SRecord

Reference Manual

Peter Miller
millerp@canb.auug.@.au

This document describes SRecord version 1.38
and was prepared 6 Mamber 2008.

This document describing the SRecord program, and the SRecord program itself, are
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Peter Miller

This program is free soffwe; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free SoftveanedBtion; either version 3 of
the License, or (at your option)\alater version.

This program is distrilted in the hope that it will be useful, but WITHOUT ANYARRANTY,
without even the implied warranty of MERCHANABILITY or FITNESS FOR A RRTICU-
LAR PURPOSE. See the GNU General Public License for more details.

You should hae receved a mpy of the GNU General Public License along with this program. If
not, see <http://www.gnu.org/licenses/>.

Read Me(SRecord) Read Me(SRecord)

NAME
SRecord — manipulate EPROM load files

DESCRIPTION
The SRecorgackage is a collection of powerful tools for manipulating EPROM load files.

| wrote SRecord because when | was looking for programs to manipulate EPROM load files, | could not
find very mag. The ones that | could find only did affef the things | needed. SRecord is written in C++
and polymorphism is used to provide the file format flexibility and arbitrary filter chaining. Adding more
file formats and filters is relatly simple.
The File Formats
The SRecord package understands a humber of file formats:
Ascii-Hex
The ascii-hg format is understood for both reading and writing. (Also known as the ascii-space-
hex format.)

ASM It is possible, for output onlyo produce a serices of DB statements containing the data. This can
be useful for embedding data into assembler programs. This format cannot be read.

Atmel Generic
This format is produced by the Atmel AVR assemblérs understood for both reading and
writing.
BASIC ltis possible, for output onlyo produce a serices ofAJA statements containing the data. This
can be useful for embedding data into BASIC programs. This format cannot be read.
Binary Binaryfiles can both be read and written.
B-Record
Files in Freescale Dragonball bootstrap b-record format can be read and written.

C It is dso possible to write a C array declaration which contains the data. This can be useful when
you want to embed download data into C programs. This format cannot be read.

Cosmac Th&CA Cosmac EIf format is understood for both reading and writing.

DEC Binary
The DEC Binary (XXDP) format is understood for both reading and writing.

Elektor Monitor (EMON52)
The EMONS52 format is understood for both reading and writing.

Farchild Fairbug
The Fairchild Fairbug format is understood for both reading and writing.

hexdump
It is possible to get a simple hexdump as output.

LSI Logic Fast Load
The LSI Logic Fast Load format is understood for both reading and writing.

Formatted Binary
The Formatted Binary format is understood for both reading and writing.

Four Packed Code (FPC)
The FPC format is understood for both reading and writing.

Intel Thelntel hexadecimal format is understood for both reading and writing. (Also known as the
Intel MCS-86 Object format.)
Intel AOMF

The Intel Absolute Object Module Format (AOMF) is understood for both reading and writing.

Intel 16 The Intel hexadecimal 16 format is understood for both reading and writing. (Also known as the
INHX16 file format.)

Reference Manual SRecord 1

Read Me(SRecord) Read Me(SRecord)

MOS Technology
The MOS Technology hexadecimal format is understood for both reading and writing.

Motorola S-Record
The Motorola hexadecimal S-Record format is understood for both reading and writing. (Also
known as the ExorcisgExormacs or Exormax format.)

The Needham Electronics ASCII file format is understood for noth reading
and writing.

0S65V TheOhio Scientific hexadecimal format is understood for both reading and writing.

Signetics
The Signetics format is understood for both reading and writing.

SFASM TheSPASM format is used by a variety of PIC programmers; it is understood for both reading
and writing.

Spectrum
The Spectrum format is understood for both reading and writing.

Tektronix (Extended)
The Tektronix hexadecimal format and the Tektronix Extended hexadecimal format are both
understood for both reading and writing.

Texas Instruments Tagged
The Texas Instruments Tagged format is understood for both reading and writing (both 8 and 16
bit). Alsoknown as the Tl-tagged or TI-SDSNIAormat.

Texas Instruments ti-txt
The TI-TXT format is understood for reading and writing. This format is used with the bootstrap
loader of the &xas Instruments MSP430 family of processors.

VHDL It is possible to write VHDLIfe. Thisis only supported for output.

Verilog VMEM
It is possible to write a Verilog VMEM file suitable for loading wiifeadmemh() . This
format is supported for reading and writing.

Wilson TheWilson format is understood for both reading and writing. This mystery format was added
for a mysterious type of EPROM writer.

The Tools
The primary tools of the package arec_catandsrec_cmp All of the tools understand all of the file
formats, and all of the filters.

srec_cat Thesrec_cafprogram may be used to catenate (join) EPROM load files, or portions of EPROM
load files, togetherBecause it understands all of the input and output formats, it can also be used
to corvert files from one format to another.

srec_cmp
Thesrec_cmpprogram may be use to compare EPROM load files, or portions of EPROM load
files, for equality.

srec_info
Thesrec_infoprogram may be used to print summary information about EPROM load files.

The Filters
The SRecorgackage is made more powerful by the concepipft filters Wherever an input file may be
specified, filters may also be applied to that infdat fThefollowing filters are &ailable:

checksum
The checksunfilter may be used to insert the checksum of the data (bitrgatjyeea positive)
into the data.

Reference Manual SRecord 2

Read Me(SRecord) Read Me(SRecord)

byte swap
Thebyte swagilter may be used to swap pairs of add areh &ytes.

CRC Thecrc filters may be used to insert a CRC into the data.

checksum
The checksunfilters may be used to insert a checksum into the data. Vepségdive and bit-
not checksums arevalable, as well as big-endian and little-endian byte orders.

crop Thecropfilter may be used to isolate an input address range, or ranges, and discard the rest.
exclude Theexcludefilter may be used to exclude an input address range, or ranges, and keep the rest.

fill Thefill filter may be used to fill grholes in the data with a nominated value.
unfill The unfill filter may be used to makoles in the data at bytes with a nominated value.
random fill

Therandom fillfilter may be used to fill holes in the data with random byte values.
length Thdengthfilter may be used to insert the data length into the data.

maximum
Themaximunfilter may be used to insert the maximum data address into the data.

minimum
Theminimunfilter may be used to insert the minimum data address into the data.

offset Theoffseffilter may be used to offset the address of data records, both forwards and backwards.

split Thesplit filter may be used to split EPROM images for wide data buses or other memory striping
schemes.

unsplit Theunsplitfilter may be reerse the effects of the split filter.

More than one filter may be applied to each inpat fDifferent filters may be applied to each input file.
All filters may be applied to all file formats.

ARCHIVE SITE
The latest version ddRecords available on the Web from:

URL: http://srecord.sourcefge.net/

File: index.html #the SRecord page

File: srecord-1.38.README # Description, from the tar file
File: srecord-1.38.Ism # Description, LSM format

File: srecord-1.38.spec # RedHat package specification
File: srecord-1.38.tayz #the complete source

File: srecord-1.38.pdf # Reference Manual

BUILDING SRECORD
Full instructions for buildingsRecordmay be found in thBUILDING file included in this distribution.

It is also possible to buil8Recorcdn Windows using the Cygwin (www.cygwin.com) or DJGPP
(www.delorie.com/djgpp) eqironments. Instructionare in theBUILDING file, including hav to get
natve Windows binaries.

COPYRIGHT
srecordversion 1.38
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Peter Miller

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 3 of the License, or (at your
option) ary later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANqithout
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

Reference Manual SRecord 3

Read Me(SRecord) Read Me(SRecord)

You should hae recevved a @py of the GNU General Public License along with this program. If not, see
<http://www.gnu.org/licenses/>.

It should be in thé.ICENSEfile included with this distribution.

AUTHOR
Peter Miller E-Mail: millerp@canbauug.org.au
N* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual SRecord 4

Read Me(SRecord) Read Me(SRecord)

RELEASE NOTES
This section details the various features and bug fixes of the various releasescruciating and
complete detail, and also credits for those of you wive ganerously sent me suggestions and bug reports,
see theetc/CHANGES .files.

Version 1.38 (2008-Jan-14)
» The CRC16 filters n@ support a -Broken option, to perform a common-but-broken CRC16 calculation,
in addition to the CCITT and XMODEM calculations.

» Alink has been added to the CRC16 man page section to the
www.joegeluso.com/software/articles/ccitt.htm web page, to explain theutties in seeding CRC16
calculations.

« A buglet has been fixed in tleeec-motorolé5) man page, it mincludesSé6 in the list of things that can
appear in the type field.

* The ability to ngate expressions is momentioned in thesrec_exampl€$) man page.

Version 1.37 (2007-Oct-29)
* Itis now possible to hae negdive expressions on the command line, to facilitate “--offset - -minimum

foo” usages.
» Thesrec_cafl) command n@ has a simple hexadecimal dump output format.
» The use ofiudecod§l) in the tests has been rerad, sosharutilsis no longer a build dependenc

Version 1.36 (2007-Aug-07)
* A bug has been fixed in the CRC-16 CCITT calculation; the algorithm was correct but the start value was
incorrect, leading to incorrect results.

» The CRC16 filters hae a rew —no-augment option, to omit the 16 zero bits augmenting the message.
This is not CCITT standard conforming, but some implementations do this.

* A problem has been fixed in the generated Makefile.in file found in the tarball.
* The license has been changed to GNU GPL version 3.

Version 1.35 (2007-Jun-23)
» A major build problem with the generated makefile has been fixed.

Version 1.34 (2007-Jun-22)
» The C and ASM output formats\ekeen impreed in the word mode.

» Sevaal build problems ha keen fixed.
Version 1.33 (2007-May-18)

Reference Manual SRecord 5

Read Me(SRecord) Read Me(SRecord)

» More examples ha& been added to the documentation.
* It is now possible to perform set intersection and set difference on address ranges on the command line.

» There is a n@ category of data source: generatoyeu can generate constant data, random data and
repeating data.

» The assembler and C-Array outputsweupport additional options to facilitate MSP430 systems. They
can also optionally write shorts rather than bytes.

* You can nw round address ranges on the command line to be whole multiples of a number of bytes.

Version 1.32 (2007-Apr-24)
» The TI-TXT format output has been impadl; it is less spec conforming but more reality conforming. It
now allows odd alignment without padding. It also ends withiastead of &

» The warning for odd input addresses has been dropped. The spédtikigdthem, but the MSP430
handles them without a hiccup.

Version 1.31 (2007-Apr-03)
 The Verilog format nev suppresses comments when you specify the --data-only option.

* The Texas Instruments ti-txt (MSP430) format ismanderstood for reading and writing.

Version 1.30 (2007-Mar-21)
* The ascii-hg output format has been impred.

* The ti-tagged-16-bit format is mounderstood for reading and writing.
* The Intel format no longer warns about missing optional records.
* A bug in the ti-tagged format has been fixed, iwnmderstands the '0’ tag.

Version 1.29 (2007-Mar-13)
» A serious bug has been fixed in the generated Makefile.

Version 1.28 (2007-Mar-08)
* Itis now possible to read and write files in the Freescale MC68EZ328 Dragonball bootstrap b-record
format

Version 1.27 (2006-Dec-21)
* [SourceForge Feature Request 1597637] There i avaeing issued when input data records are not in
strictly ascending address ordd@here is a ng command line option to silence the warning.

* [SourceFage Featurd&kequest 1592348] The command line processing of all srecord commands now
understandgiile command line options, filled with additional space separated strings witch will be treated
as of thg were command line options. This gets around absurdly short command line length limits in some
operating systems.

Version 1.26 (2006-May-26)

Reference Manual SRecord 6

Read Me(SRecord) Read Me(SRecord)

* It is now possible to place parentheses on the command line in more places to clarify your intent.
* This change prepares SRecord for the next public release.

Version 1.25 (2006-May-18)
» The assembler output has been enhanced to produce ORGrelirattiecessarto change the data
address.

» Thesrec_cafl) command n@ only writes a start address into the output if there was a start address
present in the input.

Version 1.24 (2006-Mar-08)
« Additional information has been added to the Iseek error whegrrthie seek to addresses >= 2**31

» The CRC 16 filters ha keen enhanced to accept an argument to specify whether CCITT or XMODEM
calculations are to be performed.

Version 1.23 (2005-Sep-23)
* A sedfault has been fixed on x86_64 when running the regression test suite.

» A compile problem with the lib/srec/output/file/c.cc file has been fixed.

Version 1.22 (2005-Aug-12)
» The —byte-swapfilter nov has an optionalvidth argument, to specify the address width tagwThe
default is tvo bytes.

» The motorola file format ne accepts an additional 'width’ command line argument, so you cas ha
16-bit and 32-bit address multiples.

* A bug has been fixed in the VMEM output format. It was failing to correctly set the next address in some
cases. Thi§ixes SourceForge bug 1119786.

» The —C-Array output format mouses theconst keyword by default, you can turn itfofith the —no-
const option. The —C-Array output format camngenerate an additional include file if you use the
—INClude option. This answers SourceForge feature request 942132.

« A fix for the "undefined symbols" problem when using g++ 3.x on Cygwin and MacOsX has been added
to the ./configure script.

* There is a n& —ignore-checksum command line option. The —ignore-checksums option may be used to
disable checksum validation of input files, for those formats whieh teecksums at all. Note that the
checksum values are still read in and parsed (so it is still an erroy Brthenissing) but their values are

not checked.

Version 1.21 (2005-Feb-07)

Reference Manual SRecord 7

Read Me(SRecord) Read Me(SRecord)

» More Doxygen comments V@& keen added to the class header files.

» There is a newrec_cat --crlfoption, which may be used for force CRLF output on operating systems
which dont use that style of line termination.

» A number of problems with GCC, particularly with the earlysgries.

 There is a ng "Stewie" format, an undocumented format loosely based on the Motorola S-Record format,
apparently used in mobile phones. More information would be most welcome.

» A number of build problems ke keen fixed.

Version 1.20 (2004-Feb-08)
» The AOMF format nw accepts (and ignores) more record types.

Version 1.19 (2004-Jan-03)
* Itis now possible to set the start address in the output usingrékecat —Start Addressommand line
option.

* The Intel Absolute Object Module Format (AOMF) isansupported for reading and writing.

» There is a newrec_cat ~-Random_Fifilter, like thesrec_cat —Fillfilter except that it uses random
values.

Version 1.18 (2004-Jan-01)
» The VMEM format is nw able to output data for 64 and 128 bits wide memories.

* A bug in the SRecord reference manuals has been fixed; the CRCxx had a copy-and-paste glitch and
always said big-endian where little endian was intended half the time.

Version 1.17 (2003-Oct-12)
* There is nwv support for Intel Extended Segment addressing output, via the --address-length=2 option.

* There is nw support for output of Verilog VMEM format. Sesec_vmeifd) for more information.

* There is nw support for reading and writing the INHX16 format, used in various PIC programmers. It
looks just lile the Intel H& format, except that the bytes counts and the addresses refer to words (hi,lo)
rather than bytes. Seeec_intel1@5) for more information.

Version 1.16 (2003-Jul-28)
» Some updates a been made to cope with GCC 3.2

Version 1.15 (2003-Jun-16)
» The ASCII-Hex implementation is ne slightly more completel still haven't found a definitre
description.

* The Fairchild Fairbug format has been added for reading and writingsr&edaichild(5) for more
information.

» The Spectrum format has been added for reading and writingsr&eespectruli®) for more
information.

» The Formatted Binary format has been added for reading and writingre®eéormatted_bina($) for
more information.

» The RCA Cosmac EIf format has been added for reading and writingsr&@ee&osma®) for more
information.

» The Needham EMP programmer format has been added for reading and writirsgecSeeedha(b)
for more information.

Version 1.14 (2003-Mar-11)

Reference Manual SRecord 8

Read Me(SRecord) Read Me(SRecord)

» Numerous fixes ha been made to header handling. It iswyaossible to specify an empty header with
the-header command line option.

» Some more GCC 3.2 build problemsvbdeen fixed.

Version 1.13 (2003-Feb-05)
* Bugs hae keen fixed in the @xas Instruments Tagged and VHDL formats, which produced inconsistent
output.

* A couple of build problems e keen fixed.
* There are tw new autput formats for ASM and BASIC.

Version 1.12 (2002-Dec-06)
* It is now possible to putminimum input.spedalso—maximum and-length) amost anywhere on the
command line that you can put a numbi¢rllows, for example, the —offset value to be calculated from the
maximum of the previouslé. Thevalues calculated byMinimum , -Maximum and-Length may also
be rounded to arbitrary boundaries, usifitpund_Down —Round_Nearestand—Round_Up.

» The malformed Motorola S5 records output by the Green Hills tool chain arenaerstood.

Version 1.11 (2002-Oct-21)
» The Ohio Scientific OS65V audio tape format has been added for reading and writirsgeSes65(b)
for more information.

» Some build problems Ive keen fixed.

Version 1.10 (2002-Jun-14)
» The Intel format na emits the redundant extended linear address record at the start of the file; some
loaders couldrt’cope without it.

 The Binary format m& copes with writing to pipes.
» The Motorola format n@ understands the S6 (24-bit data record count) records for reading and writing.
» The DEC Binary format ne works correctly on Windows machines.

» The LSI Logic Fast Load format is wainderstood for both reading and writing. Seec_fastloa¢b) for
more information.

Version 1.9 (2001-Nov-27)
» The DEC Binary (XXDP) format is mounderstood for both reading and writing. See
srec_dec_binarfp) for more information.

 The Elektor Monitor (EMONS52) format is mounderstood for both reading and writing. See
srec_emon5®) for more information.

* The Signetics format is mounderstood for both reading and writing. Seec_signetid®) for more
information.

» The Four Packed Code (FPC) format issnmderstood for both reading and writing. Seec_fp¢5) for
more information.

» Wherever possible, header data ismpassed through bsrec_cafl). Theres also a neverec_cat
—headeroption, so that you can set the header comment from the command line.

» The Atmel Generic format for Atmel AVR programmers issnmderstood for both reading and writing.
Seesrec_atmel_gener{b) for more information.

» The handling of termination records has been iwgato It caused problems for a number of filters,
including the —fill filter.

A bug has been fixed in the checksum calculations for the Tektronix format.
 There is a n@ SPASM format for PIC programmers. Ssec_spasii®) for more information.

Reference Manual SRecord 9

Read Me(SRecord) Read Me(SRecord)

Version 1.8 (2001-Apr-20)
» There is a ng “unfill’ ’ filter, which may be used to perform theeese effect of the “fill’ filter.

 There is a ng bit-wise NOT filter, which may be used tovert the data.
* A couple of bugs ha keen fixed in the CRC filters.

Version 1.7 (2001-Mar-19)
» The documentation is moin PDF format. This was in order to mak more accessible to a wider range
of people.
» There is a newrec_cat --address-lengtiption, so that you can set the length of the address fields in the
output fle. For example, if you abays want S3 data records in a Motorolx fike, use --address-length=4.
This helps when talking to brain-dead EPROM programmers which do not fully implement the format
specification.
* There is a new-multiple option to the commands, which permits an input file to contain multiple
(contradictory) values for some memory locations. The last value in the file will be used.

« A problem has been fixed which stopped SRecord from building under Cygwin.

A bug has been fixed in the C array output. It used to genekatilioutput when the input had holes in
the data.

Version 1.6 (2000-Dec-03)
A bug has been fixed in the C array output. (Holes in the input causedblial @ file to be produced.)

» There is are ne CRC input filters, both 16-bit and 32-bit, both big and little endian. sga® cafl) for
more information.

 There is a n@ VHDL output format.

 There are ne checksum filters: in addition to the existing ahedmplement (bit not) checksum filter,
there are n@ negdive and positve checksumifters. Seesrec_cafl) for more information.

» The checksum filters are wable to sum wer 16-bit and 32-bit values, in addition to the existing byte
sums.

» Thesrec_cmpprogram nav has a--verboseoption, which gies more information about othe two
inputs differ Seesrec_cmfil) for more information.

Version 1.5 (2000-Mar-06)
* There is nv a command line option to guess the input file format; all of the tools understand this option.

» The “MOS Technologiesfile format is nev understood for reading and writing. S&ec_mos_tedb)
for more information.

» The “Tektronix Extendedfile format is nav understood for reading and writing. See
srec_tektronix_extendé&s) for more information.

