5.2.4.12 read16() uint16_t MLX90614::read16 (

uint8_t cmd) [private]

Return a 16 bit value read from RAM or EEPROM.

Parameters

in cmd Command to send (register to read from).

Returns

Value read from memory.

Definition at line 276 of file MLX90614.cpp.
00276 {
00277 uint16_t val;
00278 CRC8 crc(MLX90614_CRC8POLY);
00279
00280 // Send the slave address then the command and set any error status bits returned by the write.
00281 Wire.beginTransmission(_addr);
00282 Wire.write(cmd);
00283 _rwError |= (1 « Wire.endTransmission(false)) » 1;
00284
00285 // Experimentally determined delay to prevent read errors (manufacturer’s data sheet has
00286 // left something out).

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

5.2 MLX90614 Class Reference 25

00287 delayMicroseconds(MLX90614_XDLY);
00288
00289 // Resend slave address then get the 3 returned bytes.
00290 Wire.requestFrom(_addr, (uint8_t)3);
00291
00292 // Data is returned as 2 bytes little endian.
00293 val = Wire.read();
00294 val |= Wire.read() « 8;
00295
00296 // Rread the PEC (CRC-8 of all bytes).
00297 _pec = Wire.read();
00298
00299 // Clear r/w errors if using broadcast address.
00300 if(_addr == MLX90614_BROADCASTADDR) _rwError &= MLX90614_NORWERROR;
00301
00302 // Build our own CRC-8 of all received bytes.
00303 crc.crc8(_addr « 1);
00304 crc.crc8(cmd);
00305 crc.crc8((_addr « 1) + 1);
00306 crc.crc8(lowByte(val));
00307 _crc8 = crc.crc8(highByte(val));
00308
00309 // Set error status bit if CRC mismatch.
00310 if(_crc8 != _pec) _rwError |= MLX90614_RXCRC;
00311
00312 return val;
00313 }

References _addr, _crc8, _pec, _rwError, CRC8::crc8(), MLX90614_BROADCASTADDR, MLX90614_CRC8POLY,
MLX90614_NORWERROR, MLX90614_RXCRC, and MLX90614_XDLY.

Referenced by readEEProm(), readTemp(), and writeEEProm().

Here is the call graph for this function:

MLX90614::read16 CRC8::crc8

Here is the caller graph for this function:

MLX90614::read16MLX90614::readEEProm

MLX90614::readTemp

MLX90614::writeEEProm

MLX90614::getAddr

MLX90614::getEmissivity

MLX90614::getFIRcoeff

MLX90614::getIIRcoeff

MLX90614::readID

MLX90614::setFIRcoeff

MLX90614::setIIRcoeff

MLX90614::MLX90614

MLX90614::setAddr

MLX90614::setEmissivity

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

26

5.2.4.13 readEEProm() uint16_t MLX90614::readEEProm (

uint8_t addr)

Return a 16 bit value read from EEPROM.

Parameters

in addr Register address to read from.

Returns

Value read from EEPROM.

Examples

MelexisTest.ino.

Definition at line 350 of file MLX90614.cpp.
00350 {return read16(addr | 0x20);}

References read16().

Referenced by getAddr(), getEmissivity(), getFIRcoeff(), getIIRcoeff(), readID(), setFIRcoeff(), and setIIRcoeff().

Here is the call graph for this function:

MLX90614::readEEProm MLX90614::read16 CRC8::crc8

Here is the caller graph for this function:

MLX90614::readEEProm

MLX90614::getAddr

MLX90614::getEmissivity

MLX90614::getFIRcoeff

MLX90614::getIIRcoeff

MLX90614::readID

MLX90614::setFIRcoeff

MLX90614::setIIRcoeff

MLX90614::MLX90614

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

5.2 MLX90614 Class Reference 27

5.2.4.14 readID() uint64_t MLX90614::readID (

void)

Retrieve the chip ID bytes.

Chip ID getter

Returns

Chip ID as a 64 bit word.

Examples

MelexisTest.ino.

Definition at line 401 of file MLX90614.cpp.
00401 {
00402 uint64_t ID = 0;
00403
00404 // If we are lucky the compiler will optimise this.
00405 for(uint8_t i = 0; i < 4; i++) ID = (ID «= 16) | readEEProm(MLX90614_ID1 + i);
00406 return ID;
00407 }

References MLX90614_ID1, and readEEProm().

Here is the call graph for this function:

MLX90614::readID MLX90614::readEEProm MLX90614::read16 CRC8::crc8

5.2.4.15 readTemp() double MLX90614::readTemp (

tempSrc_t tsrc = MLX90614_SRC01,

tempUnit_t tunit = MLX90614_TC)

Return a temperature from the specified source in specified units.

Remarks

• Temperature is stored in ram as a 16 bit absolute value to a resolution of 0.02°K

• Linearized sensor die temperature is available as Ta (ambient).

• One or two object temperatures are linearized to the range -38.2°C...125°C

Parameters

in tsrc Internal temperature source to read, default #1.

in tunit Temperature units to convert raw data to, default °C.

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

28

Returns

Temperature.

Examples

MelexisTest.ino.

Definition at line 90 of file MLX90614.cpp.
00090 {
00091 double temp;
00092
00093 _rwError = 0;
00094 switch(tsrc) {
00095 case MLX90614_SRC01 : temp = read16(MLX90614_TOBJ1); break;
00096 case MLX90614_SRC02 : temp = read16(MLX90614_TOBJ2); break;
00097 default : temp = read16(MLX90614_TA);
00098 }
00099 temp *= 0.02;
00100 switch(tunit) {
00101 case MLX90614_TC : return convKtoC(temp);
00102 case MLX90614_TF : return convKtoC(convCtoF(temp));
00103 }
00104 return temp;
00105 }

References _rwError, convCtoF(), convKtoC(), MLX90614_SRC01, MLX90614_SRC02, MLX90614_TA,
MLX90614_TC, MLX90614_TF, MLX90614_TOBJ1, MLX90614_TOBJ2, and read16().

Here is the call graph for this function:

MLX90614::readTemp

MLX90614::convCtoF

MLX90614::convKtoC

MLX90614::read16 CRC8::crc8

5.2.4.16 setAddr() void MLX90614::setAddr (

uint8_t addr) [private]

Set device SMBus address.

SMB bus address setter

Remarks

• Must be only device on the bus.

• Must power cycle the device after changing address.

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

5.2 MLX90614 Class Reference 29

Parameters

in addr New device address. Range 1...127

Definition at line 232 of file MLX90614.cpp.
00232 {
00233
00234 _rwError = 0;
00235
00236 // It is assumed we do not know the existing slave address so the broadcast address is used.
00237 // First ensure the new address is in the legal range (1..127)
00238 if(addr &= 0x7f) {
00239 _addr = MLX90614_BROADCASTADDR;
00240 writeEEProm(MLX90614_ADDR, addr);
00241
00242 // There will always be a r/w error using the broadcast address so we cannot respond
00243 // to r/w errors. We must just assume this worked.
00244 _addr = addr;
00245
00246 } else _rwError |= MLX90614_INVALIDATA;
00247 }

References _addr, _rwError, MLX90614_ADDR, MLX90614_BROADCASTADDR, MLX90614_INVALIDATA, and
writeEEProm().

Referenced by MLX90614().

Here is the call graph for this function:

MLX90614::setAddr MLX90614::writeEEProm

MLX90614::read16

MLX90614::write16

CRC8::crc8

Here is the caller graph for this function:

MLX90614::setAddrMLX90614::MLX90614

5.2.4.17 setEmissivity() void MLX90614::setEmissivity (

float emiss = 1.0)

Set the emissivity (ε) of the object.

Emissivity setter

Remarks

The emissivity is stored as a 16 bit integer defined by the following:
ε = dec2hex[round(65535 x emiss)]

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

30

Parameters

in emiss Physical emissivity value in range 0.1 ...1.0, default 1.0

Definition at line 113 of file MLX90614.cpp.
00113 {
00114
00115 _rwError = 0;
00116 uint16_t e = int(emiss * 65535. + 0.5);
00117 if((emiss > 1.0) || (e < 6553)) _rwError |= MLX90614_INVALIDATA;
00118 else writeEEProm(MLX90614_EMISS, e);
00119 }

References _rwError, MLX90614_EMISS, MLX90614_INVALIDATA, and writeEEProm().

Here is the call graph for this function:

MLX90614::setEmissivity MLX90614::writeEEProm

MLX90614::read16

MLX90614::write16

CRC8::crc8

5.2.4.18 setFIRcoeff() void MLX90614::setFIRcoeff (

uint8_t csb = 7)

Set the coefficients of the FIR digital filter.

IIR coefficient setter

Remarks

The FIR digital filter coefficient N is bits 10:8 of ConfigRegister1
The value of N is set as follows: N = 2 ∧ (csb + 3)
The manufacturer does not recommend N < 128

Parameters

in csb See page 12 of datasheet. Range 0...7, default = 7 (N = 1024)

Definition at line 190 of file MLX90614.cpp.
00190 {
00191
00192 _rwError = 0;
00193
00194 // Ensure legal range by clearing all but the LS 3 bits.
00195 csb &= 7;
00196
00197 // Get the current value of ConfigRegister1
00198 uint16_t reg = readEEProm(MLX90614_CONFIG);
00199
00200 // Clear bits 10:8, mask in the new value, then write it back.
00201 if(!_rwError) {
00202 reg &= 0xf8ff;

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

5.2 MLX90614 Class Reference 31

00203 reg |= (uint16_t)csb « 8;
00204 writeEEProm(MLX90614_CONFIG, reg);
00205 }
00206 }

References _rwError, MLX90614_CONFIG, readEEProm(), and writeEEProm().

Here is the call graph for this function:

MLX90614::setFIRcoeff

MLX90614::readEEProm

MLX90614::writeEEProm

MLX90614::read16

CRC8::crc8

MLX90614::write16

5.2.4.19 setIIRcoeff() void MLX90614::setIIRcoeff (

uint8_t csb = 4)

Set the coefficients of the IIR digital filter.

