
NDN Over UDP using Arduino
Antonio Cardace∗, Davide Aguiari∗,
∗ DISI, University of Bologna, Italy

Emails: antonio.cardace2@studio.unibo.it, davide.aguiari@studio.unibo.it

Abstract—Named Data Networking (NDN) is a promising
paradigm for the future Internet architecture which opens up
new possibilities for the data exchange among routers.
In order to learn NDN principles, a simpler NDN protocol has
been developed in a mobile environment by the means of different
boards.
This paper is a mobile system project overview and It wants to
explore the potentialities of the NDN paradigm applying to a IoT
(Internet of Things) context.

I. INTRODUCTION

Nowadays, research - whether academic or not - is actively
proceeding with the development of new and effective net-
work paradigms, in order to cover the increasingly stringent
requirements of computer networks.
The Internet is based on the IP network layer, which allows
its functionalities to work globally. Every IP address identifies
an end-point that can produce data or forward a request to the
correct destination.
Sustained growth in e-commerce, digital media, social net-
working, IoT and smartphone applications has led to dominant
use of the Internet as a distribution network and they intensi-
fied the discover of new and efficient data transfer protocols.
One of the most promising initiatives in this context is NDN
(Name Data Networking): founded in September 2010, is one
of the five ”Future Internet Architecture Program” projects.
NDN changes the semantics of network service from deliver-
ing the packet to a given destination address to fetching data
identified by a given name.
The name in an NDN packet can name anything an endpoint,
a data chunk in a movie or a book, a command to turn on
some lights, etc.
The project in this paper aims to test the NDN protocol on
different single-board computers like Arduino UNO and Intel
Galileo, developing a simpler routing protocol than the NDN
official ones. NDN over UDP is a C++ library that is able to
serve different kind of data from different sensors plugged to
the boards.
The following document consists of this introduction and six
sections: [II] the related works, used as starting point, [III] an
overview of the boards architecture and of the software, [IV]
a detailed description of the code, the Arduino API included
and its functions, [V] a performance and correctness evaluation
[VI] the conclusion.

II. RELATED WORKS

In order to understand the NDN protocol dynamics, several
academic papers have been studied:

• Named Data Networking
by Zhang, Crowley, Papadopoulos is the masterpiece
about NDN protocol in which they descrive Interest
and Data packets, the routing logic, the reasons behind
this new network paradigm, the architecture and the
researchers’ approaches.

• Named Data Networking: a Natural Design for Data
Collection in Wireless Sensor Networks
by Amadeo, Campolo, Molinaro and Mitton, instead,
shows how NDN can be used in a IoT (Internet of
Things) context, in a wireless sensors netowrk. Here
NDNOverIP/NDNOverUDP, the procol we developed in
our project, can be found.

• ”Named Data Networking of Things (Invited Paper)”
by Wentao Shang, Adeola Bannis, Teng Liang, Zhehao
Wang, Yingdi Yu, Alexander Afanasyev, Jeff Thompson,
Jeff Burke, Beichuan Zhang, and Lixia Zhang, yet another
survey about NDN and its applications in the Internet of
Things.

Finally, some open-source projects hosted on Github, like ndn-
js or ndn-cpp, have been taken as example.

III. ARCHITECTURE

It has been used two Intel Galileo connected to a network
switch via Ethernet and one Arduino in order to check the
Interest packets and Data packets forwarding behavior; a DHT-
22 temperature/humidity module was plugged on every board.
Galileo is a X86 computer, it ships with an Intel Quark
SoC X1000 Application Processor, a 32-bit Intel Pentium-
class system on a chip, while Arduino UNO is a atmega328
microcontroller with 32K of RAM memory.
The Galileo board is also SW compatible with the Arduino
SW Development Environment, which makes usability and
introduction a snap.
In addition to Arduino HW and SW compatibility, the Galileo
board has several PC industry standard I/O ports and features
to expand native usage and capabilities beyond the Arduino
shield ecosystem. A full sized mini-PCI Express slot, 100Mb
Ethernet port, Micro-SD slot, RS-232 serial port, USB Host
port, USB Client port, and 8MByte NOR flash come standard