» The “Texas Instruments Taggedile format is nav understood for reading and writing. (Also known as
the TI-Tagged or SDSM& format.) Seerec_ti_tayged(5) for more information.

* The “ascii-hex’ file format is n@v understood for reading and writing. (Also known as the ascii-space-
hex format.) Seerec_ascii_he) for more information.

 There is a nevayte swapnput filter, dlowing pairs of odd andven input bytes to be sapped. See
srec_cafl) for more information.

» The “wilson” file format is nev understood for reading and writing. This mystery format was added for
a mysterious type of EPROM writeiSeesrec_wilsoi(s) for more information.

» Thesrec_cafprogram nav has a-data-only option, which suppresses all output except for the data
records. Thiselps when talking to brain-dead EPROM programmers which barf at anything but data. See
srec_cafl) for more information.

* There is a newLine-Lengthoption for thesrec_catprogram, allowing you to specify the maximum width
of output lines. Sesrec_cafl) for more information.

Reference Manual SRecord 10

Read Me(SRecord) Read Me(SRecord)

Version 1.4 (2000-Jan-13)
» SRecord can ne cope with CRLF sequences in Unileé. Thiswas unfortunately common where the
file was generated on a PC, but SRecord was being used on Unix.

Version 1.3 (1999-May-12)
* A bug has been fixed which would cause the crop and exclude filters to dump core sometimes.

* A bug has been fixed where binary files were handled incorrectly on Windows NT (gcioakystem
in which text files arert’'the same as binary files).

* There are three medata flters. The--OR filter, which may be used to bit-wise OR a value to each data
byte; the --AND filter which may be used to bit-wise AND a value to each data byte; and the --e¥clusi
OR filter, which may be used to bit-wise XOR a value to each data bytesr&eecafl) for more
information.

Version 1.2 (1998-Nov-04)
* This release includes file format man pages. The web page also includes a PostScript reference manual,
containing all of the man pages.

* The Intel h& format nev has full 32-bit support. Sesec_inte{5) for more information.

» The Tektronix he format is nav supported (only the 16-bit version, Extended Tektronix ikewot yet
supported). Sesrec_tektronigs) for more information.

 There is a newplit filter, useful for wide data buses and memory striping, and a complementsgijt
filter to reverse it. Seesrec_cafl) for more information.

Version 1.1 (1998-Mar-22)
First public release.

Reference Manual SRecord 11

Build(SRecord) Build(SRecord)

NAME
How to build SRecord

SPACE REQUIREMENTS
You will need about 3MB to unpack and build tBRecorcdbackage. Wur milage may vary.

BEFORE YOU START
There are a f& pieces of software you may want to fetch and install before you proceed with your
installation of SRecord.

GNU Groff
The documentation for theRecordpackage was prepared using the GNU Gratkage
(version 1.14 or later). This distribution includes full documentation, which may be processed
into PostScript or DVI files at install time — if GNU Gfdfas been installed.

GCC You may also want to consider fetching and installing the GNU C Compiler if yeunbdone
so already This is not essential. SRecord wasdeped using the GNU C++ compilend the
GNU C++ libraries.

The GNU FTP arclies may be found aftp.gnu.org , and are mirrored around the world.

SITE CONFIGURATION
The SRecordpackage is configured using tbenfigureprogram included in this distribution.

The configureshell script attempts to guess correct values for various system-dependent variables used
during compilation, and creates thtakefileandlib/config.hfiles. Italso creates a shell script
config.statughat you can run in the future to recreate the current configuration.

Normally, you justcd to the directory containin§Recorés source code and then type
% ./configure
...lots of output...
%
If you're usingcshon an old version of System ybu might need to type
% sh configure
...lots of output...
%
instead to preent cshfrom trying to executeconfigureitself.

Runningconfiguretakes a minute or tov Whileit is running, it prints some messages that tell what it is
doing. Ifyou dont want to see the messages, configureusing the quiet option; for example,

% ./configure --quiet

%

To compile theSRecordpackage in a different directory from the one containing the source code, you must
use a version ahakethat supports thgPATH variable, such asGNU make cd to the directory where you

want the object files andxecutables to go and run tleenfigurescript. configureautomatically checks for

the source code in the directory tieahfigureis in and in.. (the parent directory). If for some reason
configureis not in the source code directory that you are configuring, then it will report thattifiodrthe
source code. In that case, ronfigurewith the option-srcdir=" DIR, whereDIR is the directory that
contains the source code.

By default,configurewill arrange for thenmale install command to install thERecordpackages files in
/usr/local/bin and/usr/local/man There are options which alloyou to control the placement of these
files.

--prefix= PATH
This specifies the path prefix to be used in the installation. Defaulisttocalunless otherwise
specified.

--exec-prefix= PATH
You can specify separate installation prefixes for architecture-specificifées Dehults to
${prefix} unless otherwise specified.

Reference Manual SRecord 12

Build(SRecord) Build(SRecord)

--bindir= PATH
This directory containsxecutable programs. On a network, this directory may be shared
between machines with identical hardware and operating systems; it may be mounted read-only.
Defaults to${exec_prefix}/birunless otherwise specified.

--mandir= PATH
This directory contains the on-line manual entries. On a network, this directory may be shared
between all machines; it may be mounted read-obbfaults to3{prefix}/manunless otherwise
specified.

configureignores most other arguments that yoredt; use the-help option for a complete list.

On systems that require unusual options for compilation or linking th&Rkeordpackage’'sonfigure
script does not knw about, you can gie configureinitial values for variables by setting them in the
ervironment. InBourne-compatible shells, you can do that on the command Imtigk

$ CXX="g++ -traditional’ LIBS=-Iposix ./configure

...lots of output...

$
Here are thenakevariables that you might want toverride with environment variables when running
configure

Variable: CXX
C++ compiler program. The defaultds+.

Variable: CPPFLAGS
Preprocessor flags, commonly defines and include search paths. Defaults tolémmgymmon
to useCPPFLAGS=-1/usr/local/include to access other installed packages.

Variable: INSTALL
Program to use to installds. Thedefault isinstall if you have it, cp otherwise.

Variable: LIBS
Libraries to link with, in the forml foo-l bar. Theconfigurescript will append to this, rather
than replace it. Itis common to usEBS=-L/usr/local/lib to access other installed
packages.

If you need to do unusual things to compile the package, the author encourages you to figure out how
configurecould check whether to do them, and mail diffs or instructions to the author so yheritee
included in the next release.

BUILDING SRECORD
All you should need to do is use the
% make
...lots of output...
%
command and ®&it. Whenthis finishes you should see a directory cabé@dcontaining three files:
srec_cat srec_cmpmandsrec_info

srec_cat srec_catprogram is used to manipulate andwvhEPROM load ifes. For more information,
seesrec_cafl).

srec_cmp
The srec_cmpprogram is used to compare EPROM loigesf For more information, see
srec_cmfl).

srec_info
The srec_infoprogram is used to print information about EPROM ldkes f For more
information, seearec_infdl).

Reference Manual SRecord 13

Build(SRecord) Build(SRecord)

If you have GNU Groff installed, the build will also createstc/reference.ple. Thiscontains the
README file, this BUILDING file, and all of the man pages.

You can remee the program binaries and object files from the source directory by using the
% make clean
...lots of output...
%
command. @ remove dl of the abwe files, and also renve the Makefileandlib/config.handconfig.status
files, use the
% make distclean
...lots of output...
%
command.

The file etc/configuein is used to createonfigureby a GNU program calledutoconf You only need to
know this if you want to regenerat®nfigureusing a newer version afitoconf.

Windows NT
It is possible to build SRecord on MS Windows platforms, using the Cygwinvi@aecygwin.com) or
DJGPP (seswww.delorie.com/djgpp) environments. Thigprovides the “porting layerhecessary to
run Unix programs on Windaes. Thebuild process is exactly as described\aho

Note: if you are using GCC 8wherex < 4, you may need to edit thdakefileto changeCXX = g++ to
readCXX = g++-2 to fix some weird undefined symbols. This appears to be a bug in these versions of
GCC. Thebug has apparently been fixed in GCC 3.4 andvabo

DJGPP akays produces nate binaries, howeer if you want to ma& native kinaries with Cygwinie.
ones which work outside Cygwin) there is one extra step you need after runairfggure and
before you ruimake. You need to edit thielakefilefile, and addmno-cygwin to the end of the
CXX=g++line.

Once built (using either tool set) Windows binaries should be testable in the same way as described in the
next section. Howeer, there may be some CRLF issues in the text file comparisons whielfatse
negaives, depending on the CRLF setting of your Cygwin file system when you unpacked the tarball.

TESTING SRECORD
The SRecordpackage comes with a test suifi@ run this test suite, use the command
% make sure
...lots of output...
Passed All Tests
%

The tests ta&a ew ®conds each, with afevery fast, and a couple very globut it varies greatly
depending on your CPU.

If all went well, the message
Passed All Tests
should appear at the end of the make.

INSTALLING SRECORD
As explained in th&ITE CONFIGURATIOMection, abee, the SRecorcdpackage is installed under the
lusr/localtree by dedult. Usethe--prefix= PATH option toconfigureif you want some other path.
More specific installation locations are assignable, useliedp option toconfigurefor details.

All that is required to install th8Recordpackage is to use the

% make install

...lots of output...

%
command. Contrabf the directories used may be found in the firet fi@es of theMakefilefile and the
other files written by theonfigurescript; it is best to reconfigure using tbenfigurescript, rather than
attempting to do this by hand.

Reference Manual SRecord 14

Build(SRecord) Build(SRecord)

GETTING HELP
If you need assistance with tB&ecordpackage, please do not hesitate to contact the author at
Peter Miller <millerp@canb.auug.org.au>
Any and all feedback is welcome.

When reporting problems, please include the version numbar lgy the
% srec_cat -version
srecord version 1.38.D001
...warranty disclaimer...
%
command. Pleas#o not send this example; run the program for the exact version number.

COPYRIGHT
srecordversion 1.38
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Peter Miller

The SRecordpackage is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. Sethe GNU General Public License for more details.

It should be in thé.ICENSEfile included with this distribution.

AUTHOR
Peter Miller E-Mail: millerp@canbauug.org.au
N* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual SRecord 15

New Format(SRecord) Ne Format(SRecord)

NAME
How to add a nev file format

DESCRIPTION
This section describes Wdo add a ne& file format. It's nostly a set of reminders for the maintaindr
you want a format added to the distribution, use this method and e-mail the maintainer a patch (generated
with diff -u -r , usually) and it can be added to the sources if appropriate.

New Files
The following files need to be create for arfermat.

lib/srec/output/filehamecc
This file is hav to write the ngv format. Tke a bok at the other files in the same directory for
examples. Alsaheck outib/srec/output/file.randlib/srec/output.tfor various helper methods.

lib/srec/output/filehameh
This is the class declaration for the abdle.

lib/srec/input/filehamecc
This file is hav to read the n& format. Bke a bok at the other files in the same directory for
examples. Alsaheck outib/srec/input/file.handlib/srec/input.hfor various helper methods.

lib/srec/input/filehameh
This is the class declaration for the abdle.

man/man5/sremameb
This file describes the format.ake a bok at the other files in the same directory for examples.

Modified Files
The following files need to be updated to mention the feemat.

etc/README.man
Mention the n& format in the section of this file which describes the supported file formats.

etc/index.html
Mention the n& format in the section of this file which describes the supported file formats.

lib/srec/arglex.h
Add the nev format to the command line argument type enum.

lib/srec/arglex.cc
Add the nev format to the array of command line arguments types.

lib/srec/arglex/input.cc
Add the nev format to the code which parses input formats.

lib/srec/arglex/output.cc
Add the nev format to the code which parses output formats.

lib/srec/input/file/guess.cc
Add the nev format to the list of formats which are tested.

man/manl/o_input.so
Mention the n& format in the section of this file which describes the supported input file
formats.

man/manl/srec_cat.1
Mention the n& format in the section of this file which describes the supported output file
formats.

Makefile
Actually, the system the maintainer uses automatically generates this file, but if ydwsireg’
Aegis you will need to edit this file for your own use.

Reference Manual SRecord 16

New Format(SRecord) Ne Format(SRecord)

Tests
You may have roticed that SRecord comes with a lot of tesfsu are more likely to get the patch for your
new format accepted rapidly if it comes with at least one test for its output class, and at least one test for its
input class.

IMPLEMENT ATION ISSUES
In implementing a ne file format, there are a couple of philosophical issues which affect technical
decissions:

Be liberal in what you accept
Where @er possible, consume the widest possible interpretation of valid data. This includes
treating mandatory input fields as optioraly(file headers and start addresses), and coping with
input definitions to their logical extremes.§.255 byte data records in Motorola format).
Checksums shouldwbys be checked on input, only ignore them if the —ignore-checksums
command line option has beenai. Absurdliine lengths must be tolerated.

Be conservatie in what you produce
Even when the input is questionable, the output producedeby catmust alvays be strictly
conforming with the format definition (except as mandated by command line options, see below).
Checksums, if the format has them, mustagts be correct on output. Line lengths should
default to something reasonable (about 80 characters or less).

Eat Your Own Dog Food
You input class mustahys be able to consume what your output class produces, no matter what
combination of command line options (see below) has been selected.

Round Trip
In general, what went in is what comes out.

e The data may be re-arranged in ordee line lengths may change, but the same data should
go out as came in. (The data should be unchangedfehe format changed, assuming
equally capable formats.)

< Ifthe input has no header record, the output should netdna either (if at all possible).
This means not automagically inserting a header record if the output file code sees data as the
first method call. (The —data-only flag affects this, too.)

< Ifthe input has no start address record, the output shouldveotteeither (if at all
possible). Thisneans not automagically inserting a start address record if the output file code
does not see one by the time the destructor is called. (The —data-only flag affects this, too.)

Holes Donot to fill in holes in the data. That said, sometimeslyaxeto fill holes in the data. This
happens, for example, when a 16-bit format is faced with an 8-bit byte of data for one or other
half of a 16-bit verd. Ifthere is no other way around it, fill the hole with OxHmis is because
most erased EPROMsvYeaXFF data, and so the OxFF wbahange anything.

There are also some command line arguments you will neecetmtalaccount:

—address-length
This options is used to specify the minimum address length, if yaufarenat has a choice
about hev mary bytes of address it produces.

—data-only
If this flag is set, only data records should be produced. No headers, no start addresses, nothing,
even if the format specifications considers these mandaf@oywhat the user said. This is
available as thelata_only flag instance variable in the methods of your dkfidass.

—ignore-checksums
If this flag is set, your file input methods must pdrgenot checkchecksumes, if the format has
checksums. This available in theuse_checksums() method within the methods of your
derived dass. Thisonly applies to input; output mustaays produce correct checksums.

Reference Manual SRecord 17

New Format(SRecord) Ne Format(SRecord)

—line-length
Where your ouput format is text, and there exists the possibility of putting more or less text on
each line €.g.the Motorola format allows a variable number of data bytes per record) then this

should be controlable. This manifests in #uelress_length_set and
preferred_block_size get methods you must implement in your ded dass.
AUTHOR
Peter Miller E-Mail: millerp@canbauug.org.au
N* WWW: http://www.canb.auug.org.au/"millerp/

Reference Manual SRecord 18

srec_cat(1) srec_cat(1)

NAME
srec_cat — manipulate eprom load files

SYNOPSIS
srec_cat[option...]filename..
srec_cat -Help
srec_cat -VERSion

DESCRIPTION
The srec_catprogram is used to assemble theegiinput files into a single outputd. Theuse of filters
(see below) allows significant manipulations to be performed by this command.

A warning will be emitted for each address which is redundantly set to the ahrae &fatal error will be
issued if ag address is set with contradictorglues. © suppress this behavianse an-exclude —within
filter.

INPUT FILE SPECIFICATIONS
Input may be qualified in tavways: you may specify a data file or a data generdtomat and you may
specify filters to apply to them. An input file specification looke liis:
data-file[filter ...]
data-generatof filter ...]

Data Files
Input from data files is specified by file name and format name. An input file specification looksdik
filename format][—ignore-checksums]
The default format is Motorola S-Record format, imanyothers are also understood.

Data Generators
It is also possible to generate data, rather than read it frden &du may use a generator anywhere you
could use aile. Aninput generator specification looksditthis:
—GENerate address-range-data-source
Generators include random data and various forms of constant data.

Common Manual Page
Seesrec_inpufl) for complete details of input speaeifs. Thisdescription in a separate manual page
because it is common to more than one SRecord command.

OPTIONS
The following options are understood:

@filename
The named text file is read for additional command ligeiaents. Aguments are separated by
white space (space, tab, newlie&). Thereis no wildcard mechanism. There is no quoting
mechanism. Commentshich start with # and extend to the end of the line, are ignored.
Blank lines are ignored.

—Output filenam¢ format]
This option may be used to specify the output file to be used. The special file namse “~’
understood to mean the standard output. Output defaults to the standard output if this option is
not used.

Theformatmay be specified as:

—Absolute_Object_Module Format
An Intel Absolute Object Module Format file will be written. (Seec_aom(5) for a
description of this file format.)

—Ascii_Hex
An Ascii-Hex file will be written. (Seesrec_ascii_he) for a description of this file
format.)

Reference Manual SRecord 19

srec_cat(1)

srec_cat(1)

—ASM [prefix][—option..]

A series of assembler DB statements will be written.

The optionaprefix may be specified to change the names of the symbols generated.
The defaults to€prom" if not set.

Several options areailable to modify the style of output:

—Dot_STyle
Use "dot" style pseudo-ops instead afrds. or examplebyte instead of
the DBdefault.

—-HEXadecimal_STyle
Use hexadecimal numbers in the output, rather than the default decimal
numbers.

—Section_STyle
By default the generated assemble of placed at the correct addreS9RENg
pseudo-ops. Sectimtyle output emits tables of section addresses and
lengths, so the data may be related at runtime.

—-A430 Generate output which is compliant to ##30.exe compiler as it is used,
e.g.in IAR Embedded Wrkbench. Thiss short-hand for —section-style
—hex-style

—CL430 Generate outpwhich is Code Composer Essentials complia@tthe
compiler of it. This is short-hand for —section-style —hex-style —dot-style

—Output_Word
Generate output which is in two-byte words rather than bytes. This assumes
little-endian words; you will need to use the —Byte-Swap filter if your target
is big-endian. No attempt is made to align the words orgo a&ldress
boundaries; use and input filter such as
input-file —fill OXFF -within input-file -range-pad 2
to pad the data to whole words first.

—Atmel_Generic

An Atmel Generic file will be written. (Sesmec_atmel_gener{) for a description of
this file format.)

—-BASic A series of BASIC [ATA statements will be written.
—-B-Record

—-Binary

A Freescale MC68EZ328 Dragonball bootstrap b-record format file will be written.
(Seesrec_bhrecords) for a description of this file format.)

A raw bnary file will be written. If you get unexpected resyiteasesee the
srec_binary5) manual for more information.

—C-Array [identifier][—option..]

Reference Manual

A C array defintion will be written.
The optionalidentifieris the name of the variable to be definedyugus if not
specified.
—INClude
This option asks for an include file to be generated as well.

—No-CONST
This options asks for the variables to not use the caystdid (they are
declared constant be default, so thay e placed into the read-only
segment in embedded systems).

SRecord 20

srec_cat(1)

srec_cat(1)

—-C_COMpressed
These options ask for an compressed c-array whose memory gaps will not be
filled.

—Output_Word
This option asks for an output which is in words not in bytes. This is little
endian, so you may need to use the —Swap-bytes fiitker bytes of OxFF
may be inserted if necessary; use —fill -range-pad for a different value.

—-DECimal_STyle
This option may be used to get decimal constants in the output, rather than
the default hexadecimal constants.

—-COsmac

An RCA Cosmac Elf format file will be written. (Seeec_cosmd®) for a description
of this file format.)

—Dec_Binary

A DEC Binary (XXDP) format file will be written. (Sesec_dec_binarfp) for a
description of this file format.)

—Elektor_Monitor52

This option says to use the EMONS52 format file when writingitee {See
srec_emon53®) for a description of this file format.)

—FAlrchild

This option says to use the Fairchild Fairbug format file when writinglthe(See
srec_faichild(5) for a description of this file format.)