IIR coefficient setter

Remarks

The IIR digital filter coefficients are set by the LS 3 bits of ConfigRegister1
The value of the coefficients is set as follows:

csb = 0 a1 = 0.5 a2 = 0.5
1 0.25 0.75
2 0.167 0.833
3 0.125 0.875
4 1 0 (IIR bypassed)
5 0.8 0.2
6 0.67 0.33
7 0.57 0.43

Parameters

in csb See page 12 of datasheet. Range 0...7, default = 4 (IIR bypassed)

Definition at line 149 of file MLX90614.cpp.
00149 {
00150
00151 _rwError = 0;
00152
00153 // Ensure legal range by clearing all but the LS 3 bits.
00154 csb &= 7;
00155
00156 // Get the current value of ConfigRegister1
00157 uint16_t reg = readEEProm(MLX90614_CONFIG);
00158
00159 // Clear bits 2:0, mask in the new value, then write it back.
00160 if(!_rwError) {
00161 reg &= 0xfff8;
00162 reg |= (uint16_t)csb;
00163 writeEEProm(MLX90614_CONFIG, reg);

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

32

00164 }
00165 }

References _rwError, MLX90614_CONFIG, readEEProm(), and writeEEProm().

Here is the call graph for this function:

MLX90614::setIIRcoeff

MLX90614::readEEProm

MLX90614::writeEEProm

MLX90614::read16

CRC8::crc8

MLX90614::write16

5.2.4.20 write16() void MLX90614::write16 (

uint8_t cmd,

uint16_t data) [private]

Write a 16 bit value to memory.

Parameters

in cmd Command to send (register to write to).

in data Value to write.

Definition at line 320 of file MLX90614.cpp.
00320 {
00321 CRC8 crc(MLX90614_CRC8POLY);
00322
00323 // Build the CRC-8 of all bytes to be sent.
00324 crc.crc8(_addr « 1);
00325 crc.crc8(cmd);
00326 crc.crc8(lowByte(data));
00327 _crc8 = crc.crc8(highByte(data));
00328
00329 // Send the slave address then the command.
00330 Wire.beginTransmission(_addr);
00331 Wire.write(cmd);
00332
00333 // Write the data low byte first.
00334 Wire.write(lowByte(data));
00335 Wire.write(highByte(data));
00336
00337 // Then write the crc and set the r/w error status bits.
00338 Wire.write(_pec = _crc8);
00339 _rwError |= (1 « Wire.endTransmission(true)) » 1;
00340
00341 // Clear r/w errors if using broadcast address.
00342 if(_addr == MLX90614_BROADCASTADDR) _rwError &= MLX90614_NORWERROR;
00343 }

References _addr, _crc8, _pec, _rwError, CRC8::crc8(), MLX90614_BROADCASTADDR, MLX90614_CRC8POLY,
and MLX90614_NORWERROR.

Referenced by writeEEProm().

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

5.2 MLX90614 Class Reference 33

Here is the call graph for this function:

MLX90614::write16 CRC8::crc8

Here is the caller graph for this function:

MLX90614::write16MLX90614::writeEEProm

MLX90614::setAddr

MLX90614::setEmissivity

MLX90614::setFIRcoeff

MLX90614::setIIRcoeff

MLX90614::MLX90614

5.2.4.21 writeEEProm() void MLX90614::writeEEProm (

uint8_t reg,

uint16_t data)

Write a 16 bit value to EEPROM after first clearing the memory.

Remarks

• Erase and write time 5ms per manufacturer specification

• Manufacturer does not specify max or min erase/write times

Parameters

in reg Address to write to.

in data Value to write.

Examples

MelexisTest.ino.

Definition at line 360 of file MLX90614.cpp.
00360 {
00361 uint16_t val;
00362 reg |= 0x20;

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

34

00363
00364 // Read current value, compare to the new value, and do nothing on a match or if there are
00365 // read errors set the error status flag only.
00366 val = read16(reg);
00367 if((val != data) && !_rwError) {
00368
00369 // On any R/W errors it is assumed the memory is corrupted.
00370 // Clear the memory and wait Terase (per manufacturer’s documentation).
00371 write16(reg, 0);
00372 delay(5);
00373 if(_rwError) _rwError |= MLX90614_EECORRUPT;
00374
00375 // Write the data and wait Twrite (per manufacturer’s documentation)
00376 // and set the r/w error status bits.
00377 write16(reg, data);
00378 delay(5);
00379 if(_rwError) _rwError |= MLX90614_EECORRUPT;
00380 }
00381 }

References _rwError, MLX90614_EECORRUPT, read16(), and write16().

Referenced by setAddr(), setEmissivity(), setFIRcoeff(), and setIIRcoeff().

Here is the call graph for this function:

MLX90614::writeEEProm

MLX90614::read16

MLX90614::write16

CRC8::crc8

Here is the caller graph for this function:

MLX90614::writeEEProm

MLX90614::setAddr

MLX90614::setEmissivity

MLX90614::setFIRcoeff

MLX90614::setIIRcoeff

MLX90614::MLX90614

5.2.5 Member Data Documentation

5.2.5.1 _addr uint8_t MLX90614::_addr [private]

Slave address

Definition at line 145 of file MLX90614.h.

Referenced by getAddr(), MLX90614(), read16(), setAddr(), and write16().

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

5.2 MLX90614 Class Reference 35

5.2.5.2 _crc8 uint8_t MLX90614::_crc8 [private]

8 bit CRC

Definition at line 147 of file MLX90614.h.

Referenced by begin(), read16(), and write16().

5.2.5.3 _pec uint8_t MLX90614::_pec [private]

PEC

Definition at line 148 of file MLX90614.h.

Referenced by begin(), read16(), and write16().

5.2.5.4 _ready boolean MLX90614::_ready [private]

Definition at line 144 of file MLX90614.h.

Referenced by begin(), and MLX90614().

5.2.5.5 _rwError uint8_t MLX90614::_rwError [private]

R/W error flags

Definition at line 146 of file MLX90614.h.

Referenced by begin(), getAddr(), getEmissivity(), getFIRcoeff(), getIIRcoeff(), read16(), readTemp(), setAddr(),
setEmissivity(), setFIRcoeff(), setIIRcoeff(), write16(), and writeEEProm().

5.2.5.6 busAddr Property<uint8_t, MLX90614> MLX90614::busAddr

SMBus address property

Definition at line 123 of file MLX90614.h.

Referenced by MLX90614().

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

36

5.2.5.7 crc8 Property<uint8_t, MLX90614> MLX90614::crc8

8 bit CRC property

Examples

MelexisTest.ino.

Definition at line 125 of file MLX90614.h.

Referenced by MLX90614().

5.2.5.8 pec Property<uint8_t, MLX90614> MLX90614::pec

PEC property

Examples

MelexisTest.ino.

Definition at line 126 of file MLX90614.h.

Referenced by MLX90614().

5.2.5.9 rwError Property<uint8_t, MLX90614> MLX90614::rwError

R/W error flags property

Examples

MelexisTest.ino.

Definition at line 124 of file MLX90614.h.

Referenced by MLX90614().

The documentation for this class was generated from the following files:

• MLX90614.h
• MLX90614.cpp

5.3 Property< Type, ClassHolder > Class Template Reference

#include <Property.h>

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

5.3 Property< Type, ClassHolder > Class Template Reference 37

Public Member Functions

• Property ()
• Property (ClassHolder ∗ClassA, Type(ClassHolder::∗GetA)(), void(ClassHolder::∗SetA)(Type Val))
• void Set_Property_Control (ClassHolder ∗ClassA, Type(ClassHolder::∗GetA)(), void(ClassHolder←↩

::∗SetA)(Type Val))
• void Set_Get (Type(ClassHolder::∗GetA)())
• void Set_Set (void(ClassHolder::∗SetA)(Type Val))
• void Set_Class (ClassHolder ∗Holder)
• Type operator= (const Type &In)
• Type operator= (Property &In)
• operator Type ()

Private Attributes

• Type(ClassHolder::∗ Get)()
• void(ClassHolder::∗ Set)(Type Val)
• ClassHolder ∗ Class

5.3.1 Detailed Description

template<typename Type, typename ClassHolder>
class Property< Type, ClassHolder >

Definition at line 8 of file Property.h.

5.3.2 Constructor & Destructor Documentation

5.3.2.1 Property() [1/2] template<typename Type, typename ClassHolder>

Property< Type, ClassHolder >::Property () [inline]

Definition at line 15 of file Property.h.
00015 : Get(NULL), Set(NULL), Class(NULL) {}

5.3.2.2 Property() [2/2] template<typename Type, typename ClassHolder>

Property< Type, ClassHolder >::Property (

ClassHolder ∗ ClassA,

Type(ClassHolder::∗)() GetA,

void(ClassHolder::∗)(Type Val) SetA) [inline]

Definition at line 16 of file Property.h.
00016 : Class(ClassA), Get(GetA), Set(SetA) {}

5.3.3 Member Function Documentation

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

38

5.3.3.1 operator Type() template<typename Type, typename ClassHolder>

Property< Type, ClassHolder >::operator Type () [inline]

Definition at line 49 of file Property.h.
00049 {
00050 return Get ? (Class->*Get)() : 0;
00051 }

5.3.3.2 operator=() [1/2] template<typename Type, typename ClassHolder>

Type Property< Type, ClassHolder >::operator= (

const Type & In) [inline]

Definition at line 37 of file Property.h.
00037 {
00038 if (Set) (Class->*Set)(In);
00039 return In;
00040 }

5.3.3.3 operator=() [2/2] template<typename Type, typename ClassHolder>

Type Property< Type, ClassHolder >::operator= (

Property< Type, ClassHolder > & In) [inline]

Definition at line 43 of file Property.h.
00043 {
00044 if (Set) (Class->*Set)(In);
00045 return In;
00046 }

5.3.3.4 Set_Class() template<typename Type, typename ClassHolder>

void Property< Type, ClassHolder >::Set_Class (

ClassHolder ∗ Holder) [inline]

Definition at line 32 of file Property.h.
00032 {
00033 Class = Holder;
00034 }

Referenced by MLX90614::MLX90614().

Here is the caller graph for this function:

Property::Set_ClassMLX90614::MLX90614

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

5.3 Property< Type, ClassHolder > Class Template Reference 39

5.3.3.5 Set_Get() template<typename Type, typename ClassHolder>

void Property< Type, ClassHolder >::Set_Get (

Type(ClassHolder::∗)() GetA) [inline]

Definition at line 24 of file Property.h.
00024 {
00025 Get = GetA;
00026 }

Referenced by MLX90614::MLX90614().

