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1 Deprecated List

Global q_clean

g_clean was already used in cQueue lib, alias is made to keep compatibility with earlier versions

Global q_nbRecs

g_nbRecs was already used in cQueue lib, alias is made to keep compatibility with earlier versions

Global q_pull

g_pull was already used in cQueue lib, alias is made to keep compatibility with earlier versions
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2 CONTENTS
2 Data Structure Index
2.1 Data Structures
Here are the data structures with brief descriptions:
Queue_t
Queue type structure holding all variables to handle the queue 2
3 File Index
3.1 File List
Here is a list of all files with brief descriptions:
src/cQueue.c
Queue handling library (designed in ¢ on STM32) 5
src/cQueue.h
Queue handling library (designed in c on STM32) 12

4 Data Structure Documentation

4.1 Queue_t Struct Reference

Queue type structure holding all variables to handle the queue.

#include <src/cQueue.h>

Data Fields

* QueueType impl
Queue implementation: FIFO LIFO.
* bool ovw

Overwrite previous records when queue is full allowed.
e uint16_trec_nb
number of records in the queue
* uint16_trec_sz
Size of a record.
» uint32_t queue_sz
Size of the full queue.
* uint8_t x queue
Queue start pointer (when allocated)
» uint16_tin
number of records pushed into the queue
e uint16_t out
number of records pulled from the queue (only for FIFO)
e uint16_tcnt
number of records not retrieved from the queue
e uint16_t init

set to QUEUE_INITIALIZED after successful init of the queue and reset when Killing queue
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4.1 Queue_t Struct Reference

41.1 Detailed Description

Queue type structure holding all variables to handle the queue.

4.1.2 Field Documentation

4121 cnt

uintl6_t Queue_t::cnt

number of records not retrieved from the queue

4122 impl

QueueType Queue_t::impl

Queue implementation: FIFO LIFO.

4123 in

uintl6_t Queue_t::in

number of records pushed into the queue

4.1.2.4 init

uintl6_t Queue_t::init

set to QUEUE_INITIALIZED after successful init of the queue and reset when killing queue

4125 out

uintl6_t Queue_t::out

number of records pulled from the queue (only for FIFO)
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41.26 ovw

bool Queue_t::ovw

Overwrite previous records when queue is full allowed.

41.2.7 queue

uint8_t* Queue_t::queue

Queue start pointer (when allocated)

41.2.8 queue_sz

uint32_t Queue_t::queue_sz

Size of the full queue.

41.29 rec_nb

uintl6_t Queue_t::rec_nb

number of records in the queue

4.1.2.10 rec_sz

uintl6_t Queue_t::rec_sz

Size of a record.

The documentation for this struct was generated from the following file:

 src/cQueue.h
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5 File Documentation 5

5 File Documentation

5.1 src/cQueue.c File Reference

Queue handling library (designed in c on STM32)

#include <string.h>
#include <stdlib.h>
#include "cQueue.h"
Include dependency graph for cQueue.c:

src/cQueue.c

string.h stdlib.h cQueue.h

inttypes.h stdbool.h

Macros

+ #define INC_IDX(ctr, end, start)

Increments buffer index ctr rolling back to start when limit end is reached.
« #define DEC_IDX(ctr, end, start)

Decrements buffer index ctr rolling back to end when limit start is reached.

Functions

« void * g_init (Queue_t *q, const uint16_t size_rec, const uint16_t nb_recs, const QueueType type, const bool
overwrite)

Queue initialization.
« void g_kill (Queue_t *q)

Queue destructor: release dynamically allocated queue.
+ void g_flush (Queue_t *q)

Flush queue, restarting from empty queue.
* bool g_push (Queue_t xq, const void xrecord)

Push record to queue.
* bool g_pop (Queue_t xq, void xrecord)

Pop record from queue.
* bool g_peek (Queue_t *q, void *record)

Peek record from queue.
* bool g_drop (Queue_t *q)

Drop current record from queue.
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5.1.1 Detailed Description

Queue handling library (designed in ¢ on STM32)

Author
SMFSW

Date
2018/05/26

Copyright

BSD 3-Clause License (c) 2017-2018, SMFSW

Queue handling library (designed in ¢ on STM32)

5.1.2 Macro Definition Documentation

5.1.2.1 DEC_IDX

#define DEC_IDX (

ctr,
end,
start )
Value:
(ctr > (start)) { ctr——; } \

else { ctr = end-1; }

Decrements buffer index ctr rolling back to end when limit start is reached.