—Fast_Load

This option says to use the LSI Logic Fast Load format file when writindl¢he(See
srec_fastloa¢b) for a description of this file format.)

—Formatted_Binary

A Formatted Binary format file will be written. (Seeec_formatted binafp) for a
description of this file format.)

—Four_Packed_Code

This option says to use the PFC format file when writingitbe Seesrec_fpd5) for
a description of this file format.)

—HEX_Dump

—Intel

A human readable hexadecimal dump (including ASCII) will be printed.

An Intel hex format file will be written. (Sesrec_inte(5) for a description of this file
format.) Thedefault is to emit 32-bit linear addressing; if you want 16-bit extended
segment addressing use theddress-length=2option.

-MOS_Technologies

An Mos Technologies format file will be written. (Ssec_mos_tedb) for a
description of this file format.)

—Motorola [width]

Reference Manual

A Motorola S-Record file will be written. (Seeec_motorolé) for a description of
this file format.) This is the default output format. By default, the smallest possible
address length is emitted, this will be S19 for data in the first 64KB; if you wish to
force S28 use theaddress-length=3option; if you wish to force S37 use the
--address-length=4option

The optionawidth argument describes the number of bytes which form each address
multiple. For normal uses the default of one (1) byte is appropriate. Some systems
with 16-bit or 32-bit targets mutilate the addresses in the file; this option will imitate
that behaviar Unlike most other parameters, this one cannot be guessed.

SRecord 21

srec_cat(1) srec_cat(1)

-Needham_Hexadecimal
This option says to use the Needham Electronics ASCII file format to write the file.
Seesrec_needha(b) for a description of this file format.

—Ohio_Scientific
This option says to use the Ohio Scientific hexadecimal formatsiBeeos65(b) for
a description of this format.

-SIGnetics
This option says to use the Signetics faemat. Seearec_signetid®) for a description
of this format.

—SPAsm
This option says to use the SPASM assembler output format (commonly used by PIC
programmers). Sesmrec_spasiid) for a description of this format.

—SPAsm_LittleEndian
This option says to use the SPASM assembler output format (commonly used by PIC
programmers). Buwith the data the other way around.

-STewie
A Stewie binary format file will be written. (Sesec_stewi€b) for a description of this
file format.)

—Tektronix
A Tektronix hex format file will be written. (Sesrec_tektronix5) for a description of
this file format.)

—Tektronix_Extended
A Tektronix extended heformat file will be written. (Sesrec_tektronix_extend€s)
for a description of this file format.)

—Texas_Instruments_Tagged
A Tl-Tagged format file will be written. (Sesec_ti_tayged(5) for a description of
this file format.)

—Texas_Instruments_Tagged 16
A Texas Instruments SDSMA320 format file will be written. (See
srec_ti_tayged_16(5) for a description of this file format.)

—Texas_Instruments_TeXT
This option says to use thexas Instruments TXT (MSP430) format to write the file.
Seesrec_ti_tx(5) for a description of this file format.

-VHdI [bytes-per-word name]]
A VHDL format file will be written. Thebytes-per-wordiefaults to one, theame
defaults toeprom. Theetc/x_defs_pack.vHde in the source distribution contains an
example ROM definitions pack for the type-independent outjgati may need to use
the —byte-swap filter to get the byte order you want.

-VMem [memory-widtH
A Verilog VMEM format file will be written. Thenemory-widthmay be 8, 16, 32, 64
or 128 bits; defaults to 32 if unspeei. (Seesrec_vmerfd) for a description of this
file format.) You may need to use the —byte-swap filter to get the byte order you want.

—WILson
A wilson format file will be written. (Sesrec_wilsolf5) for a description of this file
format.)

—Address_Lengthnumber
This option may be wsed to specify the minimum number of bytes to be used in the output to
represent an address (padding with leading zeros if necessary). This helps when talking to brain-
dead EPROM programmers which do not fully implement the format specification.

Reference Manual SRecord 22

srec_cat(1) srec_cat(1)

—Data_Only
This option may be used to suppress all output exceptidhtsa. f Thishelps when talking to
brain-dead EPROM programmers which do not fully implement the format specification.

—-IGnore_Checksums
The —ignore-checksums option may be used to disable checksum validation of input files, for
those formats which la checksums at all. Note that the checksum values are still read in and
parsed (so it is still an error if there missing) but their values are not chextk Usedhfter an
input file name, the option affects that file alone; used anywhere else on the command line, it
applies to all following files.

—Enable_Sequence_Warnings
This option may be used to enable warnings about input files where the data records are not in
strictly ascending address ord@nly one warning is issued per input. This is the defdtite:
the output obrec_cafl) is alvays in this order.

—Disable_Sequence_Warnings
This option may be used to disable warnings about input files where the data records are not in
stricyly ascending address order.

—CRLF This option may be used to specify CRLF line termination for text ouftuse with brain-
dead EPROM programmers which assume all the world uses E\sl @®idirating systers’line
termination. Thealefault is to use the current operating syssesiefault line termination. Use
this option with caution, because it will also introduce extra (i.e. wrong) CR bytes into binary
formats.

-Line_Length number
This option may be used to limit the length of the output lines to atmaodercharacters. (Not
meaningful for binary file format.) Defaults to something less than 80 characters, depending on
the format.

—HEAder string
This option may be used to set the header comment, in those formats which support it.

—Start_ Addressnumber
This option may be used to set the start address, in those formats which support it.

-MULTiple
Use this option to permit a file to contain multiple (contradictory) values for some memory
locations. Awarning will be printed. The last value in the file will be used. The default is for
this condition to be a fatal error.

All other options will produce a diagnostic error.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case
letters and underscores (_) are optionau must use consecug quences of optional letters.

All options are case insensij you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments "-help", "-HEL" and "-h" are all interpreted to meahiie option. The
argument "-hlp" will not be understood, because consexqgttional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line.

The GNU long option names are understood. Since all option nam&®gdocatare long, this means
ignoring the extra leading -'. The-bptiorFvalue' corvention is also understood.

Reference Manual SRecord 23

srec_cat(1) srec_cat(1)

EXIT STATUS
The srec_catcommand will exit with a status of 1 onyagrror. Thesrec_catcommand will only exit with
a datus of 0 if there are no errors.

COPYRIGHT
srec_catversion 1.38
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Peter Miller

The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thestec_cat
-VERSion Licenseommand. Thiss free software and you are welcome to redistribute it under certain
conditions; for details use thsréc_cat -VERSiIon Licerissammand.

AUTHOR
Peter Miller E-Mail: millerp@canbauug.org.au
N* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual SRecord 24

srec_cmp(1) srec_cmp(1)

NAME
srec_cmp — compare twgprom load files for equality

SYNOPSIS
srec_cmpl option...]filename..
srec_cmp -Help
srec_cmp -VERSiIon

DESCRIPTION
The srec_cmpprogram is used to compareawsprom load files for equalityThis comparison is performed
irrespectve d the load order of the data in each of the files.

INPUT FILE SPECIFICATIONS
Input may be qualified in tavways: you may specify a data file or a data generdtomat and you may
specify filters to apply to them. An input file specification looke liis:
data-file[filter ...]
data-generatof filter ...]

Data Files
Input from data files is specified by file name and format name. An input file specification looksdik
filenam¢ format][—ignore-checksums]
The default format is Motorola S-Record format, tmanyothers are also understood.

Data Generators
It is also possible to generate data, rather than read it frden &du may use a generator anywhere you
could use aile. Aninput generator specification looksditthis:
—GENerate address-range-data-source
Generators include random data and various forms of constant data.

Common Manual Page
Seesrec_inpufl) for complete details of input speaeifs. Thisdescription in a separate manual page
because it is common to more than one SRecord command.

OPTIONS
The following options are understood:

@filename
The named text file is read for additional command ligeiaents. Aguments are separated by
white space (space, tab, newlie&). Thereis no wildcard mechanism. There is no quoting
mechanism. Commentshich start with # and extend to the end of the line, are ignored.
Blank lines are ignored.

-Help
Provide some help with using tkeec_cmpprogram.

—-IGnore_Checksums
The —ignore-checksums option may be used to disable checksum validation of input files, for
those formats which la checksums at all. Note that the checksum values are still read in and
parsed (so it is still an error if there missing) but their values are not chextk Usedhfter an
input file name, the option affects that file alone; used anywhere else on the command line, it
applies to all following files.

—Enable_Sequence_Warnings
This option may be used to enable warnings about input files where the data records are not in
strictly ascending address ord@nly one warning is issued per input. This is the defdtite:
the output obrec_cafl) is alvays in this order.

—Disable_Sequence_Warnings
This option may be used to disable warnings about input files where the data records are not in
stricyly ascending address order.

Reference Manual SRecord 25

srec_cmp(1) srec_cmp(1)

-MULTiple
Use this option to permit a file to contain multiple (contradictory) values for some memory
locations. Awarning will be printed. The last value in the file will be used. The default is for
this condition to be a fatal error.

-VERSion
Print the version of therec_cmpprogram being>ecuted.

-Verbose
This option may be used to obtain more information abowtdmal where the te files differ.
Please note that this takes longed the output can be voluminous.

All other options will produce a diagnostic error.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case
letters and underscores () are optionau must use consecug quences of optional letters.

All options are case insensij you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments "-help", "-HEL" and "-h" are all interpreted to meahitie option. The
argument "-hlp" will not be understood, because consexqgttional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line.

The GNU long option names are understood. Since all option nam&edocmpare long, this means
ignoring the extra leading '-'. The-bptiorFvalue' corvention is also understood.

EXIT STATUS
The srec_cmpzommand will exit with a status of 1 onyagrror. Thesrec_cmppommand will only exit
with a status of 0 if there are no errors.

EXAMPLE
A common use for therec_cmpommand is to verify that a particular signature is present in the code. In
this example, the signature is in a file called“signature”, and the EPROM image is in a file called “image”.
We asume thgare both Motorola S-Record format, although this will work for all formats:

srec_cmp signature image -crop -within signature

The signature need not be at the start of memmoryneed it be one single contiguous piece of memiory
the abwe example, the portions of the image whiclvéde same address range as the signature are
compared with the signature.

COPYRIGHT
srec_cmpversion 1.38
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Peter Miller

The srec_cmpprogram comes with ABSOLUTELNO WARRANTY; for details use thestec_cmp
-VERSion Licenseommand. Thiss free software and you are welcome to redistribute it under certain
conditions; for details use thsréc_cmp -VERSiIon Licens®mmand.

AUTHOR
Peter Miller E-Mail: millerp@canbauug.org.au
N* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual SRecord 26

srec_aamples(1) srec xamples(1)

NAME
srec_examples — examples ofahim use SRecord

DESCRIPTION
Thesrec_cattommand is very powerful, due to the ability to combine the the input filters in almost

unlimited ways. Thismanual page describes avfef them.

This manual page describesahtio use the various input files, input filters and input generators. But these
are only examples, for more complete details, sesertte inpufl) manual page.

Your Examples Wanted
If you hare a ¢ever way of using SRecord, or Y@ olves a dificult problem with SRecord, you could
contribute to this manual page, making it more usefulferyene. Sencn email to the email address at
the end of this manual page.

CONVERTING FILE FORMATS
The simplest of the thingsec_cafl) can do is corert from one EPROM file format to anothdPlease
keep in mind, as you read this section, that you can dy wfahese things simultaneously in one
command. Thgare only broken out separately to neakem easier to understand.

Intel to Motorola
One of the simplest examples is eenting files from Intel h& format to Motorola S-Record format:
srec_cat intel-file -intel -o srec-file
Pick ary two formats that SRecord understands, it cavebivetween all of them. (Except the assembiler,
BASIC, C and FPGA outputs which are write only.)

Motorola to Intel
Corverting the other way is just as simple:
srec_cat srec-file -0 intel-file -intel
The default format is Motorola S-Record format, so it does not need to be specified.

Different Shapes of the Same Format
It is regrettably common that some addle-pated EPROM programmers only implement a portion of the
specification used to represent theix fites. For example, some compilers produce “s19” Motorola data
(that is, S1 data records with S9 start records, 16 bit address fields) which would be OK except that some
blockhead EPROM programmers insist on “s37” Motorola data (that is, S3 data records with S7 start
records, 32 bit address fields).

It is possible to carert from one Motorola shape to another using-tAddress-Lengthoption:
srec_cat short.srec -o long.srec --address-length=4
This command says to use four byte (32-bit) addresses on output.

This section also applies to Inteifdes, as thg too, hae the ability to select from a variety of address
widths.

Line Lengths
From time to time you will come across a feeble-minded EPROM programmer thatoganivith long
SRecord lines, theassume that there will onlyer be 16 lytes of data per line, and barf whenytlsee the
default 32 byte payloads thetec_cafl) writes.

The Motorola S-record format definition permits up to 255 bytes of payload. All EPROM programmers
shouldhave sufficiently large buffers to cope with records this bigwiee.

The —line-length option may be used to specify the maximum line length (not including the newline) to be
used on outputFor example, 16 byte payloads for Motorola hex

srec_cat long.srec -0 short.s19 --line-length=46
The line length option interacts with the address length option, so some tinkering to optimize for your
particular situation manbe recessary.

Just the Data, Please
There are some bonehead EPROM programmers which can only cope with data records, and are unable to
cope with header records or start address records. If wauttia problem, the-data-only option can be

Reference Manual SRecord 27

srec_aamples(1) srec xamples(1)

used to suppress just abouerything except the data. The actual effect depends on the format, of course,
because some ddriiavethese features anyway.

Data Headers
Thesrec_cafl) command abays tries to pass through header records unchanged, venémgy are
present. leven tries preserg them across file format changes, to the limit the file formats are capable of.

If there is no file header record and you woule li& ald one, or you which toverride an existing file
header record, use theader=string option. You will need to quote the string (to insulate it from the
shell) if it contains spaces or shell meta-characters.

Start Addresses
Thesrec_cafl) command abays tries to pass through start addresses (typically occurring at the end of the
file), whensger they are present. Theare adjusted along with the data records by-thiésetfilter. It even
tries preserg them across file format changes, to the limit the file formats are capable of.

If there is no start address record and you woultikadd one, or you which toverride an existing start
address record, use thstart-address=numberoption.

Fixing Checksums
Some embedded firmwarewopers are saddled with featherbrained tools which produce incorrect
checksums, which the more vigilant models of EPROM programmer will not accept.

To fix the checksums on a file, use thignore-checksumsption. For example:

srec_cat broken.srec --ignore-checksums -o fixed.srec
The checksums ibroken.sre@re parsed (it is still and error if thare absent) but are not check The
resultingfixed.sredile has correct checksums. Thignore-checksumsoption only applies to input.

This option may be used onyafile format which has checksums, including Intel hex.

JOINING FILES TOGETHER
Thesrec_cattommand takes its name from the UNixt(1) command, which is short for 'catenate’ or 'to
join’. Thesrec_cattommand joins EPROM load files together.

All In One

Joining EPROM load files together into a single file is simple, just name asfitesnon the command line
as you need:

srec_cat infilel infle2 -0 outfile
This example is all Motorola S-Record files, becausegttiat’ default format.You can hae nultiple
formats in the one command, asréc_cafl) will still work. You dont even haveto output the same
format:

srec_cat infilel -spectrum infile2 -needham\

-0 outfile -signetics

These are all ancient formats, hewet isn't uncommon to hee © mix and match Intel and Motorola
formats in the one project.

Joining End-to-End
All too often the address ranges in the EPROM load files wellap. You will get an error if thedo. If
both files start from address zero, because each goes into a separate EPROM, you may need to use the
offset filter:
srec_cat infilel \
infile2 -offset 0x80000 \
-0 outfile
Sometimes you want the dviles to follov each other exact)yout you dont know the offset in advance:
srec_cat infilel \
infile2 -offset -maximum infilel \
-0 outfile
Notice that where the was a number (0x80000) before, theravia tadculation (—maximuninfilel). This
is possible most places a number may be used (also -minimum and -range).

Reference Manual SRecord 28

srec_aamples(1) srec xamples(1)

CROPPING THE DATA
It is possible to copan BPROM load file, selecting addresses to keep and addresses to discard.

What To Keep
A common activity is to crop your data to match your EPROM locatiur linker may add other junk
that you are not interested mg. at the RAM location. In this example, there is a 1MB EPROM at the
2MB boundary:
srec_cat infile -crop 0x200000 0x300000 \

-0 outfile
The lower bound for all address ranges is inglyshe upper bound is exclwsi If you subtract them, you
get the number of bytes.

Address Offset

Just possiblyyou have a noronic EPROM programmeand it barfs if the EPROM image doesgtart at
zero. D find out just where idoesstart in memoryuse thesrec_in{l) command:

$ srec_info exanple.srec

Format: Motorola S-Record

Header: extra-whizz tool chain linker

Start: 0x00200000

Data: 0x200000 - 0 x32AAEF

$
Rather than butcher the linker command file, just offset the addresses:

srec_cat infile -crop 0x200000 0x300000 -offset -0x200000 \

-0 outfile

Note that the offset gén is negative it has the effect of subtracting that value from all addresses in the
input records, to form the output record addresses. In this case, shifting the image back to zero.

This example also demonstratesittbe input filters may be chained together: first the crop and then the
offset, all in one command, without the need for temporary files.

If all you want to do is offest the data to start from address zero, this can be automated, sat yaweton’
know the minimum address in advance, by usireg_cak ability to calculate some things on the
command line:

srec_cat infile -offset - -minmum infile \
-0 oultfile
Note the spaces either side of the minus sigy,dreemandatory.
What To Throw Away

There are times when you need to exclude an small address range from an EPROM load file, rather than
wanting to keep a small address range. Farcludefilter may be used for this purpose.

For example, if you wish to exclude the address range where the serial number of an embedded device is
kept, say 0x20 bytes at 0x100, you would use a commaedhiik

srec_cat input.srec -exclude 0x100 0x120 -o output.srec
Theoutput.sredile will have a lole in the data at the necessary locations.

Note that you can ke both —crop and—-excludeon the same command line, whigbeworks more
naturally for your situation.

Discontinuous Address Ranges
Address ranges ddrtaveto be a single range, you can build up an address range using more than a single
pair.
srec_cat infile -crop 0x100 0x200 0x1000 0x1200 \
-0 oultfile
This filter results in data from 0x100..0x1FF and data from 0x1000..0x1200 to pass through, the rest is
dropped. Thiss is more dfcient than chaining a —crop and an —exclude filter together.

MOVING THINGS AROUND

It is also possible to change the address of data records, both forwards arartisckiie also possible
rearrange where data records are placed in memory.

Reference Manual SRecord 29

srec_aamples(1) srec xamples(1)

Offset Filter
The—-offset=numbeffilter operates on the addresses of records. If the number iv@dsitaddresses
move that many bytes higher in memoryegdive values mee lower.
srec_cat infile -crop 0x200000 0x300000 -offset -0x200000 \
-0 outfile
The abee example mees the 1MB block of data at 0x200000 down to zero (the offseegstive and
discards the rest of the data.

Byte Swapping
There are times when the bytes in the data need to be swappettiicgietween big-endian and little-
endian data usually.
srec_cat infile --byte-swap 4 -0 outfile
This reverses bytes in 32 bit values (4 bytes). The default, if youtdapply a width, is to neerse bytes in
16 bit values (2 bytes)You can actually use gnweird value you like, although 64 bits (8 bytes) may be
useful one day.

Binary Output
You need to watch out for binary files on output, because the holes are filled with Yeto#0kB
program at the top of 32-bit addressed memory willereaksB file. Seesrec_binaryl) for how
understand andvaid this problem, usually with the —offset filter.

Splitting an Image
If you hare a B-bit data bus, but you are usingot@bit EPROMSs to hold your firmware, you can generate
the even and odd images by using the —SPlit filte&kssuming your firmware is in tHemware hexfile, use
the following:
srec_cat firmware.hex -split 2 0 -o firmware.even.hex
srec_cat firmware.hex -split 2 1 -o firmware.odd.hex
This will result in the tw necessary EPROM images. Note that the output addresses are divided by the
split multiple, so if your EPROM images are at a particular offset (say 0x10000, in the following example),
you need to reme the offset, and then replace it...
srec_cat firmware.hex \
-offset -0x10000 -split 2 0\
-offset 0x10000 -o firmware.even.hex
srec_cat firmware.hex \
-offset -0x10000 -split 2 1\
-offset 0x10000 -o firmware.odd.hex
Note hav the ability to apply multiple filters simplifies what would otherwise be a much longer script.