Here is the caller graph for this function:

Property::Set_GetMLX90614::MLX90614

5.3.3.6 Set_Property_Control() template<typename Type, typename ClassHolder>

void Property< Type, ClassHolder >::Set_Property_Control (

ClassHolder ∗ ClassA,

Type(ClassHolder::∗)() GetA,

void(ClassHolder::∗)(Type Val) SetA) [inline]

Definition at line 18 of file Property.h.
00018

{
00019 Class = ClassA;
00020 Get = GetA;
00021 Set = SetA;
00022 }

5.3.3.7 Set_Set() template<typename Type, typename ClassHolder>

void Property< Type, ClassHolder >::Set_Set (

void(ClassHolder::∗)(Type Val) SetA) [inline]

Definition at line 28 of file Property.h.
00028 {
00029 Set = SetA;
00030 }

Referenced by MLX90614::MLX90614().

Here is the caller graph for this function:

Property::Set_SetMLX90614::MLX90614

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

40

5.3.4 Member Data Documentation

5.3.4.1 Class template<typename Type, typename ClassHolder>

ClassHolder∗ Property< Type, ClassHolder >::Class [private]

Definition at line 12 of file Property.h.

Referenced by Property< uint8_t, MLX90614 >::operator uint8_t(), Property< uint8_t, MLX90614 >::operator=(),
Property< uint8_t, MLX90614 >::Set_Class(), and Property< uint8_t, MLX90614 >::Set_Property_Control().

5.3.4.2 Get template<typename Type, typename ClassHolder>

Type(ClassHolder::∗ Property< Type, ClassHolder >::Get) () [private]

Definition at line 10 of file Property.h.

Referenced by Property< uint8_t, MLX90614 >::operator uint8_t(), Property< uint8_t, MLX90614 >::Set_Get(),
and Property< uint8_t, MLX90614 >::Set_Property_Control().

5.3.4.3 Set template<typename Type, typename ClassHolder>

void(ClassHolder::∗ Property< Type, ClassHolder >::Set) (Type Val) [private]

Definition at line 11 of file Property.h.

Referenced by Property< uint8_t, MLX90614 >::operator=(), Property< uint8_t, MLX90614 >::Set_Property_Control(),
and Property< uint8_t, MLX90614 >::Set_Set().

The documentation for this class was generated from the following file:

• Property.h

6 File Documentation

6.1 Crc8.cpp File Reference

8 bit CRC helper/utility class - CPP Source file.

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

6.1 Crc8.cpp File Reference 41

#include "Crc8.h"
Include dependency graph for Crc8.cpp:

Crc8.cpp

Crc8.h

WProgram.h

6.1.1 Detailed Description

8 bit CRC helper/utility class - CPP Source file.

Author

J. F. Fitter jfitter@eagleairaust.com.au

Version

1.0

Date

2014-2017

Copyright

Copyright © 2017 John Fitter. All right reserved.

License

This program is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at
your option) any later version.

This Program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details at http://www.gnu.org/copyleft/gpl.html

You should have received a copy of the GNU Lesser General Public License along with this library; if not, write
to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Definition in file Crc8.cpp.

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

mailto:jfitter@eagleairaust.com.au
http://www.gnu.org/copyleft/gpl.html

42

6.2 Crc8.cpp

00001 /***//**
00002 * \brief 8 bit CRC helper/utility class - CPP Source file.
00003 * \file CRC8.CPP
00004 * \author J. F. Fitter <jfitter@eagleairaust.com.au>
00005 * \version 1.0
00006 * \date 2014-2017
00007 * \copyright Copyright © 2017 John Fitter. All right reserved.
00008 *
00009 * \par License
00010 * This program is free software; you can redistribute it and/or modify it under
00011 * the terms of the GNU Lesser General Public License as published by the Free
00012 * Software Foundation; either version 2.1 of the License, or (at your option)
00013 * any later version.
00014 * \par
00015 * This Program is distributed in the hope that it will be useful, but WITHOUT ANY
00016 * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
00017 * PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details
00018 * at http://www.gnu.org/copyleft/gpl.html
00019 * \par
00020 * You should have received a copy of the GNU Lesser General Public License along
00021 * with this library; if not, write to the Free Software Foundation, Inc.,
00022 * 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
00023 *
00024 *//***/
00025
00026 #include "Crc8.h"
00027
00028 /**/
00029 /* CRC8 helper class functions. */
00030 /**/
00031
00032 /**
00033 * \brief CRC8 class constructor.
00034 * \param [in] poly 8 bit CRC polynomial to use.
00035 */
00036 CRC8::CRC8(uint8_t poly) {crc8Start(poly);}
00037
00038 /**
00039 * \brief Return the current value of the CRC.
00040 * \return 8 bit CRC current value.
00041 */
00042 uint8_t CRC8::crc8(void) {return _crc;}
00043
00044 /**
00045 * \brief Update the current value of the CRC.
00046 * \param [in] data New 8 bit data to be added to the CRC.
00047 * \return 8 bit CRC current value.
00048 */
00049 uint8_t CRC8::crc8(uint8_t data) {
00050 uint8_t i = 8;
00051
00052 _crc ^= data;
00053 while(i--) _crc = _crc & 0x80 ? (_crc « 1) ^ _poly : _crc « 1;
00054 return _crc;
00055 }
00056
00057 /**
00058 * \brief Initialize the CRC8 object.
00059 * \param [in] poly 8 bit CRC polynomial to use.
00060 */
00061 void CRC8::crc8Start(uint8_t poly) {
00062 _poly = poly;
00063 _crc = 0;
00064 }
00065

6.3 Crc8.h File Reference

8 bit CRC helper/utility class - CPP Header file.

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

6.3 Crc8.h File Reference 43

#include "WProgram.h"
Include dependency graph for Crc8.h:

Crc8.h

WProgram.h

This graph shows which files directly or indirectly include this file:

Crc8.h

Crc8.cpp MLX90614.h

MLX90614.cpp

Classes

• class CRC8

Macros

• #define CRC8_DEFAULTPOLY 7

6.3.1 Detailed Description

8 bit CRC helper/utility class - CPP Header file.

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

44

Author

J. F. Fitter jfitter@eagleairaust.com.au

Version

1.0

Date

2014-2017

Copyright

Copyright © 2017 John Fitter. All right reserved.

License

This program is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at
your option) any later version.

This Program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details at http://www.gnu.org/copyleft/gpl.html

You should have received a copy of the GNU Lesser General Public License along with this library; if not, write
to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Definition in file Crc8.h.

6.3.2 Macro Definition Documentation

6.3.2.1 CRC8_DEFAULTPOLY #define CRC8_DEFAULTPOLY 7

Default CRC polynomial = X8+X2+X1+1

Definition at line 35 of file Crc8.h.

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

mailto:jfitter@eagleairaust.com.au
http://www.gnu.org/copyleft/gpl.html

6.4 Crc8.h 45

6.4 Crc8.h

00001 #ifndef _CRC8_H_
00002 #define _CRC8_H_
00003
00004 /***//**
00005 * \brief 8 bit CRC helper/utility class - CPP Header file.
00006 * \file CRC8.H
00007 * \author J. F. Fitter <jfitter@eagleairaust.com.au>
00008 * \version 1.0
00009 * \date 2014-2017
00010 * \copyright Copyright © 2017 John Fitter. All right reserved.
00011 *
00012 * \par License
00013 * This program is free software; you can redistribute it and/or modify it under
00014 * the terms of the GNU Lesser General Public License as published by the Free
00015 * Software Foundation; either version 2.1 of the License, or (at your option)
00016 * any later version.
00017 * \par
00018 * This Program is distributed in the hope that it will be useful, but WITHOUT ANY
00019 * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
00020 * PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details
00021 * at http://www.gnu.org/copyleft/gpl.html
00022 * \par
00023 * You should have received a copy of the GNU Lesser General Public License along
00024 * with this library; if not, write to the Free Software Foundation, Inc.,
00025 * 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
00026 *
00027 *//***/
00028
00029 #if (ARDUINO >= 100)
00030 #include "Arduino.h"
00031 #else
00032 #include "WProgram.h"
00033 #endif
00034
00035 #define CRC8_DEFAULTPOLY 7 /**< Default CRC polynomial = X8+X2+X1+1 */
00036
00037 class CRC8 {
00038 public:
00039 CRC8(uint8_t polynomial = CRC8_DEFAULTPOLY);
00040 uint8_t crc8(void);
00041 uint8_t crc8(uint8_t data);
00042 void crc8Start(uint8_t poly);
00043 private:
00044 uint8_t _crc;
00045 uint8_t _poly;
00046 };
00047
00048 #endif /* _CRC8_H_ */

6.5 LICENSE.md File Reference

6.6 MLX90614.cpp File Reference

Melexis MLX90614 Family Device Driver Library - CPP Source file.

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

46

#include "MLX90614.h"
Include dependency graph for MLX90614.cpp:

MLX90614.cpp

MLX90614.h

WProgram.h

Wire.h Property.h Crc8.h

6.6.1 Detailed Description

Melexis MLX90614 Family Device Driver Library - CPP Source file.

Details

Based on the Melexis MLX90614 Family Data Sheet 3901090614 Rev 004 09jun2008.

• The current implementation does not manage PWM (only digital data by I2C).

• Sleep mode is not implemented yet.

Note

THIS IS ONLY A PARTIAL RELEASE. THIS DEVICE CLASS IS CURRENTLY UNDERGOING ACTIVE D←↩

EVELOPMENT AND IS STILL MISSING SOME IMPORTANT FEATURES. PLEASE KEEP THIS IN MIND IF
YOU DECIDE TO USE THIS PARTICULAR CODE FOR ANYTHING.

Author

J. F. Fitter jfitter@eagleairaust.com.au

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

mailto:jfitter@eagleairaust.com.au

6.7 MLX90614.cpp 47

Version

1.0

Date

2014-2017

Copyright

Copyright © 2017 John Fitter. All right reserved.

License

This program is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at
your option) any later version.

This Program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details at http://www.gnu.org/copyleft/gpl.html

You should have received a copy of the GNU Lesser General Public License along with this library; if not, write
to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Definition in file MLX90614.cpp.