5.1.2.2 INC_IDX

#define INC_IDX(

ctr,
end,
start )
Value:
- (ctr < (end-1)) { ctr++; } \

else { ctr = start; }

Increments buffer index ctr rolling back to start when limit end is reached.
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5.1 src/cQueue.c File Reference 7

5.1.3 Function Documentation

5.1.3.1 q_drop()

bool g_drop (

Queue_t * g )

Drop current record from queue.
Warning
If using g_push, g_pop, q_peek and/or g_drop in both interrupts and main application, you shall disable

interrupts in main application when using these functions

Parameters

in, out ‘ q ‘ - pointer of queue to handle

Returns

drop status

Return values

true | if successfully dropped from queue

false | if queue is empty

Here is the caller graph for this function:

q_getRemainingCount

q_drop [

5132 q_flush()

void g_flush (
Queue_t * q )

Flush queue, restarting from empty queue.
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Parameters

in, out ‘ q | - pointer of queue to handle

Here is the caller graph for this function:

q_flush («@—— q_Kkill

5.1.3.3 q_init()

void* g_init (
Queue_t * g,
const uintlé6_t size_rec,
const uintlé6_t nb_recs,
const QueueType type,

const bool overwrite )

Queue initialization.

Parameters

in,out | q - pointer of queue to handle

in size_rec | - size of a record in the queue

in nb_recs | - number of records in the queue

in type - Queue implementation type: FIFO, LIFO

in overwrite | - Overwrite previous records when queue is full
Returns

NULL when allocation not possible, Queue tab address when successful

5134 g kill()

void g_kill (
Queue_t * g )

Queue destructor: release dynamically allocated queue.
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5.1 src/cQueue.c File Reference 9

Parameters

in, out ‘ q | - pointer of queue to handle

Here is the call graph for this function:

g kill ——p» g_flush

5.1.3.5 q_peek()

bool g_peek (
Queue_t * g,

void * record )

Peek record from queue.
Warning
If using g_push, g_pop, q_peek and/or gq_drop in both interrupts and main application, you shall disable

interrupts in main application when using these functions

Parameters

in q - pointer of queue to handle

in, out | record | - pointer to record to be peeked from queue

Returns

Peek status

Return values

true | if successfully pulled from queue

false | if queue is empty
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Here is the call graph for this function:

g_peek ——p» q_drop

Here is the caller graph for this function:

q_getRemainingCount

5.1.3.6 q_pop()

bool g_pop (
Queue_t * g,

void * record )

Pop record from queue.
Warning
If using g_push, g_pop, q_peek and/or g_drop in both interrupts and main application, you shall disable

interrupts in main application when using these functions

Parameters

in q - pointer of queue to handle

in, out | record | - pointer to record to be popped from queue

Returns

Pop status
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Return values

true | if successfully pulled from queue

false | if queue is empty

Here is the call graph for this function:

g pop —P» q_peek ——p» q_drop

Here is the caller graph for this function:

apush g
q_pop 1/ g_getRemainingCount

5.1.3.7 q_push()

bool g_push (
Queue_t * g,

const void x record )

Push record to queue.

Warning

If using q_push, g_pop, q_peek and/or g_drop in both interrupts and main application, you shall disable
interrupts in main application when using these functions

Parameters
in,out | q - pointer of queue to handle
in record | - pointer to record to be pushed into queue
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Returns

Push status

Return values

true | if successfully pushed into queue

false | if queue is full

Here is the call graph for this function:

q_isFull

q_push

/

q_pop ——»1 q_peek P q_drop

Here is the caller graph for this function:

g_push (—— q_getRemainingCount

5.2 src/cQueue.h File Reference

Queue handling library (designed in c on STM32)

#include <inttypes.h>
#include <stdbool.h>
Include dependency graph for cQueue.h:

src/cQueue.h

inttypes.h stdbool.h
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This graph shows which files directly or indirectly include this file:

src/cQueue.h

src/cQueue.c

Data Structures

« struct Queue_t

Quevue type structure holding all variables to handle the queue.