Striping
A second use for the —SPIlit filter is memory striping. In this example, the hardware requires that 512-byte
blocks alternate between 4 EBRs. Generatinghe 4 images would be done as follows:
srec_cat firmware.hex -split 0x800 0x000 0x200 -o firmware.0.hex
srec_cat firmware.hex -split 0x800 0x200 0x200 -o firmware.1.hex
srec_cat firmware.hex -split 0x800 0x400 0x200 -o firmware.2.hex
srec_cat firmware.hex -split 0x800 0x600 0x200 -o firmware.3.hex

Unspliting Images
The unsplit filter may be used toveese the effects of the split filteNote that the address range is
expanded leaving holes between the stripes. By using all the stripes, the complete input is reassembled,
without ary holes.
srec_cat -o firmware.hex \

firmware.even.hex -unsplit 2 0\

firmware.odd.hex -unsplit 21
The abeoe example reerses the previous 16-bit data bus example,.

FILLING THE BLANKS
Often EPROM load files will hae “holes” in them, places where the compiler and linker did not put
arything. For some purposes this is OK, and for other purposes something has to be done about the holes.

Reference Manual SRecord 30

srec_aamples(1) srec xamples(1)

The Fill Filter
It is possible to fill the blanks where your data does not lie. The simplest example of this fills the entire
EPROM:
srec_cat infile -fill 0Ox00 0x200000 0x300000 -0 outfile

This example fills the holes, if grwith zeros. You must specify a range — with a 32-bit address space,
filling everything generateBugeload files.

If you only want to fill the gaps in your data, and davant to fill the entire EPROM, try:
srec_cat infile -fill Ox00 -over infile -0 outfile

This example demonstrates the fact that wheer@n aldress range may be specified, toger and

—within options may be used.

Unfilling the Blanks
It is common to need to “unfill’ an EPROM image after you read it out of a chip. Usitialiil have had
all the holes filled with OxFF (areas of the EPROM you tprdgram shw as &XFF when you read them
back).

To get rid of all the OxFF bytes in the data, use this filter:

srec_cat infile -unfill OXFF -o outfile
This will get rid ofall the OxFF bytes, including the ones you actually wanted in there. Therecanays
to deal with this. First, you can specify a minimum run length to the un-fill:

srec_cat infile -unfill OXFF 5 -o outfile
This says that runs of 1 to 4 bytes of OxFF are OK, and that a hole should only be created for runs of 5 or
more OxFF bytes in awo The second method is to re-five the intermediate gaps:

srec_cat outfile -fill OXFF -over outfile \

-0 outfile2

Which method you choose depends on your needs, and the shape of the data in @ir EB&Rmay
need to combine both techniques.

Address Range Padding
Some data formats are 16 bits wide, and automatically fill with OXFF bytes if it is necessary to fill out the
other half of a word which is not in the data. If you need to fill with a different value, you can use a
command lile this:
srec_cat infile -fill OXOA\

-within infile -range-padding 2\

-0 outfile
This gives the fill filter an address range calculated from details of the iilputTheaddress range is all
the address rangesveped by data in thanfile, extended downwards (if necessary) at the start of each sub-
range to a 2 byte multiple and extended upwards (if necessary) at the end of each sub-range to a 2 byte
multiple. Thisalso works for larger multiples, B1kB page boundaries of flash chips. This address range
padding works anywhere an address range is required.

Fill with Copyright
It is possible to fill unused portions of your EPROM with a repeating copyright message. Anyone trying to
reverse engineer your EPROMSs is going to see the copyright notice in theddibar.

This is accomplished with minput sources, one from a data file, and one which is generated on-the-fly.
srec_cat infile \
-generate '(" 0 0x100000 -minus -within infile)"\
-repeat-string 'Copyright (C) 1812 Tchaikovsky. "\
-0 outfile
Notice hav the address range for the data generation: it takes the address range of your EPROM, in this
case 1MB starting from 0, and subtracts from it the address ranges used by the input file.

The string specified is repeatedenand over again, until it has filled all the holes.

Obfuscating with Noise
Sometimes you want to fill your EPROM images with noise, to conceal where the real data stops and starts.
You can do this with therrandom-fill filter.

Reference Manual SRecord 31

srec_aamples(1) srec xamples(1)

srec_cat infile -random-fill 0xX200000 0x300000 \
-0 outfile
It works just like the —fill filter, but uses random numbers instead of a constant byte value.

Fill With 16-bit Words
When filling the image with a constant byte value daesotk, and you need a constant 16-bit word value
instead, use therepeat-datageneratgrwhich takes an arbitrarily long sequence of bytes to use as the fill
pattern:
srec_cat infile \
-generator '(' 0x200000 0x300000 -minus -within infile)"\
-repeat-data 0x1B 0x08 \

-0 outfile
Notice hav the generatos' address range once agawoals the address ranges occupied byirtfike's data.
You haveto get the endian-ness right yourself.

DATA ABOUT THE DATA
It is possible to add a variety of data about the data to the output.

Checksums
The-big-endian-checksum-negatie filter may be used to sum the data, and then insert aiweed the
sum into the data. This has the effect of summing to zero when the checksum itself is summed across,
provided the sum width matches the inserted value width.
srec_cat infile \

--crop 0 OXFFFFFC\

--random-fill 0 OXFFFFFC \

--b-e-checksum-neg OXFFFFFC 4 4\

-0 outfile

In this example, we lva an EPROM in the lowest nggbyte of memory The —crop filter ensures we are
only summing the data within the EPROM, and not anywhere else. The —random-fill filterfilelas
left in the data with randomalues. Finallythe —b-e-checksum-gdilter inserts a 32 bit (4 byte)
checksum in big-endian format in the last 4 bytes of the EPROM image. Natilnadlyis a little endian
version of this filter as well.

Your embedded code can check the EPROM using C code similar to the following:
unsigned long *begin = (unsigned long *)0;
unsigned long *end = (unsigned long *)0x100000;
unsigned long sum = 0;
while (begin < end)
sum += *begin++;

if (sum !=0)
{

Oops
}

The —big-endian-checksum-bitnot filter is simjlexcept that summingwer the checksum should yield a
value of all-one-bits (-1) For example, using shorts rather than longs:
srec_cat infile \
--crop 0 OXFFFFFE \
--fill OXCC 0x00000 OxFFFFFE \
--b-e-checksum-neg OXFFFFFE 2 2\
-0 outfile
Assuming you chose the correct endian-ness, fiftarr embedded code can check the EPROM using C
code similar to the following:
unsigned short *begin = (unsigned long *)0;
unsigned short *end = (unsigned long *)0x100000;
unsigned short sum = 0;
while (begin < end)

Reference Manual SRecord 32

srec_aamples(1) srec xamples(1)

sum += *begin++;
if (sum != OXFFFF)
{

}

There is also a —b-e-checksum-paesitilter, and a matching little-endian filtewhich inserts the simple
sum, and which would be checked in C using an equality test.
srec_cat infile \
--crop 0 OXFFFFFF\
--fill 0x00 0x00000 OXFFFFFF \
--b-e-checksum-neg OxFFFFFF 1 1\
-0 outfile
Assuming you chose the correct endian-ness, fiftarr embedded code can check the EPROM using C
code similar to the following:
unsigned char *begin = (unsigned long *)0;
unsigned char *end = (unsigned long *)OxFFFFF;
unsigned char sum = 0;
while (begin < end)
sum += *begin++;
if (sum != *end)

{
}

In the 8-bit case, it doegnhatter whether you use the big-endian or little-endian filter.

Oops

Oops

Cyclic Redundancy Checks
The simple additie checksums hze a umber of theoretical limitations, to do with errorsytlean and
cant detect. TheCRC methods he fewer problems.
srec_cat infile \

--crop 0 OXFFFFFC\

--fill 0x00 0x00000 OXFFFFFC \

--b-e-crc32 OXFFFFFC\

-0 outfile

In the abwe example, we hee an EPROM in the lowest mggbyte of memory The —crop filter ensures we
are only summing the data within the EPROM, and not anywhere else. The -fill filter yill®ks left in
the data. Finallythe —b-e-checksum-gdilter inserts a 32 bit (4 byte) checksum in big-endian format in
the last 4 bytes of the EPROM image. Naturdligre is a little endian version of this filter as well.

The checksum is calculated using the industry standard 32-bit CRC. Because SRecord is open source, you
can alvays read the source code to sew litovorks. Thereare mag non-GPL version of this code
awailable on the Internet, and suitable for embedding in proprietary firmware.

There is also a 16-bit CR@ailable.
srec_cat infile \
--crop 0 OXFFFFFE \
--fill 0x00 0x00000 OXFFFFFE \
--b-e-crc16 OXFFFFFE \
-0 outfile

The checksum is calculated using the CCITT formula. Because SRecord is open source, yeaysan al
read the source code to seevibworks. Thereare mag non-GPL version of this codevalable on the
Internet, and suitable for embedding in proprietary firmware.

Where Am |?
There are seral properties of you EPROM image that you may wish to insert into the data.
srec_cat infile --b-e-minimum OXFFFFFE 2 -0 outfile

The abee example inserts the minimum address of the data yate)) into the data. This includes the

Reference Manual SRecord 33

srec_aamples(1) srec xamples(1)

minimum itself. If the data already contains bytes at thengiddress, you need to use an exclude filter.
The value will be written with the most significant byitstt Thenumber of bytes defaults to 4. There is
also a little-endian variant.

srec_cat infile --b-e-maximum OXFFFFFE 2 -0 outfile
The abee example inserts the maximum address of the datgn (water + 1 just like address ranges) into
the data. This includes the maximum itself. If the data already contains bytes ðaldress, you
need to use an exclude filteFhe value will be written with the most significant byitstt Thenumber of
bytes defaults to 4. There is also a little-endian variant.

srec_cat infile --b-e-maximum OXFFFFFE 2 -0 outfile
The abee example inserts the length of the datigh water+ 1 - low wate)) into the data. This includes
the length itself. If the data already contains bytes at the length location, you need to use an exclude filter.
The value will be written with the most significant byitstt Thenumber of bytes defaults to 4. There is
also a little-endian variant.

What Format Is This?

You can obtain a variety of information about an EPROM load file by usingréte infg1) command.For
example:

$ srec_info exanple.srec

Format: Motorola S-Record

Header: "http://srecord.sourceforge.net/"

Start: 00000000

Data: 0000 - 0122

0456 - OFFF

$
This example shme that the file is a Motorola S-Record. The text in the file header is printed, along with
the start address. The final section shows the address ranges containing data (the upper bound of each
subrange isnclusive, rather than thexclusive form used on the command line.

$ srec_info sone-weird-file.hex --guess

Format: Signetics

Data: 0000 - 0122

0456 - OFFF

$
The abee example guesses the EPROM load file format. Ittisfallible but it usually gets it rightYou
can use-guessanywhere you would gé an explicit format, but it tends to be slower and not
recommended.

MANGLING THE D ATA

It is possible to change the values of the data bytevénadevays.

srec_cat infile --and OxFO -0 outfile
The abee example performs a bit-wise AND of the data bytes with the OxFO mask. The addresses of
records are unchangetican't actually think of a use for this filter.

srec_cat infile --or OxOF -0 outfile
The abee example performs a bit-wise OR of the data bytes with the 0xOF bits. The addresses of records
are unchanged. can't actually think of a use for this filter.

srec_cat infile --xor OxA5 -0 outfile
The abee example performs a bit-wise exclusiOR of the data bytes with the OxA5 bits. The addresses
of records are unchangetiou could use this to obfuscate the contents of your EPROM.

srec_cat infile --not -0 outfile
The abee example performs a bit-wise Nof the data bytes. The addresses of records are unchanged.
Security by obscurity?

Reference Manual SRecord 34

srec_aamples(1) srec xamples(1)

COPYRIGHT
srec_catversion 1.38
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Peter Miller

The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thestec_cat
-VERSion Licenseommand. Thiss free software and you are welcome to redistribute it under certain
conditions; for details use thsréc_cat -VERSiIon Licerissammand.

AUTHOR
Peter Miller E-Mail: millerp@canbauug.org.au
N* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual SRecord 35

srec_info(1) srec_info(1)

NAME
srec_info — information about eprom load files

SYNOPSIS
srec_info[option..]filename..
srec_info -Help
srec_info -VERSion

DESCRIPTION
The srec_infoprogram is used to obtain input about eprom ldad.f Itreads the files specified, and then
presents statistics about them. These statistics include: the file heagethtastart address if gnend
the address rangesveped by the data if an

INPUT FILE SPECIFICATIONS
Input may be qualified in tavways: you may specify a data file or a data generdtomat and you may
specify filters to apply to them. An input file specification looke liis:
data-file[filter ...]
data-generatof filter ...]

Data Files
Input from data files is specified by file name and format name. An input file specification looksdik
filename format][—ignore-checksums]
The default format is Motorola S-Record format, tmanyothers are also understood.

Data Generators
It is also possible to generate data, rather than read it frden &du may use a generator anywhere you
could use aile. Aninput generator specification looksdilthis:
—GENerate address-range-data-source
Generators include random data and various forms of constant data.

Common Manual Page
Seesrec_inpufl) for complete details of input speaeifs. Thisdescription in a separate manual page
because it is common to more than one SRecord command.

OPTIONS
The following options are understood:

@filename
The named text file is read for additional command ligeiaents. Aguments are separated by
white space (space, tab, newlie&). Thereis no wildcard mechanism. There is no quoting
mechanism. Commentshich start with # and extend to the end of the line, are ignored.
Blank lines are ignored.

-Help
Provide some help with using thesc_infoprogram.

—-IGnore_Checksums
The —ignore-checksums option may be used to disable checksum validation of input files, for
those formats which la checksums at all. Note that the checksum values are still read in and
parsed (so it is still an error if there missing) but their values are not chextk Usedhfter an
input file name, the option affects that file alone; used anywhere else on the command line, it
applies to all following files.

—Enable_Sequence_Warnings
This option may be used to enable warnings about input files where the data records are not in
strictly ascending address ord@nly one warning is issued per input. This is the defdtite:
the output okrec_cafl) is alvays in this order.

—Disable_Sequence_Warnings
This option may be used to disable warnings about input files where the data records are not in
stricyly ascending address order.

Reference Manual SRecord 36

srec_info(1) srec_info(1)

-MULTiple
Use this option to permit a file to contain multiple (contradictory) values for some memory
locations. Awarning will be printed. The last value in the file will be used. The default is for
this condition to be a fatal error.

-VERSion
Print the version of therec_infoprogram being>ecuted.

All other options will produce a diagnostic error.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case
letters and underscores (_) are optionau must use consecug quences of optional letters.

All options are case insensij you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments "-help", "-HEL" and "-h" are all interpreted to meahitie option. The
argument "-hlp" will not be understood, because consexqgttional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line.

The GNU long option names are understood. Since all option nam&®gdoinfoare long, this means
ignoring the extra leading -'. The-bptiorFvalue' corvention is also understood.

EXIT STATUS
The srec_infocommand will exit with a status of 1 onya@ror. Thesrec_infocommand will only exit
with a status of 0 if there are no errors.

COPYRIGHT
srec_infoversion 1.38
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Peter Miller

The srec_infoprogram comes with ABSOLUTBLNO WARRANTY; for details use thestec_info
-VERSion Licenseommand. Thiss free software and you are welcome to redistribute it under certain
conditions; for details use thsréc_info -VERSIon Licerissommand.

AUTHOR
Peter Miller E-Mail: millerp@canbauug.org.au
N* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual SRecord 37

srec_input(1) srec_input(1)

NAME
srec_input — input file specifications
SYNOPSIS
srec_*filename¢] format]
DESCRIPTION
This manual page describes the input file specifications faréwe cafl), srec_cmfl) andsrec_infg1)
commands.

Input files may be qualified in a number of ways: you may specify their format and you may specify filters
to apply to them. An input file specification looksdithis:
filenam¢ format][—ignore-checksums Jilter ...]

ThefilenameThe filename may be specified as a file name, or the special name “-” which is understood to
mean the standard input.

File Formats
The formatis specified by the argumeatterthe file name. The format defaults to Motorola S-Record if
not speciied. Theformat specified are:

—Absolute_Object Module_Format
This option says to use the Intel Absolute Object Module Format (AOMF) to redtbthESke
srec_aon(b) for a description of this file format.)

—Ascii-Hex
This option says to use the Ascii-kirmat to read thalé. Seesrec_ascii_hef6) for a
description of this file format.

—Atmel_Generic
This option says to use the Atmel Generic format to readléheSeesrec_atmel_genet(b) for
a description of this file format.

—Binary
This option says the file is awabinary file, and should be read literallgThis option may also
be written —Rw.) Seesrec_binary5) for more information.

-B-Record
This option says to use the Freescale MC68EZ328 Dragonball bootstrap b-record format to read
the fle. Seesrec_brecorb) for a description of this file format.

—COsmac
This option says to use the RCA Cosmac EIf format to readl¢heSeesrec_cosmg®) for a
description of this file format.

—Dec_Binary
This option says to use the DEC Binary (XXDP) format to readilthe$eesrec_dec_binarip)
for a description of this file format.

—Elektor_Monitor52
This option says to use the EMONS52 format to readitbe $eesrec_emon53) for a
description of this file format.

~Ff[l]rchild
This option says to use the Fairchild Fairbug format to readl¢heSeesrec_faichild(5) for a
description of this file format.

—Fast_Load
This option says to use the LSI Logic Fast Load format to readeheSkeesrec_fastloa(b) for
a description of this file format.

—Formatted_Binary
This option says to use the Formatted Binary format to readeheSee
srec_formatted_bina(®) for a description of this file format.

Reference Manual SRecord 38

srec_input(1) srec_input(1)

—Four_Packed_Code
This option says to use the FPC format to readiline $eesrec_fp¢5s) for a description of this
file format.

—Guess This option may be used to ask srec_input to guess the input format. This is slower than
specifying an explicit format, as it may open and close the file a number of times.

ntel This option says to use the IntekiHfermat to read thelé. Seesrec_inte(5) for a description of
this file format.
—INtel_HeX_ 16

This option says to use the Intekis INHX16) format to read thelé. Seesrec_intel1§5) for
a description of this file format.

-MQOS_Technologies
This option says to use the Mos Technologies format to readehé&eesrec_mos_tedb) for a
description of this file format.

—Motorola [width]
This option says to use the Motorola S-Record format to readehéMay also be written —S-
Record.) Sesrec_motorolé) for a description of this file format.

The optionalwidth argument describes the number of bytes which form each address multiple.
For normal uses the default of one (1) byte is appropriate. Some systems with 16-bit or 32-bit
targets mutilate the addresses in the file; this option will correct for that. e.mtikt other
parameters, this one cannot be guessed.

—-Needham_Hexadecimal
This option says to use the Needham Electronics ASCII file format to reatbth8de
srec_needha(b) for a description of this file format.

—Ohio_Scientific
This option says to use the Ohio Scientific format. See_0s65(b) for a description of this file
format.

-SIGnetics
This option says to use the Signetics format. SSee spasid) for a description of this file
format.

—SPAsm
This option says to use the SPASM assembler output format (commonly used by PIC
programmers). Sesmec_spasiid) for a description of this file format.

—SPAsm_ LittleEndian
This option says to use the SPASM assembler output format (commonly used by PIC
programmers). Buwith the data the other way around.

-STewie
This option says to use the Stewie binary format to readl¢heSeesrec_stewis) for a
description of this file format.

—Tektronix
This option says to use the Tektronixtiermat to read thelé. Seesrec_tektronifb) for a
description of this file format.

—Tektronix_Extended
This option says to use the Tektronix extendedfbemat to read thelé. See
srec_tektronix_extendé€a) for a description of this file format.

—Texasf[l]nstruments_Tagged
This option says to use thexas Instruments Tagged format to read tlee fSee
srec_ti_tayged(5) for a description of this file format.