6.7 MLX90614.cpp
00001 /***//**
00002 * \brief Melexis MLX90614 Family Device Driver Library - CPP Source file
00003 * \par
00004 * \par Details
00005 * Based on the Melexis MLX90614 Family Data Sheet 3901090614 Rev 004 09jun2008.
00006 * \li The current implementation does not manage PWM (only digital data by I2C).
00007 * \li Sleep mode is not implemented yet.
00008 *
00009 * \note THIS IS ONLY A PARTIAL RELEASE. THIS DEVICE CLASS IS CURRENTLY UNDERGOING
00010 * ACTIVE DEVELOPMENT AND IS STILL MISSING SOME IMPORTANT FEATURES. PLEASE KEEP
00011 * THIS IN MIND IF YOU DECIDE TO USE THIS PARTICULAR CODE FOR ANYTHING.
00012 *
00013 * \file MLX90614.CPP
00014 * \author J. F. Fitter <jfitter@eagleairaust.com.au>
00015 * \version 1.0
00016 * \date 2014-2017
00017 * \copyright Copyright © 2017 John Fitter. All right reserved.
00018 *
00019 * \par License
00020 * This program is free software; you can redistribute it and/or modify it under
00021 * the terms of the GNU Lesser General Public License as published by the Free
00022 * Software Foundation; either version 2.1 of the License, or (at your option)
00023 * any later version.
00024 * \par
00025 * This Program is distributed in the hope that it will be useful, but WITHOUT ANY
00026 * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
00027 * PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details
00028 * at http://www.gnu.org/copyleft/gpl.html
00029 * \par
00030 * You should have received a copy of the GNU Lesser General Public License along
00031 * with this library; if not, write to the Free Software Foundation, Inc.,
00032 * 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
00033 *

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

http://www.gnu.org/copyleft/gpl.html

48

00034 *//***/
00035
00036 #include "MLX90614.h"
00037
00038 /**/
00039 /* MLX90614 Device class functions. */
00040 /**/
00041 /**
00042 * \example{lineno} MelexisTest.ino
00043 * An example of how to use the MLX90614 class.
00044 */
00045
00046 /**
00047 * \brief MLX90614 Device class constructor.
00048 * \param [in] i2caddr Device address (default: published value).
00049 */
00050 MLX90614::MLX90614(uint8_t i2caddr) {
00051
00052 busAddr.Set_Class(this);
00053 busAddr.Set_Get(&MLX90614::getAddr);
00054 busAddr.Set_Set(&MLX90614::setAddr);
00055
00056 rwError.Set_Class(this);
00057 rwError.Set_Get(&MLX90614::getRwError);
00058
00059 pec.Set_Class(this);
00060 pec.Set_Get(&MLX90614::getPEC);
00061
00062 crc8.Set_Class(this);
00063 crc8.Set_Get(&MLX90614::getCRC8);
00064
00065 _addr = i2caddr;
00066 _ready = false;
00067 }
00068
00069 /**
00070 * \brief Initialize the device and the i2c interface.
00071 */
00072 boolean MLX90614::begin(void) {
00073
00074 _rwError = _pec = _crc8 = 0;
00075 return _ready = true;
00076 }
00077
00078 /**
00079 * \brief Return a temperature from the specified source in specified units.
00080 * \remarks
00081 * \li Temperature is stored in ram as a 16 bit absolute value to a
00082 * resolution of 0.02°K
00083 * \li Linearized sensor die temperature is available as Ta (ambient).
00084 * \li One or two object temperatures are linearized to the
00085 * range -38.2°C...125°C
00086 * \param [in] tsrc Internal temperature source to read, default #1.
00087 * \param [in] tunit Temperature units to convert raw data to, default °C.
00088 * \return Temperature.
00089 */
00090 double MLX90614::readTemp(tempSrc_t tsrc, tempUnit_t tunit) {
00091 double temp;
00092
00093 _rwError = 0;
00094 switch(tsrc) {
00095 case MLX90614_SRC01 : temp = read16(MLX90614_TOBJ1); break;
00096 case MLX90614_SRC02 : temp = read16(MLX90614_TOBJ2); break;
00097 default : temp = read16(MLX90614_TA);
00098 }
00099 temp *= 0.02;
00100 switch(tunit) {
00101 case MLX90614_TC : return convKtoC(temp);
00102 case MLX90614_TF : return convKtoC(convCtoF(temp));
00103 }
00104 return temp;
00105 }
00106
00107 /**
00108 * \brief Set the emissivity (ε) of the object.
00109 * \remarks The emissivity is stored as a 16 bit integer defined by the following:
00110 * \n <tt>ε = dec2hex[round(65535 x emiss)]</tt>
00111 * \param [in] emiss Physical emissivity value in range 0.1 ...1.0, default 1.0
00112 */
00113 void MLX90614::setEmissivity(float emiss) {
00114
00115 _rwError = 0;
00116 uint16_t e = int(emiss * 65535. + 0.5);
00117 if((emiss > 1.0) || (e < 6553)) _rwError |= MLX90614_INVALIDATA;
00118 else writeEEProm(MLX90614_EMISS, e);
00119 }
00120 /**

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

6.7 MLX90614.cpp 49

00121 * \brief Get the emissivity (ε) of the object.
00122 * \remarks The emissivity is stored as a 16 bit integer defined by the following:
00123 * \n <tt>ε = dec2hex[round(65535 x emiss)]</tt>
00124 * \return Physical emissivity value in range 0.1 ...1.0
00125 */
00126 float MLX90614::getEmissivity(void) {
00127
00128 _rwError = 0;
00129 uint16_t emiss = readEEProm(MLX90614_EMISS);
00130 if(_rwError) return (float)1.0;
00131 return (float)emiss / 65535.0;
00132 }
00133
00134 /**
00135 * \brief Set the coefficients of the IIR digital filter.
00136 * \remarks The IIR digital filter coefficients are set by the LS 3 bits of ConfigRegister1
00137 * \n The value of the coefficients is set as follows:
00138 * \n <tt> \verbatim
00139 csb = 0 a1 = 0.5 a2 = 0.5
00140 1 0.25 0.75
00141 2 0.167 0.833
00142 3 0.125 0.875
00143 4 1 0 (IIR bypassed)
00144 5 0.8 0.2
00145 6 0.67 0.33
00146 7 0.57 0.43 \endverbatim </tt>
00147 * \param [in] csb See page 12 of datasheet. Range 0...7, default = 4 (IIR bypassed)
00148 */
00149 void MLX90614::setIIRcoeff(uint8_t csb) {
00150
00151 _rwError = 0;
00152
00153 // Ensure legal range by clearing all but the LS 3 bits.
00154 csb &= 7;
00155
00156 // Get the current value of ConfigRegister1
00157 uint16_t reg = readEEProm(MLX90614_CONFIG);
00158
00159 // Clear bits 2:0, mask in the new value, then write it back.
00160 if(!_rwError) {
00161 reg &= 0xfff8;
00162 reg |= (uint16_t)csb;
00163 writeEEProm(MLX90614_CONFIG, reg);
00164 }
00165 }
00166
00167 /**
00168 * \brief Get the coefficients of the IIR digital filter.
00169 * \remarks The IIR digital filter coefficients are set by the LS 3 bits of ConfigRegister1
00170 * \return Filter coefficient table index. Range 0...7
00171 */
00172 uint8_t MLX90614::getIIRcoeff(void) {
00173
00174 _rwError = 0;
00175
00176 // Get the current value of ConfigRegister1 bits 2:0
00177 uint8_t iir = readEEProm(MLX90614_CONFIG) & 7;
00178
00179 if(_rwError) return 4;
00180 return iir;
00181 }
00182
00183 /**
00184 * \brief Set the coefficients of the FIR digital filter.
00185 * \remarks The FIR digital filter coefficient N is bits 10:8 of ConfigRegister1
00186 * \n The value of N is set as follows: <tt> N = 2 ^ (csb + 3)</tt>
00187 \n The manufacturer does not recommend <tt>N < 128</tt>
00188 * \param [in] csb See page 12 of datasheet. Range 0...7, default = 7 (N = 1024)
00189 */
00190 void MLX90614::setFIRcoeff(uint8_t csb) {
00191
00192 _rwError = 0;
00193
00194 // Ensure legal range by clearing all but the LS 3 bits.
00195 csb &= 7;
00196
00197 // Get the current value of ConfigRegister1
00198 uint16_t reg = readEEProm(MLX90614_CONFIG);
00199
00200 // Clear bits 10:8, mask in the new value, then write it back.
00201 if(!_rwError) {
00202 reg &= 0xf8ff;
00203 reg |= (uint16_t)csb « 8;
00204 writeEEProm(MLX90614_CONFIG, reg);
00205 }
00206 }
00207

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

50

00208 /**
00209 * \brief Get the coefficients of the FIR digital filter.
00210 * \remarks The FIR digital filter coefficient N is bits 10:8 of ConfigRegister1
00211 * \n The value of N is set as follows: <tt> N = 2 ^ (csb + 3)</tt>
00212 \n The manufacturer does not recommend <tt> N < 128</tt>
00213 */
00214 uint8_t MLX90614::getFIRcoeff(void) {
00215
00216 _rwError = 0;
00217
00218 // Get the current value of ConfigRegister1 bits 10:8
00219 uint8_t fir = (readEEProm(MLX90614_CONFIG) » 8) & 7;
00220
00221 if(_rwError) return 7;
00222 return fir;
00223 }
00224
00225 /**
00226 * \brief Set device SMBus address.
00227 * \remarks
00228 * \li Must be only device on the bus.
00229 * \li Must power cycle the device after changing address.
00230 * \param [in] addr New device address. Range 1...127
00231 */
00232 void MLX90614::setAddr(uint8_t addr) {
00233
00234 _rwError = 0;
00235
00236 // It is assumed we do not know the existing slave address so the broadcast address is used.
00237 // First ensure the new address is in the legal range (1..127)
00238 if(addr &= 0x7f) {
00239 _addr = MLX90614_BROADCASTADDR;
00240 writeEEProm(MLX90614_ADDR, addr);
00241
00242 // There will always be a r/w error using the broadcast address so we cannot respond
00243 // to r/w errors. We must just assume this worked.
00244 _addr = addr;
00245
00246 } else _rwError |= MLX90614_INVALIDATA;
00247 }
00248
00249 /**
00250 * \brief Return the device SMBus address.
00251 * \remarks
00252 * \li Must be only device on the bus.
00253 * \li Sets the library to use the new found address.
00254 * \return Device address.
00255 */
00256 uint8_t MLX90614::getAddr(void) {
00257 uint8_t tempAddr = _addr;
00258
00259 _rwError = 0;
00260
00261 // It is assumed we do not know the existing slave address so the broadcast address is used.
00262 // This will throw a r/w error so errors will be ignored.
00263 _addr = MLX90614_BROADCASTADDR;
00264
00265 // Reload program copy with the existing slave address.
00266 _addr = lowByte(readEEProm(MLX90614_ADDR));
00267
00268 return _addr;
00269 }
00270
00271 /**
00272 * \brief Return a 16 bit value read from RAM or EEPROM.
00273 * \param [in] cmd Command to send (register to read from).
00274 * \return Value read from memory.
00275 */
00276 uint16_t MLX90614::read16(uint8_t cmd) {
00277 uint16_t val;
00278 CRC8 crc(MLX90614_CRC8POLY);
00279
00280 // Send the slave address then the command and set any error status bits returned by the write.
00281 Wire.beginTransmission(_addr);
00282 Wire.write(cmd);
00283 _rwError |= (1 « Wire.endTransmission(false)) » 1;
00284
00285 // Experimentally determined delay to prevent read errors (manufacturer’s data sheet has
00286 // left something out).
00287 delayMicroseconds(MLX90614_XDLY);
00288
00289 // Resend slave address then get the 3 returned bytes.
00290 Wire.requestFrom(_addr, (uint8_t)3);
00291
00292 // Data is returned as 2 bytes little endian.
00293 val = Wire.read();
00294 val |= Wire.read() « 8;