Macros

+ #define QUEUE_INITIALIZED 0x5AA5

Queue initialized control value.

« #define g_init_def(q, sz) g_init(q, sz, 20, FIFO, false)
Some kind of average default for queue initialization.

+ #define gq_pull g_pop

« #define g_nbRecs q_getCount

« #define q_clean g_flush

Typedefs

* typedef enum enumQueueType QueueType

* typedef struct Queue_t Queue_t

Enumerations

« enum enumQueueType { FIFO =0, LIFO =1}

Queue behavior enumeration (FIFO, LIFO)
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Functions

5.2.1

void * g_init (Queue_t *q, const uint16_t size_rec, const uint16_t nb_recs, const QueueType type, const bool

overwrite)
Queue initialization.
void g_Kill (Queue_t xq)
Queue destructor: release dynamically allocated queue.
void g_flush (Queue_t *q)
Flush queue, restarting from empty queue.
bool g_islInitialized (const Queue_t *q)

get initialization state of the queue
bool g_isEmpty (const Queue_t xq)

get emptiness state of the queue
bool g_isFull (const Queue_t *q)

get fullness state of the queue
uint32_t g_sizeof (const Queue_t *q)

get size of queue
uint16_t g_getCount (const Queue_t *q)

get number of records in the queue
uint16_t g_getRemainingCount (const Queue_t xq)

get number of records left in the queue

bool g_push (Queue_t *q, const void *record)
Push record to queue.

bool g_pop (Queue_t *q, void xrecord)

Pop record from queue.

bool g_peek (Queue_t *xq, void *record)
Peek record from queue.

bool g_drop (Queue_t *q)

Drop current record from queue.

Detailed Description

Queue handling library (designed in ¢ on STM32)

Author

Date

SMFSW

2018/05/26

Copyright

BSD 3-Clause License (c) 2017-2018, SMFSW

Queue handling library (designed in ¢ on STM32)
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5.2.2 Macro Definition Documentation

5221 ¢ _clean

#define g_clean g_flush

Deprecated g_clean was already used in cQueue lib, alias is made to keep compatibility with earlier versions

5.2.2.2 q_init_def

#define g_init_def (

q/
sz ) g_init (g, sz, 20, FIFO, false)

Some kind of average default for queue initialization.

5.2.2.3 q_nbRecs

#define g _nbRecs g_getCount

Deprecated g_nbRecs was already used in cQueue lib, alias is made to keep compatibility with earlier versions

5224 q_pull

#define g_pull g _pop

Deprecated g_pull was already used in cQueue lib, alias is made to keep compatibility with earlier versions

5.2.2.5 QUEUE_INITIALIZED

#define QUEUE_INITIALIZED Ox5AAS5

Queue initialized control value.

5.2.3 Typedef Documentation
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52.3.1 Queue_t

typedef struct Queue_t Queue_t

5.2.3.2 QueueType

typedef enum enumQueueType QueueType

5.2.4 Enumeration Type Documentation

5.24.1 enumQueueType

enum enumQueueType

Queue behavior enumeration (FIFO, LIFO)

Enumerator

FIFO | First In First Out behavior.
LIFO | Last In First Out behavior.

5.2.5 Function Documentation

5.2.5.1 q_drop()

bool g_drop (
Queue_t * g )

Drop current record from queue.
Warning
If using q_push, g_pop, q_peek and/or g_drop in both interrupts and main application, you shall disable

interrupts in main application when using these functions

Parameters

in, out ‘ q | - pointer of queue to handle
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5.2 src/cQueue.h File Reference

Returns

drop status

Return values

true | if successfully dropped from queue

false | if queue is empty

Here is the caller graph for this function:

q_getRemainingCount

q_drop |ag

5.2.5.2 q_flush()

void g_flush (
Queue_t * g )

Flush queue, restarting from empty queue.

