cQueue
1.4

Generated by Doxygen 1.8.13

CONTENTS 1
Contents

1 Deprecated List 1

2 Data Structure Index 2

2.1 Data Structures e e e e e 2

3 File Index 2

3.1 File List e e e e e 2

4 Data Structure Documentation 2

41 Queue_tStructReference e 2

41.1 Detailed Description e 3

4.1.2 Field Documentation e 3

5 File Documentation 5

5.1 src/cQueue.c File Reference 5

5.1.1 Detailed Description e 6

5.1.2 Macro Definition Documentation 6

5.1.3 Function Documentation e e e e e 7

5.2 src/cQueue.h File Reference 12

5.2.1 Detailed Description 14

5.2.2 Macro Definition Documentation 15

523 Typedef Documentation 15

5.2.4 Enumeration Type Documentationo 16

5.2.5 Function Documentation 16

Index 27

1 Deprecated List

Global q_clean

g_clean was already used in cQueue lib, alias is made to keep compatibility with earlier versions

Global q_nbRecs

g_nbRecs was already used in cQueue lib, alias is made to keep compatibility with earlier versions

Global q_pull

g_pull was already used in cQueue lib, alias is made to keep compatibility with earlier versions

Generated by Doxygen

2 CONTENTS
2 Data Structure Index
2.1 Data Structures
Here are the data structures with brief descriptions:
Queue_t
Queue type structure holding all variables to handle the queue 2
3 File Index
3.1 File List
Here is a list of all files with brief descriptions:
src/cQueue.c
Queue handling library (designed in ¢ on STM32) 5
src/cQueue.h
Queue handling library (designed in c on STM32) 12

4 Data Structure Documentation

4.1 Queue_t Struct Reference

Queue type structure holding all variables to handle the queue.

#include <src/cQueue.h>

Data Fields

* QueueType impl
Queue implementation: FIFO LIFO.
* bool ovw

Overwrite previous records when queue is full allowed.
e uint16_trec_nb
number of records in the queue
* uint16_trec_sz
Size of a record.
» uint32_t queue_sz
Size of the full queue.
* uint8_t x queue
Queue start pointer (when allocated)
» uint16_tin
number of records pushed into the queue
e uint16_t out
number of records pulled from the queue (only for FIFO)
e uint16_tcnt
number of records not retrieved from the queue
e uint16_t init

set to QUEUE_INITIALIZED after successful init of the queue and reset when Killing queue

Generated by Doxygen

4.1 Queue_t Struct Reference

41.1 Detailed Description

Queue type structure holding all variables to handle the queue.

4.1.2 Field Documentation

4121 cnt

uintl6_t Queue_t::cnt

number of records not retrieved from the queue

4122 impl

QueueType Queue_t::impl

Queue implementation: FIFO LIFO.

4123 in

uintl6_t Queue_t::in

number of records pushed into the queue

4.1.2.4 init

uintl6_t Queue_t::init

set to QUEUE_INITIALIZED after successful init of the queue and reset when killing queue

4125 out

uintl6_t Queue_t::out

number of records pulled from the queue (only for FIFO)

Generated by Doxygen

CONTENTS

41.26 ovw

bool Queue_t::ovw

Overwrite previous records when queue is full allowed.

41.2.7 queue

uint8_t* Queue_t::queue

Queue start pointer (when allocated)

41.2.8 queue_sz

uint32_t Queue_t::queue_sz

Size of the full queue.

41.29 rec_nb

uintl6_t Queue_t::rec_nb

number of records in the queue

4.1.2.10 rec_sz

uintl6_t Queue_t::rec_sz

Size of a record.

The documentation for this struct was generated from the following file:

 src/cQueue.h

Generated by Doxygen

5 File Documentation 5

5 File Documentation

5.1 src/cQueue.c File Reference

Queue handling library (designed in c on STM32)

#include <string.h>
#include <stdlib.h>
#include "cQueue.h"
Include dependency graph for cQueue.c:

src/cQueue.c

string.h stdlib.h cQueue.h

inttypes.h stdbool.h

Macros

+ #define INC_IDX(ctr, end, start)

Increments buffer index ctr rolling back to start when limit end is reached.
« #define DEC_IDX(ctr, end, start)

Decrements buffer index ctr rolling back to end when limit start is reached.