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

6.7 MLX90614.cpp 51

00295
00296 // Rread the PEC (CRC-8 of all bytes).
00297 _pec = Wire.read();
00298
00299 // Clear r/w errors if using broadcast address.
00300 if(_addr == MLX90614_BROADCASTADDR) _rwError &= MLX90614_NORWERROR;
00301
00302 // Build our own CRC-8 of all received bytes.
00303 crc.crc8(_addr « 1);
00304 crc.crc8(cmd);
00305 crc.crc8((_addr « 1) + 1);
00306 crc.crc8(lowByte(val));
00307 _crc8 = crc.crc8(highByte(val));
00308
00309 // Set error status bit if CRC mismatch.
00310 if(_crc8 != _pec) _rwError |= MLX90614_RXCRC;
00311
00312 return val;
00313 }
00314
00315 /**
00316 * \brief Write a 16 bit value to memory.
00317 * \param [in] cmd Command to send (register to write to).
00318 * \param [in] data Value to write.
00319 */
00320 void MLX90614::write16(uint8_t cmd, uint16_t data) {
00321 CRC8 crc(MLX90614_CRC8POLY);
00322
00323 // Build the CRC-8 of all bytes to be sent.
00324 crc.crc8(_addr « 1);
00325 crc.crc8(cmd);
00326 crc.crc8(lowByte(data));
00327 _crc8 = crc.crc8(highByte(data));
00328
00329 // Send the slave address then the command.
00330 Wire.beginTransmission(_addr);
00331 Wire.write(cmd);
00332
00333 // Write the data low byte first.
00334 Wire.write(lowByte(data));
00335 Wire.write(highByte(data));
00336
00337 // Then write the crc and set the r/w error status bits.
00338 Wire.write(_pec = _crc8);
00339 _rwError |= (1 « Wire.endTransmission(true)) » 1;
00340
00341 // Clear r/w errors if using broadcast address.
00342 if(_addr == MLX90614_BROADCASTADDR) _rwError &= MLX90614_NORWERROR;
00343 }
00344
00345 /**
00346 * \brief Return a 16 bit value read from EEPROM.
00347 * \param [in] addr Register address to read from.
00348 * \return Value read from EEPROM.
00349 */
00350 uint16_t MLX90614::readEEProm(uint8_t addr) {return read16(addr | 0x20);}
00351
00352 /**
00353 * \brief Write a 16 bit value to EEPROM after first clearing the memory.
00354 * \remarks
00355 * \li Erase and write time 5ms per manufacturer specification
00356 * \li Manufacturer does not specify max or min erase/write times
00357 * \param [in] reg Address to write to.
00358 * \param [in] data Value to write.
00359 */
00360 void MLX90614::writeEEProm(uint8_t reg, uint16_t data) {
00361 uint16_t val;
00362 reg |= 0x20;
00363
00364 // Read current value, compare to the new value, and do nothing on a match or if there are
00365 // read errors set the error status flag only.
00366 val = read16(reg);
00367 if((val != data) && !_rwError) {
00368
00369 // On any R/W errors it is assumed the memory is corrupted.
00370 // Clear the memory and wait Terase (per manufacturer’s documentation).
00371 write16(reg, 0);
00372 delay(5);
00373 if(_rwError) _rwError |= MLX90614_EECORRUPT;
00374
00375 // Write the data and wait Twrite (per manufacturer’s documentation)
00376 // and set the r/w error status bits.
00377 write16(reg, data);
00378 delay(5);
00379 if(_rwError) _rwError |= MLX90614_EECORRUPT;
00380 }
00381 }

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

52

00382
00383 /**
00384 * \brief Convert temperature in °K to °C.
00385 * \param [in] degK Temperature in °K.
00386 * \return Temperature in °C.
00387 */
00388 double MLX90614::convKtoC(double degK) {return degK - 273.15;}
00389
00390 /**
00391 * \brief Convert temperature in °C to °F.
00392 * \param [in] degC Temperature in °C.
00393 * \return Temperature in °F.
00394 */
00395 double MLX90614::convCtoF(double degC) {return (degC * 1.8) + 32.0;}
00396
00397 /**
00398 * \brief Retrieve the chip ID bytes.
00399 * \return Chip ID as a 64 bit word.
00400 */
00401 uint64_t MLX90614::readID(void) {
00402 uint64_t ID = 0;
00403
00404 // If we are lucky the compiler will optimise this.
00405 for(uint8_t i = 0; i < 4; i++) ID = (ID «= 16) | readEEProm(MLX90614_ID1 + i);
00406 return ID;
00407 }
00408

6.8 MLX90614.h File Reference

#include "WProgram.h"
#include <Wire.h>
#include "Property.h"
#include "Crc8.h"
Include dependency graph for MLX90614.h:

MLX90614.h

WProgram.h

Wire.h Property.h Crc8.h

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

6.8 MLX90614.h File Reference 53

This graph shows which files directly or indirectly include this file:

MLX90614.h

MLX90614.cpp

Classes

• class MLX90614

Macros

• #define MLX90614_I2CDEFAULTADDR 0x5A
• #define MLX90614_BROADCASTADDR 0
• #define MLX90614_CRC8POLY 7
• #define MLX90614_XDLY 25
• #define MLX90614_RAWIR1 0x04
• #define MLX90614_RAWIR2 0x05
• #define MLX90614_TA 0x06
• #define MLX90614_TOBJ1 0x07
• #define MLX90614_TOBJ2 0x08
• #define MLX90614_TOMAX 0x00
• #define MLX90614_TOMIN 0x01
• #define MLX90614_PWMCTRL 0x02
• #define MLX90614_TARANGE 0x03
• #define MLX90614_EMISS 0x04
• #define MLX90614_CONFIG 0x05
• #define MLX90614_ADDR 0x0E
• #define MLX90614_ID1 0x1C
• #define MLX90614_ID2 0x1D
• #define MLX90614_ID3 0x1E
• #define MLX90614_ID4 0x1F
• #define MLX90614_RFLAGCMD 0xF0
• #define MLX90614_EEBUSY 0x80
• #define MLX90614_EE_DEAD 0x20
• #define MLX90614_INIT 0x10
• #define MLX90614_NORWERROR 0
• #define MLX90614_DATATOOLONG 1
• #define MLX90614_TXADDRNACK 2
• #define MLX90614_TXDATANACK 4
• #define MLX90614_TXOTHER 8
• #define MLX90614_RXCRC 0x10
• #define MLX90614_INVALIDATA 0x20
• #define MLX90614_EECORRUPT 0x40
• #define MLX90614_RFLGERR 0x80

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

54

6.8.1 Macro Definition Documentation

6.8.1.1 MLX90614_ADDR #define MLX90614_ADDR 0x0E

EEPROM reg - SMBus address

Examples

MelexisTest.ino.

Definition at line 76 of file MLX90614.h.

6.8.1.2 MLX90614_BROADCASTADDR #define MLX90614_BROADCASTADDR 0

Device broadcast slave address

Examples

MelexisTest.ino.

Definition at line 53 of file MLX90614.h.

6.8.1.3 MLX90614_CONFIG #define MLX90614_CONFIG 0x05

EEPROM reg - Configuration register

Definition at line 75 of file MLX90614.h.

6.8.1.4 MLX90614_CRC8POLY #define MLX90614_CRC8POLY 7

CRC polynomial = X8+X2+X1+1

Definition at line 54 of file MLX90614.h.

6.8.1.5 MLX90614_DATATOOLONG #define MLX90614_DATATOOLONG 1

R/W error bitmask - Data is too long

Examples

MelexisTest.ino.

Definition at line 91 of file MLX90614.h.

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

6.8 MLX90614.h File Reference 55

6.8.1.6 MLX90614_EE_DEAD #define MLX90614_EE_DEAD 0x20

R/W flag bitmask - EEProm double error has occurred

Definition at line 86 of file MLX90614.h.

6.8.1.7 MLX90614_EEBUSY #define MLX90614_EEBUSY 0x80

Read flags - bitmask. R/W flag bitmask - EEProm is busy (writing/erasing)

Definition at line 85 of file MLX90614.h.

6.8.1.8 MLX90614_EECORRUPT #define MLX90614_EECORRUPT 0x40

R/W error bitmask - The EEProm is likely to be corrupted

Examples

MelexisTest.ino.

Definition at line 97 of file MLX90614.h.

6.8.1.9 MLX90614_EMISS #define MLX90614_EMISS 0x04

EEPROM reg - Object emissivity register

Definition at line 74 of file MLX90614.h.

6.8.1.10 MLX90614_I2CDEFAULTADDR #define MLX90614_I2CDEFAULTADDR 0x5A

Device default slave address

Definition at line 52 of file MLX90614.h.

6.8.1.11 MLX90614_ID1 #define MLX90614_ID1 0x1C

EEPROM reg - ID numer (w1)

Definition at line 77 of file MLX90614.h.

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

56

6.8.1.12 MLX90614_ID2 #define MLX90614_ID2 0x1D

EEPROM reg - ID numer (w2)

Definition at line 78 of file MLX90614.h.

6.8.1.13 MLX90614_ID3 #define MLX90614_ID3 0x1E

EEPROM reg - ID numer (w3)

Definition at line 79 of file MLX90614.h.

6.8.1.14 MLX90614_ID4 #define MLX90614_ID4 0x1F

EEPROM reg - ID numer (w4)

Definition at line 80 of file MLX90614.h.

6.8.1.15 MLX90614_INIT #define MLX90614_INIT 0x10

R/W flag bitmask - POR initialization is still ongoing

Definition at line 87 of file MLX90614.h.

6.8.1.16 MLX90614_INVALIDATA #define MLX90614_INVALIDATA 0x20

R/W error bitmask - RX/TX Data fails selection criteria

Examples

MelexisTest.ino.