2

on the board 1.
All the boards are connected to a Local Area Network and
they belong to the same subnet even if the Intel Galileo boards
have a serious UDP bug when trying to send UDP packets.
2 The developed library uses two new data structures, these
are the NDN data packet (NDNDataPacket) and the NDN
Interest packet (NDNInterestPacket), suitably simplified: from
the original NDN packets, signatures and cache delays have
been removed.
Here are the two packets in details:

t y p e d e f s t r u c t N D N I n t e r e s t P a c k e t {
i f d e f ARDUINO X86

unsigned long i p ;
e n d i f

b y t e t y p e ;
unsigned long nonce ;
unsigned s h o r t nameLength ;
char ∗name ;

} N D N I n t e r e s t P a c k e t ;

t y p e d e f s t r u c t NDNDataPacket {
i f d e f ARDUINO X86

unsigned long i p ;
e n d i f

b y t e t y p e ;
unsigned s h o r t nameLength ;
unsigned long c o n t e n t L e n g t h ;
char ∗name ;
char ∗ c o n t e n t ;

} NDNDataPacket ;

A third data structure NDNRouteENtry has been developed:
it represents a FIB (Forwarding Information Base) entry and
it’s defined as follows:

t y p e d e f s t r u c t NDNRouteEntry {
b o o l e a n f r e e B l o c k ;
unsigned long nonce ;
u i n t 8 t i n t e r e s t H a s h [1 0] ;
IPAddre s s i p ;
unsigned long t imes t amp ;

} NDNRouteEntry ;

The library follows the Arduino API Style Guide and it con-
tains the begin() method to initialize a library instance; stop()
to delete the utilized data structures and the startDaemon()
routine which has the core role of correctly routing Interest
and Data packet.
PublishInterests() must be used by the producers to inform
the libray on how they plan to produce a particular interest,
dumpRoutingTable() shows the FIB in the Serial Monitor
while addNDNNodes() (only available for the Intel platform)
identifies the Intel Galileo boards connected to the subnet in

1Intel Galileo Datasheet: http://www.intel.com/newsroom/kits/quark/
galileo/pdfs/Intel Galileo Datasheet.pdf

2More details here: http://www.inspirel.com/yami4/intel galileo.html

order to do UDP multicast.
The library constants are stored in the header file:

• NDN UDP port: 8888
• UDP Buffer size: 1K (256)
• FIB entries: 10
• Entry hash size: 10
• FBI entry TimeToLive (TTL): 5000ms

IV. IMPLEMENTATION

Since the project has been developed for the Arduino
platform the programming environment used was Arduino-
IDE and the programming language of the library is C.
Moreover for testing purposes two other pieces of software
have been developed:

• ndn-client, written in Go;
• NDNProducerSim, a producer simulator written in C;

The NDN library following the style guides proposed by
Arduino is composed of a single directory NDNOverUDP,
inside this directory there are the following files:

• examples, example sketches for the Arduino-IDE
• utility
• NDNOverUDP.h, library header
• NDNOverUDP.cpp, library source code

A. ndn-client

It has been developed to be used as a swiss-knife for the
NDN protocol, it has multiple features which will be described
below.
When invoked from the command line it requires one manda-
tory argument, which is the interest name:

$ ndn−c l i e n t [OPTION] . . . INTEREST

Given this argument the client proceeds to broadcast the
interest packet as a UDP datagram on the local network on
the port 8888 (which has been chosen as the port of reference
for the NDN protocol), then it listens on the same port for
any incoming Data packet and prints on standard output the
content of the just arrived packet.
As shown by the usage string above the ndn-client has many
other features which can be used through command line
options, the following is a short description of them:

• -sd, send a Data packet instead of a Interest one;
• -c ”string”, content of the Data packet to be sent;
• -dd, Print dump of the received Data packet;
• -di, Print dump of the sent Interest packet;
• -x, Print a hex dump;
• -nl, Do not wait for a response Data packet;
• -gw, Instead of broadcasting the packet, use a NDN

Gateway;
• -intel, Supply this option if using a network composed

of Intel Galileo;

 http://www.intel.com/newsroom/kits/quark/galileo/pdfs/Intel_Galileo_Datasheet.pdf
 http://www.intel.com/newsroom/kits/quark/galileo/pdfs/Intel_Galileo_Datasheet.pdf
http://www.inspirel.com/yami4/intel_galileo.html