Functions

« void * g_init (Queue_t *q, const uint16_t size_rec, const uint16_t nb_recs, const QueueType type, const bool
overwrite)

Queue initialization.
« void g_kill (Queue_t *q)

Queue destructor: release dynamically allocated queue.
+ void g_flush (Queue_t *q)

Flush queue, restarting from empty queue.
* bool g_push (Queue_t xq, const void xrecord)

Push record to queue.
* bool g_pop (Queue_t xq, void xrecord)

Pop record from queue.
* bool g_peek (Queue_t *q, void *record)

Peek record from queue.
* bool g_drop (Queue_t *q)

Drop current record from queue.

Generated by Doxygen

6 CONTENTS

5.1.1 Detailed Description

Queue handling library (designed in ¢ on STM32)

Author
SMFSW

Date
2018/05/26

Copyright

BSD 3-Clause License (c) 2017-2018, SMFSW

Queue handling library (designed in ¢ on STM32)

5.1.2 Macro Definition Documentation

5.1.2.1 DEC_IDX

#define DEC_IDX (

ctr,
end,
start)
Value:
(ctr > (start)) { ctr——; } \

else { ctr = end-1; }

Decrements buffer index ctr rolling back to end when limit start is reached.

5.1.2.2 INC_IDX

#define INC_IDX(

ctr,
end,
start)
Value:
- (ctr < (end-1)) { ctr++; } \

else { ctr = start; }

Increments buffer index ctr rolling back to start when limit end is reached.

Generated by Doxygen

5.1 src/cQueue.c File Reference 7

5.1.3 Function Documentation

5.1.3.1 q_drop()

bool g_drop (

Queue_t * g)

Drop current record from queue.
Warning
If using g_push, g_pop, q_peek and/or g_drop in both interrupts and main application, you shall disable

interrupts in main application when using these functions

Parameters

in, out ‘ q ‘ - pointer of queue to handle

Returns

drop status

Return values

true | if successfully dropped from queue

false | if queue is empty

Here is the caller graph for this function:

q_getRemainingCount

q_drop [

5132 q_flush()

void g_flush (
Queue_t * q)

Flush queue, restarting from empty queue.

Generated by Doxygen

8 CONTENTS

Parameters

in, out ‘ q | - pointer of queue to handle

Here is the caller graph for this function:

q_flush («@—— q_Kkill

5.1.3.3 q_init()

void* g_init (
Queue_t * g,
const uintlé6_t size_rec,
const uintlé6_t nb_recs,
const QueueType type,

const bool overwrite)

Queue initialization.

Parameters

in,out | q - pointer of queue to handle

in size_rec | - size of a record in the queue

in nb_recs | - number of records in the queue

in type - Queue implementation type: FIFO, LIFO

in overwrite | - Overwrite previous records when queue is full
Returns

NULL when allocation not possible, Queue tab address when successful

5134 g kill()

void g_kill (
Queue_t * g)

Queue destructor: release dynamically allocated queue.

Generated by Doxygen

5.1 src/cQueue.c File Reference 9

Parameters

in, out ‘ q | - pointer of queue to handle

Here is the call graph for this function:

g kill ——p» g_flush

5.1.3.5 q_peek()

bool g_peek (
Queue_t * g,

void * record)

Peek record from queue.
Warning
If using g_push, g_pop, q_peek and/or gq_drop in both interrupts and main application, you shall disable

interrupts in main application when using these functions

Parameters

in q - pointer of queue to handle

in, out | record | - pointer to record to be peeked from queue

Returns

Peek status

Return values

true | if successfully pulled from queue

false | if queue is empty

Generated by Doxygen

10 CONTENTS

Here is the call graph for this function:

g_peek ——p» q_drop

Here is the caller graph for this function:

q_getRemainingCount

5.1.3.6 q_pop()

bool g_pop (
Queue_t * g,

void * record)

Pop record from queue.
Warning
If using g_push, g_pop, q_peek and/or g_drop in both interrupts and main application, you shall disable

interrupts in main application when using these functions

Parameters

in q - pointer of queue to handle

in, out | record | - pointer to record to be popped from queue

Returns

Pop status

Generated by Doxygen

5.1 src/cQueue.c File Reference 11

Return values

true | if successfully pulled from queue

false | if queue is empty

Here is the call graph for this function:

g pop —P» q_peek ——p» q_drop

Here is the caller graph for this function:

apush g
q_pop 1/ g_getRemainingCount

5.1.3.7 q_push()

bool g_push (
Queue_t * g,

const void x record)

Push record to queue.