Definition at line 96 of file MLX90614.h.

6.8.1.17 MLX90614_NORWERROR #define MLX90614_NORWERROR 0

R/W Error flags - bitmask. R/W error bitmask - No Errors

Examples

MelexisTest.ino.

Definition at line 90 of file MLX90614.h.

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

6.8 MLX90614.h File Reference 57

6.8.1.18 MLX90614_PWMCTRL #define MLX90614_PWMCTRL 0x02

EEPROM reg - Pulse width modulation output control register

Definition at line 72 of file MLX90614.h.

6.8.1.19 MLX90614_RAWIR1 #define MLX90614_RAWIR1 0x04

RAM addresses. RAM reg - Raw temperature, source #1

Definition at line 63 of file MLX90614.h.

6.8.1.20 MLX90614_RAWIR2 #define MLX90614_RAWIR2 0x05

RAM reg - Raw temperature, source #2

Definition at line 64 of file MLX90614.h.

6.8.1.21 MLX90614_RFLAGCMD #define MLX90614_RFLAGCMD 0xF0

Read R/W Flags register command

Definition at line 82 of file MLX90614.h.

6.8.1.22 MLX90614_RFLGERR #define MLX90614_RFLGERR 0x80

R/W error bitmask - R/W flags register access error

Examples

MelexisTest.ino.

Definition at line 98 of file MLX90614.h.

6.8.1.23 MLX90614_RXCRC #define MLX90614_RXCRC 0x10

R/W error bitmask - Receiver CRC mismatch

Examples

MelexisTest.ino.

Definition at line 95 of file MLX90614.h.

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

58

6.8.1.24 MLX90614_TA #define MLX90614_TA 0x06

RAM reg - Linearized temperature, ambient

Definition at line 65 of file MLX90614.h.

6.8.1.25 MLX90614_TARANGE #define MLX90614_TARANGE 0x03

EEPROM reg - Customer dependent ambient temperature range

Definition at line 73 of file MLX90614.h.

6.8.1.26 MLX90614_TOBJ1 #define MLX90614_TOBJ1 0x07

RAM reg - Linearized temperature, source #1

Definition at line 66 of file MLX90614.h.

6.8.1.27 MLX90614_TOBJ2 #define MLX90614_TOBJ2 0x08

RAM reg - Linearized temperature, source #2

Definition at line 67 of file MLX90614.h.

6.8.1.28 MLX90614_TOMAX #define MLX90614_TOMAX 0x00

EEPROM addresses. EEPROM reg - Customer dependent object temperature range maximum

Definition at line 70 of file MLX90614.h.

6.8.1.29 MLX90614_TOMIN #define MLX90614_TOMIN 0x01

EEPROM reg - Customer dependent object temperature range minimum

Definition at line 71 of file MLX90614.h.

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

6.8 MLX90614.h File Reference 59

6.8.1.30 MLX90614_TXADDRNACK #define MLX90614_TXADDRNACK 2

R/W error bitmask - TX address not acknowledged

Examples

MelexisTest.ino.

Definition at line 92 of file MLX90614.h.

6.8.1.31 MLX90614_TXDATANACK #define MLX90614_TXDATANACK 4

R/W error bitmask - TX data not acknowledged

Examples

MelexisTest.ino.

Definition at line 93 of file MLX90614.h.

6.8.1.32 MLX90614_TXOTHER #define MLX90614_TXOTHER 8

R/W error bitmask - Unknown error

Examples

MelexisTest.ino.

Definition at line 94 of file MLX90614.h.

6.8.1.33 MLX90614_XDLY #define MLX90614_XDLY 25

Experimentally determined delay to prevent read errors after calling Wire.endTransmission() (possibly due to incom-
patibility between Wire library and SMBus protocol).

Definition at line 55 of file MLX90614.h.

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

60

6.9 MLX90614.h

00001 #ifndef _MLX90614_H_
00002 #define _MLX90614_H_
00003
00004 /***//**
00005 * \brief Melexis MLX90614 Family Device Driver Library - CPP Source file
00006 * \par
00007 * \par Details
00008 * Based on the Melexis MLX90614 Family Data Sheet 3901090614 Rev 004 09jun2008.
00009 * \li The current implementation does not manage PWM (only digital data by I2C).
00010 * \li Sleep mode is not implemented yet.
00011 *
00012 * \note THIS IS ONLY A PARTIAL RELEASE. THIS DEVICE CLASS IS CURRENTLY UNDERGOING
00013 * ACTIVE DEVELOPMENT AND IS STILL MISSING SOME IMPORTANT FEATURES. PLEASE KEEP
00014 * THIS IN MIND IF YOU DECIDE TO USE THIS PARTICULAR CODE FOR ANYTHING.
00015 *
00016 * \file MLX90614.CPP
00017 * \author J. F. Fitter <jfitter@eagleairaust.com.au>
00018 * \version 1.0
00019 * \date 2014-2017
00020 * \copyright Copyright © 2017 John Fitter. All right reserved.
00021 *
00022 * \par License
00023 * This program is free software; you can redistribute it and/or modify it under
00024 * the terms of the GNU Lesser General Public License as published by the Free
00025 * Software Foundation; either version 2.1 of the License, or (at your option)
00026 * any later version.
00027 * \par
00028 * This Program is distributed in the hope that it will be useful, but WITHOUT ANY
00029 * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
00030 * PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details
00031 * at http://www.gnu.org/copyleft/gpl.html
00032 * \par
00033 * You should have received a copy of the GNU Lesser General Public License along
00034 * with this library; if not, write to the Free Software Foundation, Inc.,
00035 * 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
00036 *
00037 *//***/
00038
00039 #if (ARDUINO >= 100)
00040 #include "Arduino.h"
00041 #else
00042 #include "WProgram.h"
00043 #endif
00044 #include <Wire.h>
00045 #include "Property.h"
00046 #include "Crc8.h"
00047
00048 /**/
00049 /* Definitions */
00050 /**/
00051
00052 #define MLX90614_I2CDEFAULTADDR 0x5A /**< Device default slave address */
00053 #define MLX90614_BROADCASTADDR 0 /**< Device broadcast slave address */
00054 #define MLX90614_CRC8POLY 7 /**< CRC polynomial = X8+X2+X1+1 */
00055 #define MLX90614_XDLY 25 /**< Experimentally determined delay to prevent read
00056 errors after calling Wire.endTransmission()
00057 (possibly due to incompatibility between Wire
00058 library and SMBus protocol). */
00059 /** RAM addresses. */
00060 #define MLX90614_RAWIR1 0x04 /**< RAM reg - Raw temperature, source #1 */
00061 #define MLX90614_RAWIR2 0x05 /**< RAM reg - Raw temperature, source #2 */
00062 #define MLX90614_TA 0x06 /**< RAM reg - Linearized temperature, ambient */
00063 #define MLX90614_TOBJ1 0x07 /**< RAM reg - Linearized temperature, source #1 */
00064 #define MLX90614_TOBJ2 0x08 /**< RAM reg - Linearized temperature, source #2 */
00065
00066 /** EEPROM addresses. */
00067 #define MLX90614_TOMAX 0x00 /**< EEPROM reg - Customer dependent object temperature range

maximum */
00068 #define MLX90614_TOMIN 0x01 /**< EEPROM reg - Customer dependent object temperature range

minimum */
00069 #define MLX90614_PWMCTRL 0x02 /**< EEPROM reg - Pulse width modulation output control

register */
00070 #define MLX90614_TARANGE 0x03 /**< EEPROM reg - Customer dependent ambient temperature range

*/
00071 #define MLX90614_EMISS 0x04 /**< EEPROM reg - Object emissivity register */
00072 #define MLX90614_CONFIG 0x05 /**< EEPROM reg - Configuration register */
00073 #define MLX90614_ADDR 0x0E /**< EEPROM reg - SMBus address */
00074 #define MLX90614_ID1 0x1C /**< EEPROM reg - ID numer (w1) */
00075 #define MLX90614_ID2 0x1D /**< EEPROM reg - ID numer (w2) */
00076 #define MLX90614_ID3 0x1E /**< EEPROM reg - ID numer (w3) */
00077 #define MLX90614_ID4 0x1F /**< EEPROM reg - ID numer (w4) */
00078
00079 #define MLX90614_RFLAGCMD 0xF0 /**< Read R/W Flags register command */
00080
00081 /** Read flags - bitmask. */

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

6.9 MLX90614.h 61

00082 #define MLX90614_EEBUSY 0x80 /**< R/W flag bitmask - EEProm is busy (writing/erasing) */
00083 #define MLX90614_EE_DEAD 0x20 /**< R/W flag bitmask - EEProm double error has occurred */
00084 #define MLX90614_INIT 0x10 /**< R/W flag bitmask - POR initialization is still ongoing */
00085
00086 /** R/W Error flags - bitmask. */
00087 #define MLX90614_NORWERROR 0 /**< R/W error bitmask - No Errors */
00088 #define MLX90614_DATATOOLONG 1 /**< R/W error bitmask - Data is too long */
00089 #define MLX90614_TXADDRNACK 2 /**< R/W error bitmask - TX address not acknowledged */
00090 #define MLX90614_TXDATANACK 4 /**< R/W error bitmask - TX data not acknowledged */
00091 #define MLX90614_TXOTHER 8 /**< R/W error bitmask - Unknown error */
00092 #define MLX90614_RXCRC 0x10 /**< R/W error bitmask - Receiver CRC mismatch */
00093 #define MLX90614_INVALIDATA 0x20 /**< R/W error bitmask - RX/TX Data fails selection criteria

*/
00094 #define MLX90614_EECORRUPT 0x40 /**< R/W error bitmask - The EEProm is likely to be corrupted