3

B. NDNProducerSim

This is a simple piece of software which simulates the
presence of a NDN producer on the local network. It can be
invoked from the command line as shown below:

$ NDNProducerSim INTEREST CONTENT

The inner workings are pretty simple, the program listens on
any interface for a UDP datagram, when one arrives it parses
the packet, if it is an Interest packet and the name in it matches
INTEREST, which has been supplied to the simulator, then
it replies with a Data packet with content CONTENT.
The application ignores any datagram which is not an Interest
packet and does not match the name it can produce.

C. NDNOverUDP

This is the core library, it’s been designed to be as
developers-friendly as possible, the aim was to let program-
mers easily declare the interests they are able to produce and
how they can produce them.
Following this simple schema instantiating a NDN producer
on a local network can be done in few lines.
Here is an example of the only lines of code required to make
an Arduino become a NDN-Forwarder/Router:

i n c l u d e <NDNOverUDP . h>
i n c l u d e <E t h e r n e t . h>

NDNOverUDP ndn ;
b y t e mac [] = { A MAC a d d r e s s } ;

void s e t u p () {
ndn . b e g i n (mac) ;
}
void l oop () {

ndn . s t a r tDaemon () ;
}

Here is another example where we would like the Arduino to
become a NDN-Forwarder/Router and a producer as well.
This can be done publishing the interest we are able to
produce.

i n c l u d e <NDNOverUDP . h>
i n c l u d e <E t h e r n e t . h>

NDNOverUDP ndn ;
b y t e mac [] = { A MAC a d d r e s s } ;

i n t homeTemp (char ∗∗ buf) {
∗ buf = new char [2 0] ;
re turn s p r i n t f (∗ buf , ”%d ” , r e a d S e n s o r ()) + 1 ;
}

char ∗names [2 0] = { ” / home / temp ” } ;
d a t a P r o d u c e r p r o d u c e r F u n c t i o n s [] = {

homeTemp } ;

void s e t u p () {
ndn . b e g i n (mac) ;
ndn . p u b l i s h I n t e r e s t s (names ,

p r o d u c e r F u n c t i o n s , 1) ;
}

void l oop () {
ndn . s t a r tDaemon () ;
}

1) FIB: The core component of the library is the FIB [1]
(Routing table) and its associated routing algorithm.
The FIB has a fixed size in memory, this has been done due to
the operating platform since the Arduino devices are usually
higly constrained on resources, for example during the tests
one of the device used was an Arduino UNO which only has
32K of memory, a good trade-off seemed to be a FIB which
could contain up to 10 outstanding interest routes (interest
requests which are yet to be fulfilled) at a given time. This
parameter of the FIB can be changed modifying the compile-
time definition NDN ROUTING TABLE SIZE.
The most relevant fields of each entry the routing table are:

• nonce, stores the nonce of the interest request;
• interestHash, hash of the interest name;
• ip, ip address of the interest packet sender;
• timestamp, useful for an aging algorithm;

In order to save space instead of storing the interest name
(which can be of arbitrary size) we store its hash instead.
The hash function used is the one offered from the library
ArduinoSpritzCipher, the length in bytes of the hash rep-
resentation can be defined at compile time modifying the
definition NDN ROUTING HASH SIZE, currently it is set
at 16 bytes.

2) Routing Algorithm: The routing algorithm used in
NDNOverUDP has been designed to be simple, efficient and
fast.
As can be seen in the algorithm 1 the FIB stores in memory
the backward path (in this implementation the IP address) for
a Data packet to reach the consumer who has requested that
same packet.