Warning

If using q_push, g_pop, q_peek and/or g_drop in both interrupts and main application, you shall disable
interrupts in main application when using these functions

Parameters
in,out | q - pointer of queue to handle
in record | - pointer to record to be pushed into queue

Generated by Doxygen

12 CONTENTS

Returns

Push status

Return values

true | if successfully pushed into queue

false | if queue is full

Here is the call graph for this function:

q_isFull

q_push

/

q_pop ——»1 q_peek P q_drop

Here is the caller graph for this function:

g_push (—— q_getRemainingCount

5.2 src/cQueue.h File Reference

Queue handling library (designed in c on STM32)

#include <inttypes.h>
#include <stdbool.h>
Include dependency graph for cQueue.h:

src/cQueue.h

inttypes.h stdbool.h

Generated by Doxygen

5.2 src/cQueue.h File Reference

13

This graph shows which files directly or indirectly include this file:

src/cQueue.h

src/cQueue.c

Data Structures

« struct Queue_t

Quevue type structure holding all variables to handle the queue.

Macros

+ #define QUEUE_INITIALIZED 0x5AA5

Queue initialized control value.

« #define g_init_def(q, sz) g_init(q, sz, 20, FIFO, false)
Some kind of average default for queue initialization.

+ #define gq_pull g_pop

« #define g_nbRecs q_getCount

« #define q_clean g_flush

Typedefs

* typedef enum enumQueueType QueueType

* typedef struct Queue_t Queue_t

Enumerations

« enum enumQueueType { FIFO =0, LIFO =1}

Queue behavior enumeration (FIFO, LIFO)

Generated by Doxygen

14

CONTENTS

Functions

5.2.1

void * g_init (Queue_t *q, const uint16_t size_rec, const uint16_t nb_recs, const QueueType type, const bool

overwrite)
Queue initialization.
void g_Kill (Queue_t xq)
Queue destructor: release dynamically allocated queue.
void g_flush (Queue_t *q)
Flush queue, restarting from empty queue.
bool g_islInitialized (const Queue_t *q)

get initialization state of the queue
bool g_isEmpty (const Queue_t xq)

get emptiness state of the queue
bool g_isFull (const Queue_t *q)

get fullness state of the queue
uint32_t g_sizeof (const Queue_t *q)

get size of queue
uint16_t g_getCount (const Queue_t *q)

get number of records in the queue
uint16_t g_getRemainingCount (const Queue_t xq)

get number of records left in the queue

bool g_push (Queue_t *q, const void *record)
Push record to queue.

bool g_pop (Queue_t *q, void xrecord)

Pop record from queue.

bool g_peek (Queue_t *xq, void *record)
Peek record from queue.

bool g_drop (Queue_t *q)

Drop current record from queue.

Detailed Description

Queue handling library (designed in ¢ on STM32)

Author

Date

SMFSW

2018/05/26

Copyright

BSD 3-Clause License (c) 2017-2018, SMFSW

Queue handling library (designed in ¢ on STM32)

Generated by Doxygen

5.2 src/cQueue.h File Reference

15

5.2.2 Macro Definition Documentation

5221 ¢ _clean

#define g_clean g_flush

Deprecated g_clean was already used in cQueue lib, alias is made to keep compatibility with earlier versions

5.2.2.2 q_init_def

#define g_init_def (

q/
sz) g_init (g, sz, 20, FIFO, false)

Some kind of average default for queue initialization.

5.2.2.3 q_nbRecs

#define g _nbRecs g_getCount

Deprecated g_nbRecs was already used in cQueue lib, alias is made to keep compatibility with earlier versions

5224 q_pull

#define g_pull g _pop

Deprecated g_pull was already used in cQueue lib, alias is made to keep compatibility with earlier versions

5.2.2.5 QUEUE_INITIALIZED

#define QUEUE_INITIALIZED Ox5AAS5

Queue initialized control value.

5.2.3 Typedef Documentation

Generated by Doxygen

16 CONTENTS

52.3.1 Queue_t

typedef struct Queue_t Queue_t

5.2.3.2 QueueType

typedef enum enumQueueType QueueType

5.2.4 Enumeration Type Documentation

5.24.1 enumQueueType

enum enumQueueType

Queue behavior enumeration (FIFO, LIFO)

Enumerator

FIFO | First In First Out behavior.
LIFO | Last In First Out behavior.