*/
00095 #define MLX90614_RFLGERR 0x80 /**< R/W error bitmask - R/W flags register access error */
00096
00097 /**/
00098 /* MLX90614 Device class. */
00099 /**/
00100
00101 class MLX90614 {
00102 public:
00103 MLX90614(uint8_t i2caddr = MLX90614_I2CDEFAULTADDR);
00104
00105 boolean begin();
00106 boolean isReady(void) { return _ready; };
00107 uint64_t readID(void); /**< Chip ID getter */
00108
00109 uint8_t getIIRcoeff(void); /**< IIR coefficient getter */
00110 uint8_t getFIRcoeff(void); /**< IIR coefficient getter */
00111 float getEmissivity(void); /**< Emissivity getter */
00112
00113 void setIIRcoeff(uint8_t csb = 4); /**< IIR coefficient setter */
00114 void setFIRcoeff(uint8_t csb = 7); /**< IIR coefficient setter */
00115 void setEmissivity(float emiss = 1.0); /**< Emissivity setter */
00116
00117 uint16_t readEEProm(uint8_t);
00118 void writeEEProm(uint8_t, uint16_t);
00119
00120 Property<uint8_t, MLX90614> busAddr; /**< SMBus address property */
00121 Property<uint8_t, MLX90614> rwError; /**< R/W error flags property */
00122 Property<uint8_t, MLX90614> crc8; /**< 8 bit CRC property */
00123 Property<uint8_t, MLX90614> pec; /**< PEC property */
00124
00125 /** Enumerations for temperature units. */
00126 enum tempUnit_t {MLX90614_TK, /**< degrees Kelvin */
00127 MLX90614_TC, /**< degrees Centigrade */
00128 MLX90614_TF /**< degrees Fahrenheit */
00129 };
00130 /** Enumerations for temperature measurement source. */
00131 enum tempSrc_t {MLX90614_SRCA, /**< Chip (ambient) sensor */
00132 MLX90614_SRC01, /**< IR source #1 */
00133 MLX90614_SRC02 /**< IR source #2 */
00134 };
00135
00136 double readTemp(tempSrc_t = MLX90614_SRC01, tempUnit_t = MLX90614_TC);
00137 double convKtoC(double);
00138 double convCtoF(double);
00139
00140 private:
00141 boolean _ready;
00142 uint8_t _addr; /**< Slave address */
00143 uint8_t _rwError; /**< R/W error flags */
00144 uint8_t _crc8; /**< 8 bit CRC */
00145 uint8_t _pec; /**< PEC */
00146
00147 uint16_t read16(uint8_t);
00148 void write16(uint8_t, uint16_t);
00149
00150 uint8_t getRwError(void) {return _rwError;} /**< R/W error flags getter */
00151 uint8_t getCRC8(void) {return _crc8;} /**< 8 bit CRC getter */
00152 uint8_t getPEC(void) {return _pec;} /**< PEC getter */
00153
00154 uint8_t getAddr(void); /**< SMB bus address getter */
00155 void setAddr(uint8_t); /**< SMB bus address setter */
00156
00157 };
00158
00159 #endif /* _MLX90614_H_ */

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

62

6.10 Property.h File Reference

This graph shows which files directly or indirectly include this file:

Property.h

MLX90614.h

MLX90614.cpp

Classes

• class Property< Type, ClassHolder >

6.11 Property.h
00001 #ifndef _Property_H_
00002 #define _Property_H_
00003
00004 // Thankyou Joeman for this code - http://forums.codeguru.com/showthread.php?459696-GET-SET-in-C
00005
00006 template<typename Type, typename ClassHolder>
00007
00008 class Property {
00009 private:
00010 Type (ClassHolder::*Get)();
00011 void (ClassHolder::*Set)(Type Val);
00012 ClassHolder * Class;
00013
00014 public:
00015 Property() : Get(NULL), Set(NULL), Class(NULL) {}
00016 Property(ClassHolder * ClassA, Type (ClassHolder::*GetA)(), void (ClassHolder::*SetA)(Type Val)) :

Class(ClassA), Get(GetA), Set(SetA) {}
00017
00018 void Set_Property_Control(ClassHolder * ClassA, Type (ClassHolder::*GetA)(), void

(ClassHolder::*SetA)(Type Val)) {
00019 Class = ClassA;
00020 Get = GetA;
00021 Set = SetA;
00022 }
00023
00024 void Set_Get(Type (ClassHolder::*GetA)()) {
00025 Get = GetA;
00026 }
00027
00028 void Set_Set(void (ClassHolder::*SetA)(Type Val)) {
00029 Set = SetA;
00030 }
00031
00032 void Set_Class(ClassHolder * Holder) {
00033 Class = Holder;
00034 }
00035
00036 // set
00037 Type operator = (const Type& In) {

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

6.12 README.md File Reference 63

00038 if (Set) (Class->*Set)(In);
00039 return In;
00040 }
00041
00042 // set
00043 Type operator = (Property& In) {
00044 if (Set) (Class->*Set)(In);
00045 return In;
00046 }
00047
00048 // get
00049 operator Type() {
00050 return Get ? (Class->*Get)() : 0;
00051 }
00052 };
00053
00054 #endif /* _Property_H_ */

6.12 README.md File Reference

7 Example Documentation

7.1 MelexisTest.ino

An example of how to use the MLX90614 class.
00001 /***//**
00002 * \brief Melexis MCX90614BAA Test Program - Sensor test implementation.
00003 * \details Arduino test implementation of Melexis MCX90614 PIR temperature sensor driver.
00004 *
00005 * \note THIS IS ONLY A PARTIAL RELEASE. THIS DEVICE CLASS IS CURRENTLY UNDERGOING
00006 * ACTIVE DEVELOPMENT AND IS STILL MISSING SOME IMPORTANT FEATURES. PLEASE KEEP
00007 * THIS IN MIND IF YOU DECIDE TO USE THIS PARTICULAR CODE FOR ANYTHING.
00008 *
00009 * \file MelexisTest.ino
00010 * \author J. F. Fitter <jfitter@eagleairaust.com.au>
00011 * \version 1.0
00012 * \date 2014-2017
00013 * \copyright Copyright (c) 2017 John Fitter. All right reserved.
00014 *
00015 * \par License
00016 * This program is free software; you can redistribute it and/or modify it under
00017 * the terms of the GNU Lesser General Public License as published by the Free
00018 * Software Foundation; either version 2.1 of the License, or (at your option)
00019 * any later version.
00020 * \par
00021 * This Program is distributed in the hope that it will be useful, but WITHOUT ANY
00022 * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
00023 * PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details
00024 * at http://www.gnu.org/copyleft/gpl.html
00025 * \par
00026 * You should have received a copy of the GNU Lesser General Public License along
00027 * with this library; if not, write to the Free Software Foundation, Inc.,
00028 * 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
00029 *
00030 *//***/
00031
00032 #define MELEXISTEST_C
00033 #define __STDC_LIMIT_MACROS
00034 #define __STDC_CONSTANT_MACROS
00035
00036 #include <Arduino.h>
00037 #include <Wire.h>
00038 #include <MLX90614.h>
00039 #include "printf.h"
00040
00041 MLX90614 mlx = MLX90614(MLX90614_BROADCASTADDR); // *** must be only one device on bus ***
00042
00043 /**
00044 * \brief Program setup.
00045 */
00046 void setup(void) {
00047
00048 Wire.begin(); // library does not do this by default
00049 Serial.begin(115200);
00050 printf_begin();
00051 mlx.begin();
00052

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

64

00053 Serial.println(F("\nMelexis MLX90614 Temperature Sensor Test Program"));
00054 Serial.print(F("SMBus address ="));
00055 printf(" %02Xh", (uint8_t)mlx.readEEProm(MLX90614_ADDR));
00056 Serial.print(F(" Chip ID ="));
00057
00058 uint64_t id = mlx.readID();
00059 printf(" %04X-%04X-%04X-%04X\n\n", (uint16_t)(id » 48), (uint16_t)(id » 32),
00060 (uint16_t)(id » 16), (uint16_t)id);
00061 dumpEEProm();
00062 Serial.println("");
00063 }
00064
00065 /**
00066 * \brief Main processing loop.
00067 */
00068 void loop(void) {
00069 static uint16_t smpcount = 0, errcount = 0;
00070
00071 // read ambient temperature from chip and print out
00072 printlnTemp(mlx.readTemp(MLX90614::MLX90614_SRCA, MLX90614::MLX90614_TK), ’A’);
00073 if(mlx.rwError) ++errcount;
00074
00075 // read object temperature from source #1 and print out
00076 printlnTemp(mlx.readTemp(MLX90614::MLX90614_SRC01, MLX90614::MLX90614_TK), ’O’);
00077 if(mlx.rwError) ++errcount;
00078
00079 // print running total of samples and errors
00080 Serial.print(F(" Samples:Errors "));
00081 printf("%u:%u\r\n", smpcount += 2, errcount);
00082
00083 // slow down to human speed
00084 delay(250);
00085 }
00086
00087 /**
00088 * \brief Print a line of temperature, crc, pec, and error string.
00089 * \param [in] temp Temperature
00090 * \param [in] src Temperature source
00091 */
00092 void printlnTemp(double temp, char src) {
00093 char str[20];
00094
00095 if(mlx.rwError) Serial.print(F("No valid temperatures "));
00096 else {
00097 if(src == ’A’) Serial.print(F("Ambient temperature"));
00098 else Serial.print(F("Object temperature"));
00099 printf(" = %sK ", floatToStr(str, temp));
00100 printf("%sC ", floatToStr(str, mlx.convKtoC(temp)));
00101 printf("%sF ", floatToStr(str, mlx.convCtoF(mlx.convKtoC(temp))));
00102 }
00103 printCRC(mlx.crc8, mlx.pec);
00104 printErrStr(mlx.rwError);
00105 Serial.println("");
00106 }
00107
00108 /**
00109 * \brief Print a complete memory dump of the EEPROM.
00110 */
00111 void dumpEEProm() {
00112
00113 Serial.println(F("EEProm Dump"));
00114 for(uint8_t j=0; j<8; j++) {
00115 for(uint8_t i=0; i<4; i++) printf("%02Xh-%04Xh ", j*4+i, mlx.readEEProm(j*4+i));
00116 printCRC(mlx.crc8, mlx.pec);
00117 printErrStr(mlx.rwError);
00118 Serial.println("");
00119 }
00120 }
00121
00122 /**
00123 * \brief Utility to stringify a float.
00124 * \param [in] str String to receive converted result
00125 * \param [in] val Float value
00126 * \return Float as string
00127 */
00128 char* floatToStr(char *str, double val) {
00129
00130 sprintf(str, "%4d.%02u", int(val), int(val * 100) % 100);
00131 return str;
00132 }
00133
00134 /**
00135 * \brief Just print the crc and pec.
00136 * \param [in] crc CRC
00137 * \param [in] pec PEC
00138 */
00139 void printCRC(uint8_t crc, uint8_t pec) {printf("crc=%02Xh pec=%02Xh", crc, pec);}

