Publishing the library to the Arduino Library Manager

How can I add my library to Library Manager

· Your library repository must be hosted on a major git-hosting website like GitHub, BitBucket or GitLab (other hosting site may be considered on request).

· Ensure your library is compliant with 1.5 format (1.5 format folder layout is not required)

· Your library must not have the same library.properties name value as another library previously added to the Library Manager index.

· Tag it and push the tag (or create a release if you web hosting offers a way to do it, for example with GitHub "releases")

· Open an issue on Arduino's GitHub, specifying the URL of the repository from where to download your library. If you have multiple libraries to submit you are welcome to do them all in a single issue.

· After some days, a member of the Arduino team will add your library to the Library Manager index and close the issue. Shortly after that your library will be available for installation via Library Manager.

Git Basics - Tagging

Tagging

Like most VCSs, Git has the ability to tag specific points in history as being important. Typically people use this functionality to mark release points (v1.0, and so on). In this section, you’ll learn how to list the available tags, how to create new tags, and what the different types of tags are.

Listing Your Tags

Listing the available tags in Git is straightforward. Just type git tag (with optional -l or --list):

$ git tag

v0.1

v1.3
This command lists the tags in alphabetical order; the order in which they appear has no real importance.

You can also search for tags that match a particular pattern. The Git source repo, for instance, contains more than 500 tags. If you’re only interested in looking at the 1.8.5 series, you can run this:

$ git tag -l "v1.8.5*"

v1.8.5

v1.8.5-rc0

v1.8.5-rc1

v1.8.5-rc2

v1.8.5-rc3

	Note
	Listing tag wildcards requires -l or --list option

If you want just the entire list of tags, running the command git tag implicitly assumes you want a listing and provides one; the use of -l or --list in this case is optional.

If, however, you’re supplying a wildcard pattern to match tag names, the use of -l or --list is mandatory.

Creating Tags

Git supports two types of tags: lightweight and annotated.

A lightweight tag is very much like a branch that doesn’t change — it’s just a pointer to a specific commit.

Annotated tags, however, are stored as full objects in the Git database. They’re checksummed; contain the tagger name, email, and date; have a tagging message; and can be signed and verified with GNU Privacy Guard (GPG). It’s generally recommended that you create annotated tags so you can have all this information; but if you want a temporary tag or for some reason don’t want to keep the other information, lightweight tags are available too.

Annotated Tags

Creating an annotated tag in Git is simple. The easiest way is to specify -a when you run the tagcommand:

$ git tag -a v1.4 -m "my version 1.4"

$ git tag

v0.1

v1.3

v1.4
The -m specifies a tagging message, which is stored with the tag. If you don’t specify a message for an annotated tag, Git launches your editor so you can type it in.

You can see the tag data along with the commit that was tagged by using the git show command:

$ git show v1.4

tag v1.4

Tagger: Ben Straub <ben@straub.cc>

Date: Sat May 3 20:19:12 2014 -0700

my version 1.4

commit ca82a6dff817ec66f44342007202690a93763949

Author: Scott Chacon <schacon@gee-mail.com>

Date: Mon Mar 17 21:52:11 2008 -0700

 changed the version number
That shows the tagger information, the date the commit was tagged, and the annotation message before showing the commit information.

Lightweight Tags

Another way to tag commits is with a lightweight tag. This is basically the commit checksum stored in a file — no other information is kept. To create a lightweight tag, don’t supply any of the -a, -s, or -moptions, just provide a tag name:

$ git tag v1.4-lw

$ git tag

v0.1

v1.3

v1.4

v1.4-lw

v1.5
This time, if you run git show on the tag, you don’t see the extra tag information. The command just shows the commit:

$ git show v1.4-lw

commit ca82a6dff817ec66f44342007202690a93763949

Author: Scott Chacon <schacon@gee-mail.com>

Date: Mon Mar 17 21:52:11 2008 -0700

 changed the version number