5.2.5 Function Documentation

5.2.5.1 q_drop()

bool g_drop (
Queue_t * g)

Drop current record from queue.
Warning
If using q_push, g_pop, q_peek and/or g_drop in both interrupts and main application, you shall disable

interrupts in main application when using these functions

Parameters

in, out ‘ q | - pointer of queue to handle

Generated by Doxygen

5.2 src/cQueue.h File Reference

Returns

drop status

Return values

true | if successfully dropped from queue

false | if queue is empty

Here is the caller graph for this function:

q_getRemainingCount

q_drop |ag

5.2.5.2 q_flush()

void g_flush (
Queue_t * g)

Flush queue, restarting from empty queue.

Parameters

- pointer of queue to handle

in, out ‘ q

Here is the caller graph for this function:

q flush t@—— qkill

Generated by Doxygen

18

CONTENTS

5.2.5.3 q_getCount()

uintl6_t g_getCount (

const Queue_t * g) [inline]
get number of records in the queue

Parameters

‘ in ‘ g | - pointer of queue to handle

Returns

Number of records stored in the queue

5.2.5.4 q_getRemainingCount()

uintl6_t g_getRemainingCount (

const Queue_t * g) [inline]

get number of records left in the queue

Parameters

- pointer of queue to handle

Ear

Returns

Number of records left in the queue

Here is the call graph for this function:

[[|

/ a_pop

q_peek

g_getRemainingCount

q_drop

q_peek

Generated by Doxygen

5.2 src/cQueue.h File Reference

5.2.5.5 q_init()

void* g_init (
Queue_t % g,
const uintlé6_t size rec,
const uintlé6_t nb_recs,
const QueueType type,

const bool overwrite)

Queue initialization.

Parameters

in,out | g - pointer of queue to handle

in size_rec | - size of a record in the queue

in nb_recs | - number of records in the queue

in type - Queue implementation type: FIFO, LIFO

in overwrite | - Overwrite previous records when queue is full
Returns

NULL when allocation not possible, Queue tab address when successful

5.2.5.6 ¢q_isEmpty()

bool g_isEmpty (

const Queue_t * g) [inline]

get emptiness state of the queue

Parameters

- pointer of queue to handle

Ear

Returns

Queue emptiness status

Return values

true | if queue is empty
false | is not empty

5.2.5.7 q_isFull()

bool g_isFull (

const Queue_t * q) [inline]

Generated by Doxygen

20 CONTENTS

get fullness state of the queue

Parameters

| in | g | - pointer of queue to handle

Returns

Queue fullness status

Return values

true | if queue is full
false | is not full

Here is the caller graph for this function:

g_isFull }«@—— g_push {«@—— g_getRemainingCount

5.2.5.8 q_islInitialized()

bool g_isInitialized (

const Queue_t * g) [inline]

get initialization state of the queue

Parameters

‘ in ‘ q ‘ - pointer of queue to handle

Returns

Queue initialization status

Return values

true | if queue is allocated

false | is queue is not allocated

Generated by Doxygen

5.2 src/cQueue.h File Reference 21

5259 q_kill()

void g_kill (
Queue_t * g)

Queue destructor: release dynamically allocated queue.

Parameters

in, out ‘ q ‘ - pointer of queue to handle

Here is the call graph for this function:

q_kill ——p»t g_flush

5.2.5.10 q_peek()

bool g_peek (
Queue_t * g,

void * record)

Peek record from queue.
Warning
If using q_push, g_pop, q_peek and/or g_drop in both interrupts and main application, you shall disable

interrupts in main application when using these functions

Parameters

in q - pointer of queue to handle

in, out | record | - pointerto record to be peeked from queue

Returns

Peek status

Return values

true | if successfully pulled from queue

false | if queue is empty

Generated by Doxygen

22 CONTENTS

Here is the call graph for this function:

g_peek ——p» q_drop

Here is the caller graph for this function:

q_getRemainingCount

5.2.5.11 q_pop()

bool g_pop (
Queue_t * g,

void * record)

Pop record from queue.
Warning
If using g_push, g_pop, q_peek and/or g_drop in both interrupts and main application, you shall disable

interrupts in main application when using these functions

Parameters

in q - pointer of queue to handle

in, out | record | - pointer to record to be popped from queue

Returns

Pop status

Generated by Doxygen

5.2 src/cQueue.h File Reference 23

Return values

true | if successfully pulled from queue

false | if queue is empty

Here is the call graph for this function:

g pop —P» q_peek ——p» q_drop

Here is the caller graph for this function:

apush g
q_pop 1/ g_getRemainingCount

5.25.12 q_push()

bool g_push (
Queue_t * g,

const void x record)

Push record to queue.