Reference Manual SRecord 39

srec_input(1) srec_input(1)

—Texasf[l]nstruments_Tagged_ 16
This option says to use thexas Instruments SDSMA320 format to read thélé. See
srec_ti_tayged_16(5) for a description of this file format.

—Texasf[l]nstruments_TeXT
This option says to use thexas Instruments TXT (MSP430) format to read ike fSee
srec_ti_tx¢5) for a description of this file format.

-VMem
This option says to use the Verilog VMEM format to read illee Seesrec_vmerfd) for a
description of this file format.

—WILson
This option says to use the wilson format to readitee Seesrec_wilsoif5) for a description of
this file format.

Ignore Checksums
The —ignore-checksums option may be used to disable checksum validation of input files, for those formats
which have checksums at all. Note that the checksum values are still read in and parsed (so it is still an
error if they are missing) but their values are not chetk Usedafter an input file name, the option affects
that file alone; used anywhere else on the command line, it applies to all following files.

Generators
It is also possible to generate data, rather than read it frden &du may use a generator anywhere you
could use aile. Aninput generator specification looksdithis:

—GENerate address-range-data-source
The-data-sourcenay be one of the following:

—CONSTant number
This generator manufactures data with thermgbyte value of the the gén address rangeFor
example, to fill memory addresses 100..199 with newlines (0x0A), you could use a command like

srec_cat —generate 100 200 —constant 10 -0 newlines.srec
This can, of course, be combined with data from files.

—REPeat_Datanumber..
This generator manufactures data with thergbyte values repeatingver the the gren address
range. Br example, to create a data region with OXDE in tlea bytes and OxXAD in the odd
bytes, use a generatordiknis:

srec_cat —generate 0x1000 0x2000 -repeat-data OXDE OxAD

The repeat boundaries are aligned with the base of the address range, modulo the number of
bytes.

—REPeat_Stringtext
This generator is almost identical to —repeat-data except that the data to be repeated is the text of
the given gring. For example, to fill the holes in an EPROM imag@om.sreavith the text
“Copyright (C) 1812 Tchaitwsky”, combine a generator and an —exclude fikech as the
command

srec_cat eprom.srec \
-generate 0 0x100000 \
-repeat-string 'Copyright (C) 1812 Tchaikovsky. '\
-exclude -within eprom.srec \
-0 eprom.filled.srec

The thing to note is that we vetwo data sources: theprom.sredile, and generated dateep an
address range whichaass first meyabyte of memory but excluding areasreed by the
eprom.sredata.

Anything else will result in an error.

Reference Manual SRecord 40

srec_input(1) srec_input(1)

Input Filters
You may specify zero or morfdtersto be applied. Filters are applied in the order the user specifies.

—-Big_Endian_Checksum_BitNotaddresq nbyteq width]]
This filter may be used to insert the amedmplement checksum of the data into the data, most
significant byte ifst. Thedata is literally summed; if there are duplicate bytes, this will produce
an incorrect result, if there are holes, it will be as ifthere filled with zeros. If the data
already contains bytes at the checksum location, you need to use an exclyade il kvill
generate errorsYou need to apply and crop or fill filters before this filtéthe value will be
written with the most significant byteédt. Thenumber of bytes of resulting checksum defaults
to 4. The width (the width in bytes of the values being summed) defaults to 1.

—-Big_Endian_Checksum_Negatie addresq nbyted width]]
This filter may be used to insert the te@dmplement (ngative) checksum of the data into the
data. Otherwissimilar to the abee.

—-Big_Endian_Checksum_Positie addresq nbyteq width]]
This filter may be used to insert the simple checksum of the data into the data. Otherwise similar
to the abwe.

—Little_Endian_Checksum_BitNot addresq nbyteq width]]
This filter may be used to insert the aedmplement (bitnot) checksum of the data into the data,
least significant byteirst. Otherwisesimilar to the abee.

—Little_Endian_Checksum_Negatve addresq nbyteq width]]
This filter may be used to insert the ta@dmplement (ngative) checksum of the data into the
data. Otherwissimilar to the abee.

—Little_Endian_Checksum_Negatve addresq nbyteq width]]
This filter may be used to insert the simple checksum of the data into the data. Otherwise similar
to the abwe.

—Byte_Swap[width]
This filter may be used to swap pairs of odd arehdytes. Byspecifying a width (in bytes) it is
possible to reerse the order of 4 and 8 bytes, the default is 2 bytes. (Widths in excess of 8 are
assumed to be number of bits.) It is not possible to swap non-poweo-afitinesses. @
change the alignment, use the offset filter before and after.

-Big_Endian_CRC16addresq —CCITT | -XMODEM | -BROKEN][~AUGment | -No-AUGment]
This filter may be used to insert an industry standard 16-bit CRC checksum of the data into the
data. o hytes, big-endian ordeare inserted at the addressagi. Holesin the input data are
ignored. Bytesare processed in ascending address oraeir(the order thg appear in the

input).
-CCITT

The CCITT calculation is performed. The initial seed is OxFFHfs is the default.
-XMODEM

The alternate XMODEM calculation is performed. The initial seed is 0x0000.
-BROKEN

A common-but-broken calculation is performed. The initial seed is 0x84CF.
—AUGment

The CRC is augmented by sixteen zero bits at the end of the calculation. do not use it.
This is the default.

—No-AUGment
The CRC is not augmented at the end of the calculation. This is less standard
conforming, but some implementations do this.

Note: If you have holes in your data, you will get a different CRC than if there were no holes.
This is important because the in-memory EPROM image will nat hales. You almost akliays

Reference Manual SRecord 41

srec_input(1) srec_input(1)

want to use thefill filter before ap of the CRC iiters. You will receve a varning if the data
presented for CRC has holes.

You should also beware that the lower and upper bounds of your data may not be the same as
the lower and upper bounds of your EFNR. Thisis another reason to use thidl filter,
because it will establish the data across the full EPROM address range.

Note that there are a great ma@@RC16 implementations out there, see
http://www.joegeluso.com/software/articles/ccitt.htm for more information. If all else fails,

SRecord is open source software: read the SRecord source code. The CRC16 source code (found
in thelib/crc16.cc file of the distribution tarball) has a great marplanatory comments.

Please try all six combinations of the gbaptions before reporting a bug in the CRC16
calculation.

—Little_Endian_CRC16 address
As abwe, except little-endian order.

—-Big_Endian_CRC32address
This filter may be used to insert an industry standard 32-bit CRC checksum of the data into the
data. Bur bytes, big-endian ordere inserted at the addresseayi. Holesin the input data are
ignored. Bytesare processed in ascending address oraeir(the order thg appear in the
input). Sealso the note about holes, &bo

—Little_Endian_CRC32 address
As abwe, except little-endian order.

—Crop address-range
This filter may be used to isolate a section of data, and discard the rest.

—Exclude address-range
This filter may be used to exclude a section of data, and keep the rest. The is the logical
complement of theCrop filter.

—Fill value address-range
This filter may be used to fill 3rgaps in the data with bytes equaktdue The fill will only
occur in the address rangedi.

=UnFill value[min-run-length|
This filter may be used to create gaps in the data with bytes equalieo You can think of it as
reversing the effects of theFill filter. The gaps will only be created if the are at l@aist-run-
lengthbytes in a rv (defaults to 1).

—Random_Fill address-range
This filter may be used to fill grgaps in the data with random bytes. The fill will only occur in
the address rangevgn.

—AND value
This filter may be used to bit-wise ANDvalueto every data byte. This is useful if you need to
clear bits. Only existing data is altered, no holes are filled.

—eXclusive-OR value
This filter may be used to bit-wise XORralueto every data byte. This is useful if you need to
invert bits. Only existing data is altered, no holes are filled.

-OR value
This filter may be used to bit-wise OR/alueto every data byte. This is useful if you need to set
bits. Onlyexisting data is altered, no holes are filled.

-NOT This filter may be used to bit-wise NQhe value of gery data byte. This is useful if you need to
invert the data. Only existing data is altered, no holes are filled.

Reference Manual SRecord 42

srec_input(1) srec_input(1)

-Big_Endian_Lengthaddresq nbyteg|
This filter may be used to insert the length of the data (high water mimwgdter) into the data.
This includes the length itself. If the data already contains bytes at the length location, you need
to use an exclude filteor this will generate errors. The value will be written with the most
significant byte ifst. Thenumber of bytes defaults to 4.

—Little_Endian_Length addresq nbytes]
As abwe, howeve the value will be written with the least significant byte first.

—-Big_Endian_MAXimum addresq nbytes]
This filter may be used to insert the maximum address of the data (high water
+ 1) into the data. This includes the maximum itself. If the data already contains bytes at the
given address, you need to use an exclude fitiethis will generate errors. The value will be
written with the most significant byteédt. Thenumber of bytes defaults to 4.

—Little_Endian_MAXimum addresq nbyteg|
As abwe, howeve the value will be written with the least significant byte first.

—-Big_Endian_MINimum addresq nbytes]
This filter may be used to insert the minimum address of the datav@iter) into the data. This
includes the minimum itself. If the data already contains bytes atwbe ajidress, you need to
use an exclude filteor this will generate errors. The value will be written with the most
significant byte ifst. Thenumber of bytes defaults to 4.

—Little_Endian_MINimum addresq nbytes]|
As abwe, howeve the value will be written with the least significant byte first.

—OFfsetnbytes
This filter may be used to offset the addresses by thea gumber of bytes. No data is lost, the
addresses will wrap around in 32 bits, if necess#ou may use rgative rumbers for the offset,
if you wish to mee data lower in memory.

—=SPlit multiple[offset[width]]
This filter may be used to split the input into a subset of the data, and compress the address range
so as to leae o gaps. Thisuseful for wide data buses and memory striping. Mhéipleis the
bytes multiple to spliteer, the offsetis the byte offset into this range (defaults to 0) widthis
the number of bytes to extract (defaults to 1) within the multiple. In ordervte teajaps, the
output addresses amgiith/ multiple) times the input addresses.

-Un_SPIit multiple[offset[width]]
This filter may be used toverse the effects of the split filteThe arguments are identical. Note
that the address range is expandadl{iple/ width) times, leaving holes between the stripes.

Address Ranges
There are three ways to specify an address range:

minimum maximum
If you specify two number on the command line (decimal, octal and hexadecimal are understood,
using the C corentions) this is an explicit address range. The minimum is inautie
maximum is exclusie (one more than the last address). If the maximunvengis zro then the
range extends to the end of the address space.

—-Within input-specification
This says to use the specified input file as a mask. The range includes all the places the specified
input has data, and holes where it has holes. The input specification need not be just a file name,
it may be anything another input specification can be. (You may need to enéigaéd-
specificationin parentheses to malaure it cant misinterpret which arguments go with input
specification.)

—OVER input-specification
This says to use the specified input file as a mask. The range extends from the minimum to the
maximum address used by the input, and ignore$@les. Thanput specification need not be

Reference Manual SRecord 43

srec_input(1) srec_input(1)

just a file name, it may be anythingyasther input specification can be. (You may need to
enclosenput-specificatiorin parentheses to malaure it cant misinterpret which arguments go
with input specification.)

address-range-RAnge-PADding number
It is also possible to pad ranges to be whole aligned multiples ofvdrergimber For example
input-file -fill OXFF -within input-file -range-pad 512
will fill the input-file so that it consists of whole 512-byte blocks, aligned on 512 byte boundaries.
Any large holes in the data will also be multiples of 512 bytes, thoughrténe have keen shrunk
as blocks before and after are padded.

This operator has the same precedence as the explicit union operator.

address-range INTERsect address-range
You can intersect te address ranges to produce a smaller address range. The intersection
operator has higher precedence than the implicit union operashrgied left to right).

address-range-Uf[lJon address-range
You can union tva address ranges to produce a larger address range. The union operator has
lower precedence than the intersection operatafuated left to right).

address-range-DIFference address-range
You can difference tw address ranges to produce a smaller address range. The result is the left
hand range with all of the right hand range reedo Thedifference operator has the same
precedence as the implicit union operatoelgated left to right).

address-rang address-range
In addition, all of these methods may be used, and used more than once, and the results will be
combined (implicit union operatozsame precedence as explicit union operator).

Calculated Values
Most of the places ale where a number is expected, you may supply one of the following:

- value
The value of this expression is thegetéve d the expression gument. Notehe spacebetween
the minus sign and its argument: this space is mandatory.
srec_cat in.srec -offset - -minimum in.srec -0 out.srec
This example shows hoto move data to the base of memory.

(value)
You may use parentheses for grouping. When using parenthesesjubieeach be a separate
command line argument, thean't be within the text of the preceding or following option, and
you will need to quote them to get them past the shell, su¢h aand’)’

—MINimum input-specification
This inserts the minimum address of the specified irijgut Theinput specification need not be
just a file name, it may be anythingyasther input specification can be. (You may need to
enclosenput-specificatiorin parentheses to malaure it cant misinterpret which arguments go
with input specification.)

—MAXimum input-specification
This inserts the maximum address of the specified input file, plus one. The input specification
need not be just a file name, it may be anythingatiner input specification can be. (You may
need to enclos@put-specificatiorin parentheses to malare it cant misinterpret which
arguments go with input specification.)

—Length input-specification
This inserts the length of the address range in the specified input file, ignoyihgles. The
input specification need not be just a file name, it may be anythingtlaer input specification
can be. (You may need to enclasput-specificatiorin parentheses to malaire it can't
misinterpret which arguments go with input specification.)

Reference Manual SRecord 44

srec_input(1) srec_input(1)

For example, the OVER file option can be thought of a short-hand’tormin file -maxfile’)’, except
that it is much easier to type, and also mofieieht.

In addition, calculated values may optionally be rounded in one of three ways:

value—Round_Downnumber
Thevalueis rounded down to the the largest integer smaller than or equal to a whole multiple of
thenumber

value—Round_Nearestnumber
Thevalueis rounded to the the nearest whole multiple ofntilnaber

value—Round_Upnumber
Thevalueis rounded up to the the smallest integer larger than or equal to a whole multiple of the
number

When using parentheses, yhraust each be a separate command line argumentcdiné be within the
text of the preceding or following option, and you will need to quote them to get them past the shell, as
' and’y

COPYRIGHT

srec_inputversion 1.38
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Peter Miller

The srec_inputprogram comes with ABSOLUTELNO WARRANTY; for details use thestec_input
-VERSion Licenseommand. Thiss free software and you are welcome to redistribute it under certain
conditions; for details use thsréc_input -VERSiIon Licerissommand.

AUTHOR
Peter Miller E-Mail: millerp@canbauug.org.au
N* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual SRecord 45

GPL(GNU) FreeSoftware Bundation GPL(GNU)

GNU

GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/> Everyone is permitteq tandop
distribute verbatim copies of this license document, but changing it is not allowed.

Preamble
The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed svagkyour freedom to share

and change theavks. Bycontrast, the GNU General Public License is intended to guarantee your freedom
to share and change all versions of a program -- te@mek it remains free software for all its useyse,

the Free Software Foundation, use the GNU General Public License for most of our software; it applies also
to ary other work released this way by its authoveu can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to maksure that you hae the freedom to distribute copies of free software (and charge for them

if you wish), that you receé ource code or can get it if you want it, that you can change the software or
use pieces of it in mefree programs, and that you kmgou can do these things.

To protect your rights, we need to peat others from denying you these rights or asking you to surrender
the rights. Therefore, you Y@ eertain responsibilities if you distribute copies of the software, or if you
modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the
recipients the same freedoms that you kexki You must mak sure that thg, too, recere a can get the
source code. And you must shithem these terms so thknow their rights.

Developers that use the GNU GPL protect your rights with #gps: (1) assert copyright on the software,
and (2) offer you this License giving yowgiepermission to cop distribute and/or modify it.

For the deelopers’ and authors’ protection, the GPL clearly explains that there is no warranty for this free
software. For both users’ and authors’ sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to authors of previous versions.

Some devices are designed toydaesers access to install or run modified versions of the software inside

them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting
users’ freedom to change the saite. Thesystematic pattern of such abuse occurs in the area of products

for individuals to use, which is precisely where it is most unacceptable. Thereforejende$igned this

version of the GPL to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed
to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States shouldwqiaadiots to

restrict deelopment and use of software on general-purpose computers, but in those that do, we wish to
avad the special danger that patents applied to a free program coutdtrafi&ctively proprietary To

prevent this, the GPL assures that patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and modificatiomfollo
TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-kklaws that apply to other kinds of works, such as semiconductor
masks.

“The Program” refers to grcopyrightable work licensed under this License. Each licensee is addressed as
“you”. “Licensees”and “recipients” may be individuals organizations.

To “modify” a work means to cgpfrom or adapt all or part of the work in a fashion requiring copyright
permission, other than the making of an exacycdime resulting work is called a “modified version” of

GPL 46

GPL(GNU) FreeSoftware Bundation GPL(GNU)

GNU

the earlier work or a work “based on” the earlier work.
A “covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, woulelyoalkdirectly or
secondarily liable for infringement under applicable copyright écept eecuting it on a computer or
modifying a prvate copy. Propagation includes copying, distribution (with or without modification),

making &ailable to the public, and in some countries other activities as well.

To “corvey’ a work means ankind of propagation that enables other parties toenvakeceve wpies.
Mere interaction with a user through a computer network, with no transfer ofasom corveying.

An interactve wser interface displays “Appropriate ga Notices” to the extent that it includes a eement

and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that
there is no warranty for the work (except to the extent that warranties are provided), that licensees may
convey the work under this License, andvhto view a mpy of this License. If the interface presents a list

of user commands or options, such as a menu, a prominent item in the list meets this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modifications to it. “Object
code” means gnnon-source form of a work.

A “Standard Interface” means an interface that either isfamabttandard defined by a recognized
standards bodyr, in the case of interfaces specified for a particular programming language, one that is
widely used among delopers working in that language.

The “System Libraries” of anxecutable work include anything, other than the work as a whole, that (a) is
included in the normal form of packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that Major Component, or to implement a
Standard Interface for which an implementatiorvalable to the public in source code forrA.“ Major
Component”, in this context, means a major essential component (kernelwsigtem, and so on) of the
specific operating system (if any) on which tlxecaitable work runs, or a compiler used to produce the
work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code needed to generate,
install, and (for anxacutable work) run the object code and to modify the work, including scripts to

control those actities. Hawvever, it does not include the work'System Libraries, or general-purpose tools

or generally gailable free programs which are used unmodified in performing those activities but which are
not part of the wrk. For example, Corresponding Source includes interface definition files associated with
source files for the work, and the source code for shared libraries and dynamically linked subprograms that
the work is specifically designed to require, such as by intimate data communication or control flow
between those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate automatically from other
parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.
2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program, and are
irrevocable provided the stated conditions are met. This License expliditimafyour unlimited
permission to run the unmodified Program. The output from runningesezbwork is ceered by this
License only if the output, gén its content, constitutes avawed work. ThisLicense acknowledges your
rights of fair use or other equalent, as provided by copyrightia

You may make, run and propagateved works that you do not cesy, without conditions so long as

your license otherwise remains in forcéou may corvey cvered works to others for the sole purpose of
having them mak modifications exclusiely for you, or provide you with facilities for running those works,
provided that you comply with the terms of this License inveging all material for which you do not
control copyright. Thosehus making or running the wered works for you must do so exchiy on your
behalf, under your direction and control, on terms that prohibit them from makirapies of your

GPL 47

GPL(GNU)

FreeSoftware Bundation GPL(GNU)

copyrighted material outside their relationship with you.

Corveying under ap other circumstances is permitted solely under the conditions stated belo
Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Igal Rights From Anti-Circumvention bha

No covered work shall be deemed part of an effectechnological measure underyaapplicable law
fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such measures.

When you cowvey a overed work, you waie any egd power to forbid circumvention of technological
measures to the extent such circumvention is effecteddogiging rights under this License with respect to
the cavered work, and you disclaim gintention to limit operation or modification of the work as a means
of enforcing, against the woskisers, your or third parties’de rights to forbid circumvention of
technological measures.

4. Corveying Verbatim Copies.

You may corvey vebatim copies of the Progras®®urce code as you regeit, in ary medium, provided
that you conspicuously and appropriately publish on eachawgppropriate copyright notice; keep intact
all notices stating that this License ang aon-permissie terms added in accord with section 7 apply to
the code; keep intact all notices of the absenceyofvanranty; and gie dl recipients a coyp of this

License along with the Program.