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

7.1 MelexisTest.ino 65

00140
00141 /**
00142 * \brief Convert error flags to diagnostic strings and print.
00143 * \param [in] err Error flags
00144 */
00145 void printErrStr(uint8_t err) {
00146
00147 Serial.print(F(" *** "));
00148 if(err == MLX90614_NORWERROR) Serial.print(F("RW Success"));
00149 else {
00150 Serial.print(F("Errors: "));
00151 if(err & MLX90614_DATATOOLONG) Serial.print(F("Data too long / "));
00152 if(err & MLX90614_TXADDRNACK) Serial.print(F("TX addr NACK / "));
00153 if(err & MLX90614_TXDATANACK) Serial.print(F("TX data NACK / "));
00154 if(err & MLX90614_TXOTHER) Serial.print(F("Unknown / "));
00155 if(err & MLX90614_RXCRC) Serial.print(F("RX CRC / "));
00156 if(err & MLX90614_INVALIDATA) Serial.print(F("Invalid data / "));
00157 if(err & MLX90614_EECORRUPT) Serial.print(F("EEPROM / "));
00158 if(err & MLX90614_RFLGERR) Serial.print(F("RFlags / "));
00159 }
00160 }
00161
00162 /**
00163 * \brief EEPROM memory contents factory default values.
00164 */
00165 const struct defaultEEPromData {
00166 uint8_t address;
00167 uint16_t data;
00168 } eDat[] = {{0x20, 0x9993}, {0x21, 0x62E3}, {0x22, 0x0201},
00169 {0x23, 0xF71C}, {0x24, 0xFFFF}, {0x25, 0x9FB4},
00170 {0x2E, 0xBE5A}, {0x2F, 0x0000}, {0x39, 0x0000}};
00171
00172 /**
00173 * \brief Set EEPROM memory contents to factory default values.
00174 * \remarks A device with default adress must not be on the bus.
00175 * \n<tt>Only user allowed memory locations are written.</tt>
00176 */
00177 void setEEPromDefaults(void) {
00178
00179 for(uint8_t i = 0; i < sizeof(eDat)/sizeof(defaultEEPromData),
00180 !mlx.rwError; i++) {
00181 mlx.writeEEProm(eDat[i].address, eDat[i].data);
00182 }
00183 }
00184

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

Index

_addr
MLX90614, 34

_crc
CRC8, 13

_crc8
MLX90614, 34

_pec
MLX90614, 35

_poly
CRC8, 14

_ready
MLX90614, 35

_rwError
MLX90614, 35

begin
MLX90614, 17

busAddr
MLX90614, 35

Class
Property< Type, ClassHolder >, 40

convCtoF
MLX90614, 18

convKtoC
MLX90614, 18

CRC8, 10
_crc, 13
_poly, 14
CRC8, 11
crc8, 12
crc8Start, 13

crc8
CRC8, 12
MLX90614, 35

Crc8.cpp, 40, 42
Crc8.h, 42, 45

CRC8_DEFAULTPOLY, 44
CRC8_DEFAULTPOLY

Crc8.h, 44
crc8Start

CRC8, 13

Get
Property< Type, ClassHolder >, 40

getAddr
MLX90614, 19

getCRC8
MLX90614, 20

getEmissivity
MLX90614, 21

getFIRcoeff
MLX90614, 21

getIIRcoeff
MLX90614, 22

getPEC

MLX90614, 23
getRwError

MLX90614, 23

isReady
MLX90614, 24

LICENSE.md, 45

MLX90614, 14
_addr, 34
_crc8, 34
_pec, 35
_ready, 35
_rwError, 35
begin, 17
busAddr, 35
convCtoF, 18
convKtoC, 18
crc8, 35
getAddr, 19
getCRC8, 20
getEmissivity, 21
getFIRcoeff, 21
getIIRcoeff, 22
getPEC, 23
getRwError, 23
isReady, 24
MLX90614, 17
MLX90614_SRC01, 16
MLX90614_SRC02, 16
MLX90614_SRCA, 16
MLX90614_TC, 16
MLX90614_TF, 16
MLX90614_TK, 16
pec, 36
read16, 24
readEEProm, 25
readID, 26
readTemp, 27
rwError, 36
setAddr, 28
setEmissivity, 29
setFIRcoeff, 30
setIIRcoeff, 31
tempSrc_t, 16
tempUnit_t, 16
write16, 32
writeEEProm, 33

MLX90614.cpp, 45, 47
MLX90614.h, 52, 60

MLX90614_ADDR, 54
MLX90614_BROADCASTADDR, 54
MLX90614_CONFIG, 54
MLX90614_CRC8POLY, 54
MLX90614_DATATOOLONG, 54

68 INDEX

MLX90614_EE_DEAD, 54
MLX90614_EEBUSY, 55
MLX90614_EECORRUPT, 55
MLX90614_EMISS, 55
MLX90614_I2CDEFAULTADDR, 55
MLX90614_ID1, 55
MLX90614_ID2, 55
MLX90614_ID3, 56
MLX90614_ID4, 56
MLX90614_INIT, 56
MLX90614_INVALIDATA, 56
MLX90614_NORWERROR, 56
MLX90614_PWMCTRL, 56
MLX90614_RAWIR1, 57
MLX90614_RAWIR2, 57
MLX90614_RFLAGCMD, 57
MLX90614_RFLGERR, 57
MLX90614_RXCRC, 57
MLX90614_TA, 57
MLX90614_TARANGE, 58
MLX90614_TOBJ1, 58
MLX90614_TOBJ2, 58
MLX90614_TOMAX, 58
MLX90614_TOMIN, 58
MLX90614_TXADDRNACK, 58
MLX90614_TXDATANACK, 59
MLX90614_TXOTHER, 59
MLX90614_XDLY, 59

MLX90614_ADDR
MLX90614.h, 54

MLX90614_BROADCASTADDR
MLX90614.h, 54

MLX90614_CONFIG
MLX90614.h, 54

MLX90614_CRC8POLY
MLX90614.h, 54

MLX90614_DATATOOLONG
MLX90614.h, 54

MLX90614_EE_DEAD
MLX90614.h, 54

MLX90614_EEBUSY
MLX90614.h, 55

MLX90614_EECORRUPT
MLX90614.h, 55

MLX90614_EMISS
MLX90614.h, 55

MLX90614_I2CDEFAULTADDR
MLX90614.h, 55

MLX90614_ID1
MLX90614.h, 55

MLX90614_ID2
MLX90614.h, 55

MLX90614_ID3
MLX90614.h, 56

MLX90614_ID4
MLX90614.h, 56

MLX90614_INIT
MLX90614.h, 56

MLX90614_INVALIDATA
MLX90614.h, 56

MLX90614_NORWERROR
MLX90614.h, 56

MLX90614_PWMCTRL
MLX90614.h, 56

MLX90614_RAWIR1
MLX90614.h, 57

MLX90614_RAWIR2
MLX90614.h, 57

MLX90614_RFLAGCMD
MLX90614.h, 57

MLX90614_RFLGERR
MLX90614.h, 57

MLX90614_RXCRC
MLX90614.h, 57

MLX90614_SRC01
MLX90614, 16

MLX90614_SRC02
MLX90614, 16

MLX90614_SRCA
MLX90614, 16

MLX90614_TA
MLX90614.h, 57

MLX90614_TARANGE
MLX90614.h, 58

MLX90614_TC
MLX90614, 16

MLX90614_TF
MLX90614, 16

MLX90614_TK
MLX90614, 16

MLX90614_TOBJ1
MLX90614.h, 58

MLX90614_TOBJ2
MLX90614.h, 58

MLX90614_TOMAX
MLX90614.h, 58

MLX90614_TOMIN
MLX90614.h, 58

MLX90614_TXADDRNACK
MLX90614.h, 58

MLX90614_TXDATANACK
MLX90614.h, 59

MLX90614_TXOTHER
MLX90614.h, 59

MLX90614_XDLY
MLX90614.h, 59

operator Type
Property< Type, ClassHolder >, 37

operator=
Property< Type, ClassHolder >, 38

pec
MLX90614, 36

Property
Property< Type, ClassHolder >, 37

Property< Type, ClassHolder >, 36

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

INDEX 69

Class, 40
Get, 40
operator Type, 37
operator=, 38
Property, 37
Set, 40
Set_Class, 38
Set_Get, 38
Set_Property_Control, 39
Set_Set, 39

Property.h, 62

read16
MLX90614, 24

readEEProm
MLX90614, 25

readID
MLX90614, 26

README.md, 63
readTemp

MLX90614, 27
rwError

MLX90614, 36

Set
Property< Type, ClassHolder >, 40

Set_Class
Property< Type, ClassHolder >, 38

Set_Get
Property< Type, ClassHolder >, 38

Set_Property_Control
Property< Type, ClassHolder >, 39

Set_Set
Property< Type, ClassHolder >, 39

setAddr
MLX90614, 28

setEmissivity
MLX90614, 29

setFIRcoeff
MLX90614, 30

setIIRcoeff
MLX90614, 31

tempSrc_t
MLX90614, 16

tempUnit_t
MLX90614, 16

write16
MLX90614, 32

writeEEProm
MLX90614, 33

Generated on Thu Sep 26 2019 09:03:02 for MLX90614 Device Driver by Doxygen

	1 MLX90614 Device Driver
	2 GNU GENERAL PUBLIC LICENSE
	3 Class Index
	3.1 Class List

	4 File Index
	4.1 File List

	5 Class Documentation
	5.1 CRC8 Class Reference
	5.1.1 Detailed Description
	5.1.2 Constructor & Destructor Documentation
	5.1.3 Member Function Documentation
	5.1.4 Member Data Documentation

	5.2 MLX90614 Class Reference
	5.2.1 Detailed Description
	5.2.2 Member Enumeration Documentation
	5.2.3 Constructor & Destructor Documentation
	5.2.4 Member Function Documentation
	5.2.5 Member Data Documentation

	5.3 Property< Type, ClassHolder > Class Template Reference
	5.3.1 Detailed Description
	5.3.2 Constructor & Destructor Documentation
	5.3.3 Member Function Documentation
	5.3.4 Member Data Documentation

	6 File Documentation
	6.1 Crc8.cpp File Reference
	6.1.1 Detailed Description

	6.2 Crc8.cpp
	6.3 Crc8.h File Reference
	6.3.1 Detailed Description
	6.3.2 Macro Definition Documentation

	6.4 Crc8.h
	6.5 LICENSE.md File Reference
	6.6 MLX90614.cpp File Reference
	6.6.1 Detailed Description

	6.7 MLX90614.cpp
	6.8 MLX90614.h File Reference
	6.8.1 Macro Definition Documentation

	6.9 MLX90614.h
	6.10 Property.h File Reference
	6.11 Property.h
	6.12 README.md File Reference

	7 Example Documentation
	7.1 MelexisTest.ino

	Index