4

Algorithm 1: NDN Routing
Data: packet
while packet← receivePacket() do

parsePacket(packet);
if isInterestPacket(packet) then

if amIProducer(packet.name) then
content← produceContent(packet.name);
toIP ← FIB.getRoute(packet.name);
sendData(packet.name, content, toIP);

else
if notAlreadyForwarded(packet) then

FIB.setRoute(packet);
forwardInterest(packet);

end
end

end
if isDataPacket(packet) then

toIP ← FIB.getRoute(packet.name);
sendData(packet.name, content, toIP);
FIB.deleteRoute(packet);

end
end

The FIB is not a standard routing table which permanently
stores (once discovered) the next hop for a given destination,
it instead temporarily stores the hop back to the interest
sender, as a matter of fact every interest packet which the
NDN node cannot fulfill itself gets broadcasted to every other
node in the local network.
In this implementation due to memory constraints imposed
by the Arduino devices there is an aging algorithm which
periodically checks the FIB and deletes any outstanding
interest request which has not been fulfilled in a given time.

3) Arduino vs Galileo: Due to some bugs in the UDP stack
there is a compile-time flag ARDUINO x86 which is
supplied to the compiler only when compiling for the Intel
Galileo platform.
The bug makes impossible for an Intel Galileo to send broad-
cast UDP datagrams and to correctly parse the IP address of
the sender of a datagram, for these reasons the compile-time
flag is used throughout the code to distinguish between the
standard Arduino and the one from Intel.
The differences in the code due to the Galileo bugs are a
different packet structure and a multicast (through unicast)
approach instead of the broadcast one used in the standard
Arduino, of course the latter makes the Galileo implementation
less flexible due to the requirement of the developer to instruct
the library of all the NDN nodes present in the network.

D. utility

This directory contains a single file util.h in which there
are the classic networking functions useful for translating the
binary representation of a number from the host endianness to

the network byte order and vice versa.
This header was necessary due to the lack of these functions
in the standard libraries included by Arduino-IDE (although
on the Galileo platform they are included by default).

V. PERFORMANCE EVALUATION

To evaluate the performance and the correctness of the
implementation several experiments have been conducted, here
is a list with the scenarios we deployed to test the system:

1) Single Arduino
2) Arduino and NDNProducerSim
3) Network of Intel Galileo

There are no relevant network metrics to collect since the
system is made and has been thus tested on a local network,
therefore there’s no significant latency and no packet loss.
Nevertheless it is important to mark that thanks to the small
packet size (both Data and Interest) and simple and fast routing
algorithm even the Arduino platform is able to process and
respond to an interest request almost immediately, even when
there is a routing process in the middle, as a matter of fact the
response time to an Interest packet is indistinguishable from
any ordinary output of a command line application.
Due to the available resources, which were three Galileo at
hand, the most complex test we performed consisted of a
scenario where one Galileo was directly connected to the
ndn-client and the other two were accessible only by routing
through the first device, this was achieved using the –gw flag
of the ndn-client application which transmits a unicast Interest
packet instead of broadcasting it.
In this last test we recorded no significant latency in getting
a response from the client, and no packet loss.

VI. CONCLUSIONS

The scope of the project, which was implementing the
NDN protocol over UDP for small and local IoT applications,
imposes a limitation, the library as it is now cannot be used
over the Internet, in fact it deals only within a local network,
moreover it has been tested only with very few devices,
therefore there’s no claim that this system is scalable with
more than 10-20 devices although the whole project has been
designed and developed with scalability in mind.
NDNOverUDP has got very much room for improvements,
here are few ideas for further development:

• implement security and encryption [2];
• extend the implementation to support IPv6;
• implement NAT traversal;
• add optional-fields to Interest and Data packets;
• implement Directed-Diffusion routing [3];

Although there is plenty of room for improvements, since this
is a proof of concept, the library is ready for local contexts and
easy to use for developers wishing to integrate NDN protocol
in their local networks.

5

REFERENCES

[1] P. C. C. P. L. W. Lixia Zhang, kc claffy and B. Zhang, “Named
data networking,” ACM SIGCOMM Computer Communication Review,
vol. 44, July 2014.

[2] IEEE First International Conference on Internet-of-Things Design and
Implementation, Named Data Networking of Things (Invited Paper), April
2016.

[3] IEEE Wireless Days (WD), Named Data Networking: A natural design
for data collection in Wireless Sensor Networks, November 2013.

	Introduction
	Related works
	Architecture
	Implementation
	ndn-client
	NDNProducerSim
	NDNOverUDP
	FIB
	Routing Algorithm
	Arduino vs Galileo

	utility

	Performance evaluation
	Conclusions
	References