You may charge anprice or no price for each cgphat you comey, and you may offer support or warranty
protection for a fee.

5. Corveying Modified Source Versions.

You may corvey a wrk based on the Program, or the modifications to produce it from the Program, in the
form of source code under the terms of section 4, provided that you also meet all of these conditions:

a)
b)

c)

d)

Thework must carry prominent notices stating that you modified it, and giving\anéldate.

Thework must carry prominent notices stating that it is released under this Licenseyaodditions
added under section 7. This requirement modifies the requirement in section 4 to “keep intact all
notices”.

You must license the entire work, as a whole, under this License to anyone who comes into possession
of a copy. This License will therefore applgong with ary applicable section 7 additional terms, to

the whole of the work, and all its partsgaalless of hw they are packaged. This Licensevgs no

permission to license the work inyaother way but it does not imalidate such permission if you y&a
separately recegd it.

If the work has interaste wser interfaces, each must display Appropriatga W otices; howeer, if
the Program has interaai interfaces that do not display AppropriategdeNotices, your work need
not male them do so.

A compilation of a ceered work with other separate and independent works, which are not by their nature
extensions of the a@red work, and which are not combined with it such as to form a larger program, in or
on a volume of a storage or distribution medium, is called an “gdgi'daf the compilation and its

resulting copyright are not used to limit the accessga teghts of the compilatios’ users beyond what

the individual works permit. Inclusion of avamed work in an agggste does not cause this License to

GNU

GPL 48

GPL(GNU) FreeSoftware Bundation GPL(GNU)

GNU

apply to the other parts of the aggpke.
6. Corveying Non-Source Forms.

You may corvey a @vered work in object code form under the terms of sections 4 and 5, provided that you

also comney the machine-readable Corresponding Source under the terms of this License, in one of these

ways:

a) Corvey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily
used for software interchange.

b) Corvey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by a written offealid for at least three years and valid for as long as you
offer spare parts or customer support for that product modelda@gione who possesses the object
code either (1) a cgpof the Corresponding Source for all the software in the product thatésedo
by this License, on a durable physical medium customarily used for software interchange, for a price
no more than your reasonable cost of physically performing thigog of source, or (2) access to
copy the Corresponding Source from a network server at no charge.

c) Corvey individual copies of the object code with a gab the written offer to provide the
Corresponding Source. This alternatis dlowed only occasionally and noncommerciadgd only
if you receved the object code with such an offer accord with subsection 6b.

d) Corvey the object code by offering access from a designated place (gratis or for a charge), and offer
equiaent access to the Corresponding Source in the same way through the same place at no further
chage. You need not require recipients to gape Corresponding Source along with the object code.

If the place to copthe object code is a network sentbe Corresponding Source may be on a

different server (operated by you or a third party) that supportsaknti copying facilities, provided

you maintain clear directions next to the object code saying where to find the Corresponding Source.
Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is
awailable for as long as needed to satisfy these requirements.

e) Corvey the object code using peer-to-peer transmission, provided you inform other peers where the
object code and Corresponding Source of the work are being offered to the general public at no charge
under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source as a
System Libraryneed not be included in ceeying the object code work.

A “User Product” is either (1) a “consumer product”, which meapnsaangible personal property which is
normally used for personal, familygr household purposes, or (2) anything designed or sold for

incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases
shall be resolved iraf/ar of coverage. fer a particular product reced by a mrticular user‘normally

used” refers to a typical or common use of that class of prodgetdless of the status of the particular

user or of the way in which the particular user actually uses, or expects or is expected to use, the product.
A product is a consumer producteedless of whether the product has substantial commercial, industrial or
non-consumer uses, unless such uses represent the only significant mode of use of the product.

“Installation Information” for a User Product meany amethods, procedures, authorizatiayk or other
information required to install ancecute modified versions of awered work in that User Product from a
modified version of its Corresponding Source. The information mustsub ensure that the continued
functioning of the modified object code is in no case@ried or interfered with solely because
modification has been made.

If you cornvey an object code work under this section in, or with, or specifically for use in, a User Product,
and the coweying occurs as part of a transaction in which the right of possession and use of the User
Product is transferred to the recipient in perpetuity or for a fixed tegardtess of hw the transaction is
characterized), the Corresponding Sourcereged under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you pdhad party retains the
ability to install modified object code on the User Product (for example, the work has been installed in

GPL 49

GPL(GNU) FreeSoftware Bundation GPL(GNU)

GNU

ROM).

The requirement to provide Installation Information does not include a requirement to continue to provide
support service, warrantgr updates for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a network may be denied when the
modification itself materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source omyed, and Installation Information provided, in accord with this section must be
in a format that is publicly documented (and with an implementatiaitable to the public in source code
form), and must require no special passwordeyrfar unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making exceptions from
one or more of its conditions. Additional permissions that are applicable to the entire Program shall be
treated as though thevere included in this License, to the extent thay tire valid under applicableva

If additional permissions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remainsegaed by this License withoutgerd to the additional
permissions.

When you cowvey a opy of a mvered work, you may at your option remeany aditional permissions

from that cop, or from ary part of it. (Additional permissions may be written to require their own vemo
in certain cases when you modify therk.) You may place additional permissions on material, added by
you to a ceered work, for which you ha a can give gpropriate copyright permission.

Notwithstanding ay other provision of this License, for material you add to\ee@d work, you may (if
authorized by the copyright holders of that material) supplement the terms of this License with terms:

a) Disclaimingwarranty or limiting liability differently from the terms of sections 15 and 16 of this
License; or

b) Requiringpreservation of specified reasonablgdeotices or author attributions in that material or in
the Appropriate Lgd Notices displayed by works containing it; or

c) Prohibitingmisrepresentation of the origin of that material, or requiring that modified versions of such
material be marked in reasonable ways as different from the original version; or

d) Limiting the use for publicity purposes of names of licensors or authors of the material; or

e) Decliningto grant rights under trademarkddor use of some trade names, trademarks, or service
marks; or

f) Requiringindemnification of licensors and authors of that material by anyone wkeysahe
material (or modified versions of it) with contractual assumptions of liability to the recipient, for any
liability that these contractual assumptions directly impose on those licensors and authors.

All other non-permissie alditional terms are considered “further restrictions” within the meaning of
section 10. If the Program as you reediit, or ary part of it, contains a notice stating that it ivgmed

by this License along with a term that is a further restriction, you mayeetmat term. If a license
document contains a further restriction but permits relicensing eegag under this License, you may
add to a ceered work material geerned by the terms of that license document, provided that the further
restriction does not sume such relicensing or caeying.

If you add terms to a @ered work in accord with this section, you must place, in theaiesource files,
a datement of the additional terms that apply to those files, or a notice indicating where to find the
applicable terms.

Additional terms, permisge a non-permissie, may be stated in the form of a separately written license,

GPL 50

GPL(GNU) FreeSoftware Bundation GPL(GNU)

GNU

or stated as exceptions; the edeequirements apply either way.
8. Termination.

You may not propagate or modify avawed work except as expressly provided under this License. Any
attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this
License (including anpatent licenses granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright holder is
reinstated (a) provisionallynless and until the copyright holder explicitly and finally terminates your
license, and (b) permanentif/the copyright holder fails to notify you of the violation by some reasonable
means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder
notifies you of the violation by some reasonable means, this is the first timeymtebeized notice of

violation of this License (for arwork) from that copyright holdeand you cure the violation prior to 30

days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties/e/reréed
copies or rights from you under this License. If your righteeH&en terminated and not permanently
reinstated, you do not qualify to reeeirew licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to veagirun a cop of the Program. Ancillary
propagation of a a@red work occurring solely as a consequence of using peer-to-peer transmission to
receive a opy likewise does not require acceptance. Hawmenothing other than this License grants you
permission to propagate or modifyyatovered work. Theseactions infringe copyright if you do not accept
this License. Therefore, by modifying or propagating e work, you indicate your acceptance of this
License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you corey a overed work, the recipient automatically res a icense from the original
licensors, to run, modify and propagate that work, subject to this Lic&bseare not responsible for
enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of gagzation, or substantially all assets of
one, or subdividing an ganization, or merging genizations. Ifpropagation of a aered work results

from an entity transaction, each party to that transaction whoes@opy of the work also recees

whatever licenses to the work the padyredecessor in interest had or couldeginder the previous
paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose anfurther restrictions on thexercise of the rights granted offimed under this

License. Br example, you may not impose a license fee, rqyaltgther charge forxercise of rights

granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a
lawsuit) alleging that anpatent claim is infringed by making, using, selling, offering for sale, or importing
the Program or gnportion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program or a work on
which the Program is based. The work thus licensed is called the contsliatmtributor version”.

A contributors “essential patent claims” are all patent claims owned or controlled by the contributor,
whether already acquired or hereafter acquired, that would be infringed by some, pemmiged by this
License, of making, using, or selling its contributor version, but do not include claims that would be
infringed only as a consequence of further modification of the contribetsion. Br purposes of this
definition, “control” includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.

Each contributor grants you a non-exchasivorldwide, royalty-free patent license under the contributor’s

GPL 51

GPL(GNU) FreeSoftware Bundation GPL(GNU)

essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate
the contents of its contributor version.

In the following three paragraphs, a “patent license” yseapress agreement or commitment, hegre
denominated, not to enforce a patent (such as an express permission to practice a pa&saindnco to
sue for patent infringement)o “grant” such a patent license to a party means teraath an agreement
or commitment not to enforce a patent against the party.

If you convey a overed work, knowingly relying on a patent license, and the Corresponding Source of the
work is not aailable for anyone to cop free of charge and under the terms of this License, through a

publicly available network server or other readily accessible means, then you must either (1) cause the
Corresponding Source to be s@itable, or (2) arrange to depé yourself of the benefit of the patent

license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License,
to extend the patent license to downstream recipients. “Knowingly relying” meansweoehal

knowledge that, but for the patent license, yourveging the coered work in a countryor your recipient’s

use of the ceered work in a countrywould infringe one or more identifiable patents in that country that

you hae reason to belie ae valid.

If, pursuant to or in connection with a single transaction or arrangement, yay,corpropagate by
procuring comeyance of, a ceered work, and grant a patent license to some of the parties receiving the
covered work authorizing them to use, propagate, modify oveypa gecific copy of the caovered work,

then the patent license you grant is automatically extended to all recipients ofeifes aoork and works
based on it.

A patent license is “discriminatory” if it does not include within the scope of terage, prohibits the
execise of, or is conditioned on the noxercise of one or more of the rights that are specifically granted
under this LicenseYou may not comey a ®vered work if you are a party to an arrangement with a third
party that is in the business of distributing software, under which yoa pagknent to the third party

based on the extent of your activity of eeying the work, and under which the third party grants, yoahn
the parties who would reeei the cavered work from you, a discriminatory patent license (a) in connection
with copies of the agered work comeyed by you (or copies made from those copies), or (b) primarily for
and in connection with specific products or compilations that contain eeecowork, unless you entered
into that arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limitiggraplied license or other defenses to
infringement that may otherwise besgable to you under applicable patentla

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court grageement or otherwise) that contradict the
conditions of this License, thi@lo not excuse you from the conditions of this License. If you cannot

convey a overed work so as to satisfy simultaneously your obligations under this Licenseyaottiem

pertinent obligations, then as a consequence you may naciat dl. For example, if you agree to

terms that obligate you to collect a royalty for furthenaymg from those to whom you ceey the

Program, the only way you could satisfy both those terms and this License would be to refrain entirely from
conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding ay other provision of this License, youvreapermission to link or combine grcovered
work with a work licensed under version 3 of the GNU Affero General Public License into a single
combined work, and to cuay te resulting wrk. Theterms of this License will continue to apply to the
part which is the agered work, but the special requirements of the GNU Affero General Public License,

GNU GPL 52

GPL(GNU) FreeSoftware Bundation GPL(GNU)

section 13, concerning interaction through a network will apply to the combination as such.
14. Revised Versions of this License.

The Free Software Foundation may publish revised andwor@esions of the GNU General Public
License from time to time. Suchweversions will be similar in spirit to the present version, but may differ
in detail to address meproblems or concerns.

Each version is gén a dstinguishing version numbetf the Program specifies that a certain numbered
version of the GNU General Public License “oyaater version” applies to it, you ¥&te option of
following the terms and conditions either of that numbered version oy d&tan version published by the
Free Software dundation. Ifthe Program does not specify a version number of the GNU General Public
License, you may chooseaversion &er published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General Public License
can be used, that prosypublic statement of acceptance of a version permanently authorizes you to choose
that version for the Program.

Later license versions mayvgiyou additional or different permissions. Hoxee no additional obligations
are imposed on grauthor or copyright holder as a result of your choosing toviolidater version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM,0 THE EXTENT PERMITTED BY

APPLICABLE LAW. EXCEPT WHEN OTHERWISE SATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES RBVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NDLIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK AS T THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULDTHE PROGRAM P®VE DEFECTIVE, YOU ASSUME THE COST OF ALL
NECESSAR SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE D YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NO@ LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INMCCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM @ OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided abaannot be gien local legd effect
according to their terms, reviewing courts shall apply localtheat most closely approximates an absolute
waiver of al civil liability in connection with the Program, unless a warranty or assumption of liability
accompanies a cgmf the Program in return for a fee.

END OF TERMS AND CONDITIONS

GNU GPL 53

GPL(GNU) FreeSoftware Bundation GPL(GNU)

GNU

How to Apply These Terms to Your MePrograms

If you develop a nev program, and you want it to be of the greatest possible use to the public, the best way
to achiee tis is to mak it free software whichveryone can redistribute and change under these terms.

To do 90, attach the following notices to the program. It is safest to attach them to the start of each source
file to most effectiely state the exclusion of warranty; and each file showe ladeast the “copyright”
line and a pointer to where the full notice is found.

one line to give the pgram’s name and a brief idea of what it does.
Copyright (C)year name of author

This program is free software: you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation, either version 3 of the License,
or (at your option) anlater version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. Sethe GNU General Public License for more details.

You should hae receved a mpy of the GNU General Public License along with this program. If not,
see <http://www.gnu.org/licenses/>.

Also add information on e to contact you by electronic and paper mail.

If the program does terminal interaction, radkoutput a short notice lithis when it starts in an
interactve nmode:

<program> Copright (C) <year> <name of author>
This program comes with ABSOLUTEINO WARRANTY; for details type “sh@ w”. Thisis free
software, and you are welcome to redistribute it under certain conditions; typec’sfar details.

The hypothetical commands “skav” and “shav ¢” should shav the appropriate parts of the General
Public License. Of course, your programdmmands might be different; for a GUI interface, you would
use an “about box”.

You should also get your employer (if you work as a programmer) or school;, ifoesign a “copyright
disclaimer” for the program, if necessaior more information on this, andwdo goply and follav the
GNU GPL, see <http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program into proprietary programs.
If your program is a subroutine libragou may consider it more useful to permit linking proprietary
applications with the librarylf this is what you want to do, use the GNU Lesser General Public License
instead of this License. But first, please read <http://www.gnu.org/philosophy/why-not-Igpl.htmlI>.

GPL 54

srec_aomf(5) srec_aomf(5)

NAME
srec_aomf - Intel Absolute Object Module Format

DESCRIPTION
The Absolute Object Module Format (AOMF) is a subset of the 8051. OME structure of an absolute
object file (the order of the records in it) is similar to that of a relocatable oibgecThereare three main
differences: théirst is that an absolute object file contains one module tr@dysecond is that not all the
records can appear in the absolute file and the third is that the records can contain only absolute
information.

Generic Record Format
Each record starts with a record type which indicates the type of the record, and record length which
contain the number of bytes in the record exehusi the first two fields. The record ends with a checksum
byte which contains the 2s complement of the sum (modulo 256) of all other bytes in the record. Therefore
the sum (modulo 256) of all bytes in the record is zero.

The record length includes the payload and checksum fields, but excludes the type and length fields.
All 16-bit fields are little-endian.

REC Record Payload CHK
TYP Length SUM
8 bits 16 bits 8 bits

Here are some of the relmt record types:

0x01 Scop®efinition Record
0x02 ModuleStart Record

0x04 ModuleEnd Record

0x06 ContenRecord

OxOE Sgment Definition Record
0x12 Delug Items Record

0x16 PublicDefinition Record
0x18 ExternaDefinition Record

Names are not stored a C strings. Names are stored as a length byte followed by the contents.

Structure
An AOMF file consists of a module header record (0x02), followed by one or more content (0x06), scope
(Ox01) or debug (0x12) records, and ends in a module end record (0x04).

The records with the following types are extraneousy(theey appear in the file but are ignored): OxOE,
0x16 and 0x18 (definition records). All records which are not part of the AOMF and are not extraneous are
considered erroneous.

Module Header Record

REC Record Module Name TRN Zero CHK
TYP Length ID 8 hits SUM
0x02 16 bits 8 hits 8 hits

Each module must starts with a module header record. It is used to identify the module for the RL51 and
other future processors of 8051 objeletst Inaddition to the Module Name the record contains:

TRN ID The byte identifies the program which has generated this module:

OxFD ASM51
OXFE PL/M-51
OxFF RL51.

Module End Record

Reference Manual SRecord 55

srec_aomf(5) srec_aomf(5)

REC Record Module Name zZero REG Zero CHK
TYP Length 16 bits MSK 8 hits SUM
0x04 16 bits 8 hits 8 hits

The record ends the module sequence and contains the following information: characteristics

MODULE NAME

The name of the module isvgh here for a consistegacheck. Itmust match the namevgn in
the Module Header Record.

REGISTER MASK (REG MSK)
The field contains a bit for each of the four register banks. Each bit, when set specifies that the
corresponding bank is used by the module:

Bit O (the least significant bit)
bank #0.

Bit 1 bank #1.

Bit 2 bank #2.

Bit 3 bank #3.
Content Record

REC Record SEG Offset DATA CHK
TYP Length ID 16 bits SUM
0x06 16 bits 8 hits 8 hits

This record provides one or more bytes of contiguous data, from which a portion of a memory image may
be constructed.

SEG ID This field must be zero.

OFFSET
Gives the absolute address of the first byte of data in the record, within the CODE address space.

DATA A sequence of data bytes to be loaded from OFFSET to OFFSET+RECORDLENGTH-5.

Size Multiplier

In general, rev binary data will expand in sized by approximately 1.02 times when represented with this
format.

SOURCE
http://www.intel.com/design/mcs96/swsup/omfo6_ pi.pdf
ftp://download.intel.com/design/mcs51/SWSUP/omf&é.&ip archie)
http://www.elsist.net/WebSite/ftp/various/OMF51EPS. pdf

COPYRIGHT
srec_catversion 1.38
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Peter Miller
The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thestec_cat

-VERSion Licenseommand. Thiss free software and you are welcome to redistribute it under certain
conditions; for details use thsréc_cat -VERSIon Licerissommand.

AUTHOR
Peter Miller E-Mail: millerp@canbauug.org.au
N* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual SRecord 56

srec_ascii_hd5) srec_ascii_hgb)

NAME
srec_ascii_he— Ascii-Hex file format

DESCRIPTION
This format is also known as thecii-Space-Herr Ascii-Hex-Spacéormat. Ifyou knav who invented

this format, please let me kmo If you have a letter or more complete descriptiorg like to know that,
too.

The file starts with a start-of-text (STX or Control-B) character (0x02). Everything before the STX is
ignored.

Each data byte is represented as 2 hexadecimal characters, followd kgcaitide character". The
default xecution character is a space, although yramograms which write this format omit the space
character immediately preceeding end-of-line.

The address for data bytes is set by using a sequefé@mphn, characters, whenennnis the

4-character ascii representation of the address. The comma is required. There is no need for an address
record unless there arams. Implicitly the file starts a address 0 if no address is set before the first data
byte.

The file ends with an end-of-text (ETX or Control-C) character (0x03). Everything following the ETX is
ignored.

It is also possible to specify a running 16-bit checksum using a sequeBfeerofn, characters, although
this usually appeaisfter the ETX character and is thus often ignored.