Parameters

- pointer of queue to handle

in, out ‘ q

Here is the caller graph for this function:

q flush t@—— qkill
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5.2.5.3 q_getCount()

uintl6_t g_getCount (

const Queue_t * g ) [inline]
get number of records in the queue

Parameters

‘ in ‘ g | - pointer of queue to handle

Returns

Number of records stored in the queue

5.2.5.4 q_getRemainingCount()

uintl6_t g_getRemainingCount (

const Queue_t * g ) [inline]

get number of records left in the queue

Parameters

- pointer of queue to handle

Ear

Returns

Number of records left in the queue

Here is the call graph for this function:

[ [ |

/ a_pop

q_peek

g_getRemainingCount

q_drop

q_peek
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5.2.5.5 q_init()

void* g_init (
Queue_t % g,
const uintlé6_t size rec,
const uintlé6_t nb_recs,
const QueueType type,

const bool overwrite )

Queue initialization.

Parameters

in,out | g - pointer of queue to handle

in size_rec | - size of a record in the queue

in nb_recs | - number of records in the queue

in type - Queue implementation type: FIFO, LIFO

in overwrite | - Overwrite previous records when queue is full
Returns

NULL when allocation not possible, Queue tab address when successful

5.2.5.6 ¢q_isEmpty()

bool g_isEmpty (

const Queue_t * g ) [inline]

get emptiness state of the queue

Parameters

- pointer of queue to handle

Ear

Returns

Queue emptiness status

Return values

true | if queue is empty
false | is not empty

5.2.5.7 q_isFull()

bool g_isFull (

const Queue_t * q ) [inline]
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get fullness state of the queue

Parameters

| in | g | - pointer of queue to handle

Returns

Queue fullness status

Return values

true | if queue is full
false | is not full

Here is the caller graph for this function:

g_isFull }«@—— g_push {«@—— g_getRemainingCount

5.2.5.8 q_islInitialized()

bool g_isInitialized (

const Queue_t * g ) [inline]

get initialization state of the queue

Parameters

‘ in ‘ q ‘ - pointer of queue to handle

Returns

Queue initialization status

Return values

true | if queue is allocated

false | is queue is not allocated
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5.2 src/cQueue.h File Reference 21

5259 q_kill()

void g_kill (
Queue_t * g )

Queue destructor: release dynamically allocated queue.

Parameters

in, out ‘ q ‘ - pointer of queue to handle

Here is the call graph for this function:

q_kill ——p»t g_flush

5.2.5.10 q_peek()

bool g_peek (
Queue_t * g,

void * record )

Peek record from queue.
Warning
If using q_push, g_pop, q_peek and/or g_drop in both interrupts and main application, you shall disable

interrupts in main application when using these functions

Parameters

in q - pointer of queue to handle

in, out | record | - pointerto record to be peeked from queue

Returns

Peek status

Return values

true | if successfully pulled from queue

false | if queue is empty
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Here is the call graph for this function:

g_peek ——p» q_drop

Here is the caller graph for this function:

q_getRemainingCount

5.2.5.11 q_pop()

bool g_pop (
Queue_t * g,

void * record )

Pop record from queue.
Warning
If using g_push, g_pop, q_peek and/or g_drop in both interrupts and main application, you shall disable

interrupts in main application when using these functions

Parameters

in q - pointer of queue to handle

in, out | record | - pointer to record to be popped from queue

Returns

Pop status
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Return values

true | if successfully pulled from queue

false | if queue is empty

Here is the call graph for this function:

g pop —P» q_peek ——p» q_drop

Here is the caller graph for this function:

apush g
q_pop 1/ g_getRemainingCount

5.25.12 q_push()

bool g_push (
Queue_t * g,

const void x record )

Push record to queue.

Warning

If using q_push, g_pop, q_peek and/or g_drop in both interrupts and main application, you shall disable
interrupts in main application when using these functions

Parameters
in,out | q - pointer of queue to handle
in record | - pointer to record to be pushed into queue
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Returns

Push status

Return values

true

if successfully pushed into queue

false

if queue is full

Here is the call graph for this function:

q_isFull

q_push

/

q_pop

—» q_peek P

Here is the caller graph for this function:

g_push

5.2.5.13 q_sizeof()

uint32_t qg_sizeof (

const Queue_t * g ) [inline]

get size of queue

Remarks

Size in bytes (like sizeof)

Parameters

Ear

- pointer of queue to handle

q_drop

g_getRemainingCount
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Returns

Size of queue in bytes
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