Warning

If using q_push, g_pop, q_peek and/or g_drop in both interrupts and main application, you shall disable
interrupts in main application when using these functions

Parameters
in,out | q - pointer of queue to handle
in record | - pointer to record to be pushed into queue

Generated by Doxygen

24

CONTENTS

Returns

Push status

Return values

true

if successfully pushed into queue

false

if queue is full

Here is the call graph for this function:

q_isFull

q_push

/

q_pop

—» q_peek P

Here is the caller graph for this function:

g_push

5.2.5.13 q_sizeof()

uint32_t qg_sizeof (

const Queue_t * g) [inline]

get size of queue

Remarks

Size in bytes (like sizeof)

Parameters

Ear

- pointer of queue to handle

q_drop

g_getRemainingCount

Generated by Doxygen

5.2 src/cQueue.h File Reference

25

Returns

Size of queue in bytes

Generated by Doxygen

Index

cQueue.c
DEC_IDX, 6
INC_IDX, 6
q_drop, 7
q_flush, 7
q_init, 8
q_kill, 8
q_peek, 9
q_pop, 10
q_push, 11

cQueue.h
enumQueueType, 16
g_clean, 15
q_drop, 16
q_flush, 17
q_getCount, 17
g_getRemainingCount, 18
q_init, 18
q_init_def, 15
q_isEmpty, 19
q_isFull, 19
q_islnitialized, 20
q_kill, 20
q_nbRecs, 15
q_peek, 21
q_pop, 22
q_pull, 15
q_push, 23
q_sizeof, 24
QUEUE_INITIALIZED, 15
Queue_t, 15
QueueType, 16

cnt
Queue _t, 3

DEC_IDX
cQueue.c, 6

enumQueueType
cQueue.h, 16

INC_IDX

cQueue.c, 6
impl

Queue t, 3
in

Queue t, 3
init

Queue t, 3
out

Queue_t, 3

ovw
Queue_t, 3

g_clean

cQueue.h, 15
g_drop

cQueue.c, 7

cQueue.h, 16
g_flush

cQueue.c, 7

cQueue.h, 17
q_getCount

cQueue.h, 17
g_getRemainingCount

cQueue.h, 18
q_init

cQueue.c, 8

cQueue.h, 18
q_init_def

cQueue.h, 15
q_isEmpty

cQueue.h, 19
q_isFull

cQueue.h, 19
g_islnitialized

cQueue.h, 20
q_kill

cQueue.c, 8

cQueue.h, 20
q_nbRecs

cQueue.h, 15
g_peek

cQueue.c, 9

cQueue.h, 21
g_pop

cQueue.c, 10

cQueue.h, 22
a_pull

cQueue.h, 15
g_push

cQueue.c, 11

cQueue.h, 23
q_sizeof

cQueue.h, 24
QUEUE_INITIALIZED

cQueue.h, 15
queue

Queue_t, 4
queue_sz

Queue_t, 4
Queue_t, 2

cQueue.h, 15

cnt, 3

impl, 3

in, 3

init, 3

out, 3

ovw, 3

queue, 4

28

INDEX

queue_sz, 4
rec_nb, 4
rec_sz, 4
QueueType
cQueue.h, 16

rec_nb
Queue_t, 4

rec_sz
Queue t, 4

src/cQueue.c, 5
src/cQueue.h, 12

Generated by Doxygen

	1 Deprecated List
	2 Data Structure Index
	2.1 Data Structures

	3 File Index
	3.1 File List

	4 Data Structure Documentation
	4.1 Queue_t Struct Reference
	4.1.1 Detailed Description
	4.1.2 Field Documentation

	5 File Documentation
	5.1 src/cQueue.c File Reference
	5.1.1 Detailed Description
	5.1.2 Macro Definition Documentation
	5.1.3 Function Documentation

	5.2 src/cQueue.h File Reference
	5.2.1 Detailed Description
	5.2.2 Macro Definition Documentation
	5.2.3 Typedef Documentation
	5.2.4 Enumeration Type Documentation
	5.2.5 Function Documentation

	Index