Variant Forms
In addition to a space charagtine execution character can also be percent (%) called "ascii-hex-percent"
format, apostrophe (') or comma (,) called "ascii-hex-comma" format. The file must use the same
execution character throughout.

If the execution character is a comma, the address and checksum commands are terminated by a dot (.)
rather than a comma (,).

Size Multiplier
In general, binary data will expand in sized by approximately 3.0 times when represented with this format.

EXAMPLE

Here is an example asciibhéle. It contains the data “Hello, Worldio be loaded at address 0x1000.
"B $A1000,
48 65 6C 6C 6F 2C 20 57 6F 72 6C 64 0A"C

COPYRIGHT
srec_catversion 1.38
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Peter Miller
The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thestec_cat

-VERSion Licenseommand. Thiss free software and you are welcome to redistribute it under certain
conditions; for details use thsréc_cat -VERSiIon Licerissammand.

AUTHOR
Peter Miller E-Mail: millerp@canbauug.org.au
N* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual SRecord 57

srec_atmel_generic(5) srec_atmel_generic(5)

NAME
srec_atmel_generic — Atmel Generic file format

DESCRIPTION
This format is the output of the Atmel AVR assembliEhe file contains tw columns of hexadecimal

coded alues. Thdirst column is the 24-bit word address, the second column is the 16-bit word data. The
columns are separated by a colon (":") character.

By default, SRecord treats this is little-endian data (the least significaninst)te If you want big endian
order use the —atmel-generic-be argument instead.

Size Multiplier
In general, binary data will expand in sized by approximately 6.0 times when represented with this format

(6.5 times in Windows).

EXAMPLE
Here is an example Atmel Generilef It contains the data “Hello, Worldto be loaded at bytes address

0x0100 (but remembgthe file contents are word addressed).
000080:4865
000081:6C6C
000082:6F2C
000083:2057
000084:6F72
000085:6C64

COPYRIGHT
srec_catversion 1.38
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Peter Miller

The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thestec_cat
-VERSion Licenseommand. Thiss free software and you are welcome to redistribute it under certain
conditions; for details use thsréc_cat -VERSIon Licerissammand.

AUTHOR
Peter Miller E-Mail: millerp@canbauug.org.au
N* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual SRecord 58

srec_binary(5) srec_binary(5)

NAME
srec_binary - binary file format

DESCRIPTION
It is possible to read and write binary files usangc_cafl).

File Holes
Afile hole is a portion of a regular file that contains null characters and is not storgddatablock on
disk. Holesare a long-standing feature of Unibe§. For instance, the following Unix command creates a
file in which the first bytes are a hole:
$ echo -n "X" | dd of=/tmp/hole bs=1024 seek=6
Now /tmp/hole has 6,145 characters (6,144 null characters plus an X character), yet the file occupies
just one data block on disk.

File holes were introduced tea@d wasting disk space. There used extenadly by database applications
and, more generallpy dl applications that perform hashing on files.

See http://www.oreilly.com/catalog/linuxkernel2/chapter/ch17.pdf for more information.

Reading
The size of binary files is taken from the size of the file on the file system. If the file has "holes" these will

read as blocks of zero data, as there is rgaeievay to detect Unix file holes. In general, you probably
want to use the-unfill filter to find and remee large swathes of zero bytes.

Writing
In producing a binary filesrec_cafl) honours the address information and places the data into the binary
file at the addresses specified in the file. Thisusually results on "holes" in thieef. Sometimes
alarmingly large file sizes are reported as a result.

If you are on a brain-dead operating system without file "holes" then there are going to be real data blocks
containing real zero bytes, and consuming real amounts of disk space. Upgrade - | suggest Linux.

To make a fle of the size you expect, use
srec_info foo.s19
to find the lowest address, then use
srec_cat foo.s19 --intel -offsat -o foo.bin -binary
wheren is the lowest address present infin@s19 file, as reported bgrec_infql). Thenegative offset
serves to mee the data down to lva an origin of zero.

COPYRIGHT
srec_binaryversion 1.38
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Peter Miller

The srec_binaryprogram comes with ABSOLUTELNO WARRANTY; for details use thestec_binary
-VERSion Licenseommand. Thiss free software and you are welcome to redistribute it under certain
conditions; for details use thsréc_binary -VERSiIon Licerissommand.

AUTHOR
Peter Miller E-Mail: millerp@canbauug.org.au
N* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual SRecord 59

srec_brecord(5) srec_brecord(5)

NAME
srec_brecord — Freescale MC68EZ328 Dragonball bootstrap record format
DESCRIPTION
This data format is understood by Freescale MC68EZ328 Dragonball series processors on their internal
UART.
Lines

Each line contains hexadecimal data, each byte represented bexadecimal nybbles in upper case.
Characters not in this set, but larger than 0x30 (e.g. lower case) will be ignored, less than 0x30 (e.g. CR or
LF) are considered record terminators. Comments are problematitirgchis at home.

Fields
Each line contains a 4-byte address (big endian), a 1-byte length-and-mode, and then data bytes as dictated
by the length. There iso checksum. Azero length record is a start address record, non-zero length
records are data.

1[2]3]4]5] 6] 7] 8 9] @ .. |n
Address Length| Data

The length-and-mode byte is formatted as follows:

7[6] 5] 4] 3] 2] 1] 0

Mode | R Length

Mode These bits are ignored by SRecord in input (00 = bytes, 01 = half words, 10 is reserved, 11 = long
words). Thesdits are alays zero on output by SRecord.

R This bit indicates a data read rather than a data write; SRecord does not accept input files with
this bit set, and will not set it on output.

Length The length of the records data bytes. It does not include the address or length bytes. The
maximum payload of a record is 31 bytes of data.

Size Multiplier
In general, binary data will expand in sized by at least 2.35 times when represented with this format.

EXAMPLE
Here is an example b-record formite f It contains the data “Hello, Worldto be loaded at address 0.
000000000D48656C6C6F2C20576F726C640A

SEE ALSO
http://www.freescale.com/files/32bit/doc/ref_manual/MC68VZ328UM.pdf

COPYRIGHT
srec_catversion 1.38
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Peter Miller

The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thesfec_cat
-VERSion Licenseommand. Thiss free software and you are welcome to redistribute it under certain
conditions; for details use thsréc_cat -VERSion Licerissommand.

AUTHOR
Peter Miller E-Mail: millerp@cantauug.org.au
N* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual SRecord 60

srec_cosmac(5) srec_cosmac(b)

NAME
srec_cosmac — RCA Cosmac Elf file format

DESCRIPTION
This file takes the form of one or more RCA Cosmac EIf monitor commands, also known as the IDIOT/4
monitor. Only the change memory commanij is dlowed.

The general form of théM command takes the form

IMaaaa dd...dd
The!M command writes data byte bytes (represented by charactedgaingo successe nemory
locations, started at addresmaa Spaces between data bytes are ignored.

Using the comma, () line continuation character resumes from the next address in sequence.
IMaaaa dd...dd, dd...dd

Using the semicolon () line continuation character takes an address on the next line
IMaaaa dd... dd; aaaa dd... dd

Itis also possible to ke the semicolon immediately after the command.
IM; aaaa dd..dd

All of these forms may be used in combination.

Size Multiplier
In general, binary data will expand in size by approximately 2.0 times when represented with this format.
EXAMPLE
Here is an example Cosmalef It contains the data “Hello, Worldo be loaded at address 0x1000.
IM1000 48656C6C6F2C20576F726C640A
COPYRIGHT
srec_catversion 1.38
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Peter Miller

The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thestec_cat
-VERSion Licenseommand. Thiss free software and you are welcome to redistribute it under certain
conditions; for details use thsréc_cat -VERSiIon Licerissammand.

AUTHOR
Peter Miller E-Mail: millerp@canbauug.org.au
N* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual SRecord 61

srec_dec_binary(5) srec_dec_binary(5)

NAME
srec_dec_binary — DEC Binary (XXDP) file format

DESCRIPTION
The DEC Binary (XXDP) format was used on the PDP 11 series machines. This is a binary format, and is
not readable or editable with a text editdhe file consists of records of the form

| type | length| addres$..datal.. checkgum
The field are defined as follows:

type Two byte little-endian alue. Mustalways be 1.

length Wwo byte little-endian alue. Thiss the number of bytes in the data, plus six.
address Wo hyte little-endian wlue. Thids the load address of the data.

data Thedata is simple na bytes. Therare (length-6) of them.

checksum
The checcksum is a single byte. It is thgatiee o the simple summ of all the header and data
bytes.

If the record length is exactly 6€. no data), this is the start address record, indicating the transfer address.

In addition there may be NUL padding characters between records. It is common for records to be padded
so that thg start on @en byte boundaries. In the days of paper tape, it was common for the filego ha
mary leading NULSs, to generate blank leader on the tape.

Size Multiplier
In general, rar binary data will expand in sized by approximately 1.03 times when represented with this
format.

COPYRIGHT
srec_catversion 1.38
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Peter Miller

The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thesfec_cat
-VERSion Licenseommand. Thiss free software and you are welcome to redistribute it under certain
conditions; for details use thsréc_cat -VERSion Licerissommand.

AUTHOR
Peter Miller E-Mail: millerp@cantauug.org.au
N* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual SRecord 62

srec_emon52(5) srec_emon52(5)

NAME
srec_emon52 — Elektor Monitor (EMONS52) file format

DESCRIPTION
This format is used by the monitor EMONS52ydeed by the European electronics magazine Elektor

(Elektuur in Holland). Elektor wouldhbe Hektor if they didn’t try to reirvent the wheel. I8 a nystery
why they didn’t use an existing format for the project. Only the Elektor Assembler will produce this file
format, reducing the choice of\ddopment tools dramatically.

Records
All data lines are called records, and each record contains the following four fields:

]cc \ aaaa\ :\ dd.dd\ sss#
The field are defined as follows:

cc Thebyte count.A two dgit hex value (1 byte), counting the actual data bytes in the record. The
byte count is seperated from the next field by a space.

aaaa Thaddressiéld. A four hex digit (2 byte) number representing the first address to be used by

this record.
The address field and the data field are seperated by a colon.

dd Theactual data of this record. There can be 1 to 255 data bytes per record (see cc) All bytes in
the record are seperated from each other (and the checksum) by a space.

SSSS Dat&€hecksum, adding all bytes of the dataline togetbeming a 16 bit checksum. @es

only all the data bytes of this record.
Please note that there is no End Of File record defined.

Byte Count
The byte count cc counts the actual data bytes in the current record. Usually recerifsdaga bytes. |
don't know what the maximum number of data bytes is. It depends on the size of the data buffer in the

EMONS2.

Address Field
This is the address where the first data byte of the record should be stored. After storing that data byte, the

address is incremented by 1 to point to the address for the next data byte of the record. And so on, until all
data bytes are stored.

The address is represented by a 4 digitrienber (2 bytes), with the MSD first.

Data Field
The payload of the record is formed by the Datllf Thenumber of data bytes expected igegiby the

Byte Count field.

Checksum
The checksum is a 16 bit result from adding all data bytes of the record together.

Size Multiplier
In general, binary data will expand in sized by approximately 3.8 times when represented with this format.

EXAMPLE
Here is an example of an EMONS2 file:
10 0000:57 6F 77 21 20 44 69 64 20 79 6F 75 20 72 65 61 0564
10 0010:6C 6C 79 20 67 6F 20 74 68 72 6F 75 67 68 20 61 05E9
10 0020:6C 6C 20 74 68 69 73 20 74 72 6F 75 62 6C 65 20 05ED
10 0030:74 6F 20 72 65 61 64 20 74 68 69 73 20 73 74 72 05F0
04 0040:69 6E 67 21 015F

SEE ALSO
http://sbprojects.fol.nl/knowledge/fileformats/emon52.htm

Reference Manual SRecord 63

srec_emon52(5) srec_emon52(5)

AUTHOR
This man page was taken from thewabb®\eb page. It was written by San Bergmans
<sanmail@bigfoot.com>

Reference Manual SRecord 64

srec_Airchild(5) srec_dirchild(5)

NAME
srec_fairchild — Fairchild Fairbug file format

DESCRIPTION
The Fairchild Fairbug format has 8-byte recorddile begins with an address record and ends with an
end-of-file record.
There are three record types in this file format.

Address records are of the form

indicating the address for the following data records.

Data records are of the form

| X | i | c |
Each data record begins with an X andlagk contains 8 data bytes. Tfieharacters are hexadecimal byte
values (8 bytes). Each data byte is represented by 2 hexadecimal charactershdtaeter is a xedigit
being the the nibble-sum of the data bytasl-digit hexadecimal checksum follows the data in each data
record. Thechecksum represents, in hexadecimal notation, the sum of the binarglesggiof the 16
digits in the record; the half carry from the fourth bit is ignored. The programmer igngreisaaacter
(except for address characters and the asterisk charglciehn terminates the data transfer) between a
checksum and the start character of the next data record. This space can be used for comments.

The end-of-file record has the form

*
The last record consists of an asterisk pnhjich iates the end of file.

Size Multiplier
In general, binary data will expand in sized by approximately 2.4 times when represented with this format.

EXAMPLE
Here is an example Fairchild Fairbulg f It contains the data “Hello, Worldlo be loaded at address
0x1000. Noticéhow the last record is padded with OXFF bytes.
S1000
X48656C6C6F2C2057C
X6F726C64210AFFFF3

*

COPYRIGHT
srec_catversion 1.38
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Peter Miller

The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thestec_cat
-VERSion Licenseommand. Thiss free software and you are welcome to redistribute it under certain
conditions; for details use thsréc_cat -VERSIon Licerissammand.

AUTHOR
Peter Miller E-Mail: millerp@canbauug.org.au
N* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual SRecord 65

srec_hstload(1) srecabtload(1)

NAME

srec_fastload — LS| Logic Fast Load file format

DESCRIPTION

The FastLoad Format uses a compressed ASCII format that permits files to be downloaded in less than half
the time taken for Motorola S-records.

The base-64 encoding used is "A-Za-z0-9,.". The data is encoded in groups of 4 characters (3 bytes, 24
bits).

The character '/ is used to introduce a special function. Special functions are:

Annnnnn
Defines an address.

Bnn Define a single byte.
Cnnnn Compare the checksums. The checksum is a simplevyeo#tibit sum, of the data bytes only.

EAA Define the prograns entry point. The address will be the current address as defined By the
command. (ThéAnumber in this command is ignored.) This must be the last entry in the file.

KAA Clearthe checksum. (ThAAnumber in this command is ignored.)

SnameX
Define a symbol. The address of the symbol will be the current address as defined by the
command.

Znn Clear a number of bytes.

Size Multiplier

In general, binary data will expand in sized by approximately 1.4 times when represented with this format.

EXAMPLE

Here is an example LS| Logic Fast Load fornilat flt contains the data “Hello, Worldto be loaded at
address 0.

IAAAA

SGVshG8sIFdvemxk/BAK/CARS/AAAA/EAA

COPYRIGHT

srec_catversion 1.38
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Peter Miller

The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thestec_cat
-VERSion Licenseommand. Thiss free software and you are welcome to redistribute it under certain
conditions; for details use thsréc_cat -VERSiIon Licerissammand.

AUTHOR
Peter Miller E-Mail: millerp@canbauug.org.au
N* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual SRecord 66

srec_formatted_binary(5) srec_formatted_binary(5)

NAME
srec_formatted_binary — Formatted Binary file format

DESCRIPTION
This is the PDP-11 paper tape format, described in the DEC-11-GGPC-D PDP-11 "Paper Tape Software
Programming Handbook" 1972.

The file startes with a charcter sequence which appears aswamwdrea punched on 8-hole paper tape.
0x08, 0x1C, 0x2A, 0x49, 0x08, 0x00

Then follows a byte count, encoded big-endian in theddits of the next 4 bytes. The high bits should
be zero.

Then follows a OxFF byte.
The data follows, as mgitytes as specified in the header.

The trailer consists of the following bytes:
0x00, 0x00,
and then a 2-byte checksum (big-endian).

The alternate header sequence
0x08, 0x1C, 0x3E, 0x6B, 0x08, 0x00
is followed by an 8-nibble big-endian byte count.

Size Multiplier
In general, binary data will expand in sized very little when represented with this format.

EXAMPLE
Here is a hedump of a formatted binary file containing the data "Hello, World!".
0000: 08 1C 2A 4908000000 ..*I....
0008: 00 OE FF 48 65 6C 6C 6F ...Hello
0010: 2C 2057 6F 72 6C 64 21 , World!
0018: 0A 000004 73 ...S

COPYRIGHT
srec_catversion 1.38
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Peter Miller

The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thestec_cat
-VERSion Licenseommand. Thiss free software and you are welcome to redistribute it under certain
conditions; for details use thsréc_cat -VERSiIon Licerissammand.

AUTHOR
Peter Miller E-Mail: millerp@canbauug.org.au
N* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual SRecord 67

srec_fpc(5) srec_fpc(5)

NAME
srec_fpc — four packed code file format

SYNOPSIS
All ASCII based file formats hee ane disadvantage in common: yteél need more than double the amount
of characters as opposed to the number of bytes to be sent. Address fields and checksums/enill add e
more characters. So the shorter the records, the more charaetets e €nt to get the file across.

The FPC format helps to reduce the number of characters needed to send a file in ASCII format, although it
still needs more characters than the actual bytes it sends. FPC stands for "Four Packed Code". The
reduction is accomplished by squeezing 4 real bytes into 5 ASCII characters. wrefa@&®ClIl character

will be a digit in the base 85 number system. There teanugh letters, digits and punctuation marks

awailable to get 85 different characters, but if we use both upper case and lower case letters we will manage.
This implies that the FP{& case sensitivas @posed to all other ASCII based file formats.

Base 85
The numbering system is in base 85, and is somewhat hard to understand for us humans who are usually
only familiar with base 10 numbers. Some of us understand base 2 and base 16 as well, but base 85 is for
most people somethingwe Luckily we dont haveto do ary math with this number systenWe just
convert a 32 bit number into a 5 digit number in base 882 hit number has a range of 4,294,967,296,
while a 5 digit number in base 85 has a range of 4,437,053,125, which is enough to do the trick. One
drawback is that we wbys hare o send multiples of 4 bytesyen if we actually want to send 1, 2 or 3
bytes. Unusetlytes are padded with zeroes, and are discarded at the receiving end.

The digits of the base 85 numbering system start at %, which represents the value of 0. The highest value
of a digit in base 85 is 84, and is represented by the character 'z’. If you want to check this with a normal
ASCII table you will notice that we kia ised one character too nyariWhy? Idon't know, but for some

reason we ha kip the *' character in the r@. This means that after the ')’ character follows the '+’
character.

We @an use normal number oansion algorithms to generate the FPC digits, with thisdifference. &
have o check whether the digit is going to be equal or larger than the ASCII value for ™. If this is the
case we hae o increment the digit once to stay clear of the ™. In base 85 MSD digits go firstnli#l
number systems!

The benefit of this all is hopefully cledfor every 4 bytes we only hee o s2nd 5 ASCII characters, as
opposed to 8 characters for all other formats.

Records
Now we take a bok at the the formatting of the FPC recortiée look at the record at bytevid, not at the
actual base 85 encodedde Only after formatting the FPC record at bytedeve corvert 4 bytes at a
time to a 5 digit base 85 numbéf we don’t haveenough bytes in the record to fill the last group of 5
digits we will add bytes with the value of 0 behind the record.

$ | ss | « | fiff | aaaaaaad dddddddd

The field are defined as:

$ Every line starts with the character $, all other characters are digits of base 85.
Ss Thechecksum. Aone byte 2’'s-complement checksum of all bytes of the record.
cc Thebyte-count. Aone byte value, counting all the bytes in the record minus 4.
ffff Format code, a tavbyte value, defining the record type.
aaaaaaaa

The addressdld. A 4 byte number representing the first address of this record.
dddddddd

The actual data of this record.

Reference Manual SRecord 68

srec_fpc(5) srec_fpc(5)

Record Begin
Every record begins with the ASCII charact$t."No spaces or tabs are allowed in a record. All other
characters in the record are formed by groups of 5 digits of base 85.

Checksum field
This field is a one byte 2's-complement checksum of the entire reordeate the checksum nak ;me
byte sum from all of the bytes from all of the fields of the record:

Then tale the 2's-complement of this sum to create the final checksum. The 2's-complement is simply
inverting all bits and then increment by 1 (or using thgeatiee gerator). Checkinthe checksum at the
recevers end is done by adding all bytes together including the checksum itself, discarding all carries, and
the result must be $00. The padding bytes at the end of the line, shquigigiheshould not be included

in checksum. But it doestreally matter if thg are, for their influence will be 0 anyway.

Byte Count
The byte countc counts the number of bytes in the current record minus 4. So only the number of address
bytes and the data bytes are counted and not the first 4 bytes of the record (checksum, byte count and
format flags). The byte count canveaany alue from 0 to 255.

Usually records hae 2 data bytes. It is not recommended to send tooyndata bytes in a record for that
may increase the transmission time in case of errors. At8d sending only a f@ data bytes per record,
because the addresgedhead will be too heavy in comparison to the payload.

Format Flags
This is a 2 byte numbgindicating what format is represented in this record. Onlyddemats are
awailable, so we actually waste 1 byte in each record for treecfdiaving multiples of 4 bytes.

Format code 0 means that the address field in this record is to be treated as the absolute address where the
first data byte of the record should be stored.

Format code 1 means that the address field in this record is missing. Simply the last known address of the
previous record +1 is used to store the first data byte. As if the FPC format feasehough already ;-)

Format code 2 means that the address field in this record is to be treated ageaadeledss. Relate ©
what is not really clearThe relatve aldress will remain in effect until an absolute address isvegtei
again.

Address Field
The first data byte of the record is stored in the address specified by the Addressdfaeldaa After

storing that data byte, the address is incremented by 1 to point to the address for the next data byte of the
record. Andso on, until all data bytes are stored.

The length of the address field isvays 4 bytes, if present of course. So the address range for the FPC
format is alvays 2**32.

If only the address field isggn, without ay data bytes, the address will be set as starting address for
records that hae ro address field.

Addresses between records are non sequential. There may be gaps in the addressing or the address pointer
may een point to lower addresses as before in the sadlme Butevey time the sequence of addressing

must be changed, a format 0 record must be used. Addressing within one singléssaguéntial of

course.

Data Field
This field contains 0 or more data bytes. The actual number of data bytes is indicated by the byte count in
the beginning of the record less the number of address bytes. The first data byte is stored in the location
indicated by the address in the addréslel f Afterthat the address is incremented by 1 and the next data
byte is stored in that melocation. Thiscontinues until all bytes are stored. If there are not enough data
bytes to obtain a multiple of 4 we use 0x00 as padding bytes at the end of the record. These padding bytes
are ignored on the receiving side.

Reference Manual SRecord 69

srec_fpc(5) srec_fpc(5)

End of File
End of file is recognized if the first four bytes of the record all contain 0x00. In base 85 this will be
“ $%%%%%This is the only decent way to terminate the file.

Size Multiplier
In general, binary data will expand in sized by approximately 1.7 times when represented with this format.

Example
Now it's ime for an &le. Inthe first table you can see the byte representation of the file to be
transferred. Thdth row of bytes is not a multiple of 4 bytes. But that does not mdtiekve append $00
bytes at the end until we doveaa nultiple of 4 bytes. These padding bytes are not counted in the byte
count howeer!
D81400000000B000576F77212044696420796F7520726561
431400000000B0106C6C7920676F207468726F7567682061
361400000000B0206C6C20746861742074726F75626C6520
591100000000B030746F207265616420746869733F000000
00000000
Only after comerting the bytes to base 85 we get the records of the FPC type file format presented in the
next table. Note that there isnalys a multiple of 5 characters to represent a multiple of 4 bytes in each

record.
$kLE&@h%%,:,B.\?00EPUX0K3r0O0Jl))
$;UPR'%%,:<HN&FCG:at<GVF(;G9wlw
$7FD1p%%,:LHMy:>GTV%/KI7@GE[KYz
$B[6\;%%,:\KIN?GFWY/gKI1G5:;-_e
$%%%%%
As you can see the length of the lines is clearly shorter than the original ASCII lines.
SEE ALSO
http://sbprojects.fol.nl/knowledge/fileformats/pfc.htm
AUTHOR

This man page was taken from thewabb®\eb page. It was written by San Bergmans
<sanmail@bigfoot.com>

For extra points: Who iwented this format? Where is it used?

Reference Manual SRecord 70

srec_intel16(5) srec_intel16(5)

NAME
srec_intel16 — Intel Hexadecimal 16-bit file format specification

DESCRIPTION
This format is also known as tigHX16format.

This document describes the hexadecimal object file format for 16-bit microprocessors.

This format is very similar to therec_inte{5) format, except that the addresses are word addresses. The
count field is a word count.

The hexadecimal representation of binary is coded in ASCII alphanumeric charkotessample, the

8-bit binary value 0011-1111 is 3F indaelecimal. © code this in ASCII, one 8-bit byte containing the

ASCII code for the character '3’ (0011-0011 or 0x33) and one 8-bit byte containing the) ASCII code for
the character 'F' (0100-0110 or 0x46) are required: each byte value, the high-order hexadecimal digit

is aways the first digit of the pair of hexadecimal digits. This representation (ASCIl hexadecimal) requires
twice as may bytes as the binary representation.

A hexadecimal object file is blocked into records, each of which contains the record type, length, memory
load address and checksum in addition to the data. There are currently six (6) different types of records that
are defined, not all combinations of these records are meaningfulvdrowbe record are:

» Data Record

» End of File Record

» Extended Segment Address Record
» Start Segment Address Record

» Extended Linear Address Record

» Start Linear Address Record

General Record Format

Record Record Load Record Data | Checksu
Mark Length Offset Type

Record Mark.
Each record begins with a Record Mark field containing 0x3A, the ASCII code for the colon
(“:") character.

Record Length
Each record has a Record Length field which specifies the number of 16-bit words of information
or data which follows the Record Type field of the record. This field is one byte, represented as
two hexadecimal characters. The maximum value of the Record Length field is hexadecimal 'FF’
or 255.

Load Offset
Each record has a Load Offset field which specifies the 16-bit starting load offset of the data
words, therefore this field is only used for Data Records (if the words are loaded as bytes, the
address needs to be doubled). In other records where this field is not used, it should be coded as
four ASCII zero characters (“000@r 0x30303030). Thidield one 16-bit word, represented as
four hexadecimal characters.

Record Type
Each record has a Record Type field which specifies the record type of this record. The Record
Type field is used to interpret the remaining information within the record. This field is one byte,
represented as twhexadecimal characters. The encoding for all the current record types are:

0 Data Record
1 End of File Record
5 Sart Address Record

Reference Manual SRecord 71

srec_intel16(5) srec_intel16(5)

Data Eachrecord has a variable length Data field, it consists of zero or more 16-bit words encoded as
set of 4 hexadecimal digits, most significant digitf Theinterpretation of this field depends on
the Record Type field.

Checksum
Each record ends with a Checksum field that contains the ASCII hexadecimal representation of
the twos complement of the 8-bit bytes that result fromesiting each pair of ASCII
hexadecimal digits to one byte of binginom and including the Record Length field to and
including the last byte of the Datielfi. Thereforethe sum of all the ASCII pairs in a record
after cowerting to binaryfrom the Record Length field to and including the Checksum field, is
zero.

Data Record
(8-, 16- or 32-bhit formats)

Record Record Load Record Data | Checksu

Mark Length Offset Type

()
The Data Record provides a set of hexadecimal digits that represent the ASCII code for data bytes that
malke up a prtion of a memory image.

The contents of the individual fields within the record are:

Record Mark
This field contains 0x3A, the hexadecimal encoding of the ASCII colon (“:”) character.

Record Length
The field contains tev ASCII hexadecimal digits that specify the number of 16-bit data words in
the record. The maximum value is 255 decimal.

Load Offset
This field contains four ASCII hexadecimal digits representing the word address at which the first
word of the data is to be placed. (For an exdent bytes address, double it.)

Record Type

This field contains 0x3030, the hexadecimal encoding of the ASCII character “00”, which
specifies the record type to be a Data Record.

Data Thisfield contains sets of four ASCII hexadecimal digits, one set for each 16-bit data word, most
significant digit first.

Checksum
This field contains the check sum on the Record Length, Load Offset, Record Type, and Data
fields.
Start Address Record
Record Record Load Record EIP Checksum
Mark Length (4) | Offset (0) | Type (5) (4 bytes)
(")

The Start Address Record Is used to specify Xieewgion start address for the object file.

The Start Address Record can appear anywhere in a hexadecimalitéhjd€stich a record is not present
in a hexadecimal object file, a loader is free to assign a default start address.

The contents of the individual fields within the record are:

Record mark
This field contains 0x3A, the hexadecimal encoding of the ASCII colon (*:") character.

Record length
The field contains 0x3032, the hexadecimal encoding of the ASCII characters “02”, which is the
length, in bytes, of the EIP register content within this record.

Reference Manual SRecord 72

srec_intel16(5) srec_intel16(5)

Load Offset
This field contains 0x30303030, the hexadecimal encoding of the ASCII characters “0000”,
since this field is not used for this record.

Record Type
This field contains 0x3035, the hexadecimal encoding of the ASCII character “05”, which
specifies the record type to be a Start Address Record.

EIP Thisfield contains eight ASCII hexadecimal digits that specify the address. The field is encoded
big-endian (most significant digit first).

Checksum
This field contains the check sum on the Record length, Load Offset, Record Type, and EIP
fields.

End of File Record
This shall be the last record in the file.

Record Record Load Record Checksum (OxFF
Mark Length (0) | Offset (0) | Type (1)
(")

The End of File Record specifies the end of the hexadecimal object file.

The contents of the individual fields within the record are:

Record mark
This field contains 0x3A, the hexadecimal encoding of the ASCII colon (“:”) character.

Record Length
The field contains 0x3030, the hexadecimal encoding of the ASCII charactets Sotethis
record does not containyabata bytes, the length is zero.

Load Offset
This field contains 0x30303030, the hexadecimal encoding of the ASCII characters “0000”,
since this field is not used for this record.

Record Type
This field contains 0x3031, the hexadecimal encoding of the ASCII character “01”, which
specifies the record type to be an End of File Record.

Checksum
This field contains the check sum an the Record Length, Load Offset, and Record Type fields.
Since all the fields are static, the check sum can also be calculated staticathe value is
0x4646, the hexadecimal encoding of the ASCII characters “FF”.

Size Multiplier
In general, binary data will expand in sized by approximately 2.3 times when represented with this format.
EXAMPLE
Here is an example INHX1@d. It contains the data “Hello, Worldto be loaded at address 0.

:0700000065486C6C2C6F5720726F646CFFOAA8
:00000001FF

COPYRIGHT
srec_catversion 1.38
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Peter Miller

The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thesfec_cat
-VERSion Licenseommand. Thiss free software and you are welcome to redistribute it under certain
conditions; for details use thsréc_cat -VERSion Licerissommand.

Reference Manual SRecord 73

srec_intel16(5) srec_intel16(5)

AUTHOR
Peter Miller E-Mail: millerp@canbauug.org.au
N* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual SRecord 74

srec_intel(5) srec_intel(5)

NAME
srec_intel — Intel Hexadecimal object file format specification

DESCRIPTION
This format is also known as thgtel MCS-86 Objediormat.

This document describes the hexadecimal object file format for the Intel 8-bit, 16-bit, and 32-bit
microprocessors. Theexadecimal format is suitable as input to PROM programmers or hardware
emulators.

Hexadecimal object file format is a way of representing an absolute binary object file in ASCII. Because
the file is in ASCII instead of binarit is possible to store the file is non-binary medium such as paper-

tape, punch cards, etc.; and the file can also be displayedbte@/nals, line printers, etc.. The 8-bit
hexadecimal object file format allows for the placement of code and data within the 16-bit linear address
space of the Intel 8-bit processors. The 16-bit hexadecimal format allows for the 20-bit segmented address
space of the Intel 16-bit processors. And the 32-bit format allows for the 32-bit linear address space of the
Intel 32-bit processors.

The hexadecimal representation of binary is coded in ASCII alphanumeric charkotessample, the

8-bit binary value 0011-1111 is 3F indaelecimal. © code this in ASCII, one 8-bit byte containing the

ASCII code for the character '3’ (0011-0011 or 0x33) and one 8-bit byte containing the) ASCII code for
the character 'F' (0100-0110 or 0x46) are required: each byte value, the high-order hexadecimal digit

is aways the first digit of the pair of hexadecimal digits. This representation (ASCIl hexadecimal) requires
twice as may bytes as the binary representation.

A hexadecimal object file is blocked into records, each of which contains the record type, length, memory
load address and checksum in addition to the data. There are currently six (6) different types of records that
are defined, not all combinations of these records are meaningfulvdrowee record are:

» Data Record (8-, 16-, or 32-bit formats)

» End of File Record (8-, 16-, or 32-bit formats)

» Extended Segment Address Record (16- or 32-bit formats)
» Start Segment Address Record (16- or 32-bit formats)

» Extended Linear Address Record (32-bit format only)

» Start Linear Address Record (32-bit format only)

General Record Format

Record Record Load Record Data | Checksu
Mark Length Offset Type

Record Mark.
Each record begins with a Record Mark field containing 0x3A, the ASCII code for the colon
(“:") character.

Record Length
Each record has a Record Length field which specifies the number of bytes of information or data
which follows the Record Type field of the record. This field is one byte, represented as two
hexadecimal characters. The maximum value of the Record Length field is hexadecimal 'FF’ or
255,

Load Offset
Each record has a Load Offset field which specifies the 16-bit starting load offset of the data
bytes, therefore this field is only used for Data Records. In other records where this field is not
used, it should be coded as four ASCII zero characters (“0000%x30303030). Thidield is
two byte, represented as four hexadecimal characters.

Record Type
Each record has a Record Type field which specifies the record type of this record. The Record
Type field is used to interpret the remaining information within the record. This field is one byte,

Reference Manual SRecord 75

srec_intel(5) srec_intel(5)

represented as twhexadecimal characters. The encoding for all the current record types are:
Data Record

End of File Record

Extended Segment Address Record

Sart Segment Address Record

Extended Linear Address Record

Start Linear Address Record

g A W N P O

Data Eachrecord has a variable length Data field, it consists of zero or more bytes encoded as pairs of
hexadecimal digits. The interpretation of this field depends on the Record Type field.

Checksum
Each record ends with a Checksum field that contains the ASCII hexadecimal representation of
the twos complement of the 8-bit bytes that result fromating each pair of ASCII
hexadecimal digits to one byte of binginom and including the Record Length field to and
including the last byte of the Datielfi. Thereforethe sum of all the ASCII pairs in a record
after cowerting to binaryfrom the Record Length field to and including the Checksum field, is
zero.

Extended Linear Address Record

(32-bit format only)

Record Record Load Record ULBA Checksum

Mark Length (2) | Offset (0) | Type (4) (2 bytes)

()
The 32-bit Extended Linear Address Record is used to specify bits 16-31 of the Linear Base Address
(LBA), where bits 0-15 of the LB are zero. Bits 16-31 of the LBare referred to as the Upper Linear
Base Address (ULR). Theabsolute memory address of a content byte in a subsequent Data Record is)
obtained by adding the I8to an dfset calculated by adding the Load Offset field of the containing Data
Record to the indeof the byte in the Data Record (0, 1, 2n).. Thisoffset addition is done) modulo 4G
(i.e.32-bits from OXFFFFFFFF to 0x00000000) results in wrapping around from the end to the beginning of
the 4G linear address defined by theALBThelinear address at which a particular byte is loaded is
calculated as:

(LBA + DRLO + DRI) MOD 4G

where:

DRLO isthe Load Offset field of a Data Record.

DRI isthe data byte indewithin the Data Record.
When an Extended Linear Address Record defines the value of LBA, it may appear anywhere within a
32-bit hexadecimal object file. This value remains in effect until another Extended Linear Address Record
is encountered. The LBdefaults to zero until an Extended Linear Address Record is encountered. The
contents of the individual fields within the record are:

Record Mark
This field contains 0x3A, the hexadecimal encoding of the ASCII colon (“:”) character.

Record Length
The field contains 0x3032, the hexadecimal encoding of the ASCII characters “02”, which is the
length, in bytes, of the ULBdata information within this record.

Load Offset
This field contains 0x30303030, the hexadecimal encoding of the ASCII characters “0000”,
since this field is not used for this record.

Record Type
This field contains 0x3034, the hexadecimal encoding of the ASCII character “04”, which
specifies the record type to be an Extended Linear Address Record.

Reference Manual SRecord 76

srec_intel(5) srec_intel(5)

ULBA This field contains four ASCII hexadecimal digits that specify the 16-bit Upper Linear Base
Address alue. Thevalue is encoded big-endian (most significant digit first).

Checksum
This field contains the check sum on the Record Length, Load Offset, Record Type, and ULBA
fields.

Extended Segment Address Record
(16- or 32-bit formats)

Record Record Load Record USBA Checksum
Mark Length (2) | Offset (0) | Type (2) (2 bytes)
()
The 16-bit Extended Segment Address Record is used to specify bits 4-19 of the Segment Base Address
(SBA), where bits 0-3 of the $Bare zero. Bits 4-19 of the PBare referred to as the Upper Segment
Base Address (USH. Theabsolute memory address of a content byte in a subsequent Data Record is)
obtained by adding the 80 an dfset calculated by adding the Load Offset field of the containing Data
Record to the indeof the byte in the Data Record (0, 1, 2n).. Thisoffset addition is done modulo 64K
(i.e. 16-bits from OXFFFF to 0x0000 results in wrapping around from the end to the beginning of the 64K
segment defined by the 8B Theaddress at which a particular byte is loaded is calculated as:
SBA + ((DRLO + DRI) MOD 64K)
where:

DRLO isthe LOAD OFFSET field of a Data Record.
DRI isthe data byte indewithin the Data Record.

When an Extended Segment Address Record defines the value of SBA, it may appear anywhere within a
16-bit hexadecimal objecid. Thisvalue remains in effect until another Extended Segment Address
Record is encountered. The SBefaults to zero until an Extended Segment Address Record is
encountered.

The contents of the individual fields within the record are:

Record Mark
This field contains 0x3A, the hexadecimal encoding of the ASCII colon (“:”) character.

Record Length
The field contains 0x3032, the hexadecimal encoding of the ASCII characters '02’, which is the
length, in bytes, of the USBdata information within this record.

Load Offset
This field contains 0x30303030, the hexadecimal encoding of the ASCII characters '0000’, since
this field is not used for this record.

Record Type
This field contains 0x3032, the hexadecimal encoding of the ASCII character “02”, which
specifies the record type to be an Extended Segment Address Record.

USBA This field contains four ASCII hexadecimal digits that specify the 16-bit Upper Segment Base
Address alue. Thefield is encoded big-endian (most significant digit first).

Checksum
This field contains the check sum on the Record length, Load Offset, Record Type, and USBA
fields.

Data Record
(8-, 16- or 32-bit formats)

Record Record Load Record Data | Checksu
Mark Length Offset Type
(H : H)

The Data Record provides a set of hexadecimal digits that represent the ASCII code for data bytes that

Reference Manual SRecord 77

srec_intel(5) srec_intel(5)

malke up a prtion of a memory image. The method for calculating the absolute address (linear in the 8-bit
and 32-bit case and segmented in the 16-bit case) for each byte of data is described in the discussions of the
Extended Linear Address Record and the Extended Segment Address Record.

The contents of the individual fields within the record are:

Record Mark
This field contains 0x3A, the hexadecimal encoding of the ASCII colon (“:") character.

Record Length
The field contains tev ASCII hexadecimal digits that specify the number of data bytes in the
record. Thanaximum value is 255 decimal.

Load Offset
This field contains four ASCII hexadecimal digits representing the offset from thd dd2
Extended Linear Address Record see Extended Segment Address Record) defining the address
which the first byte of the data is to be placed.

Record Type
This field contains 0x3030, the hexadecimal encoding of the ASCII character “00”, which
specifies the record type to be a Data Record.

Data Thisfield contains pairs of ASCII hexadecimal digits, one pair for each data byte.

Checksum
This field contains the check sum on the Record Length, Load Offset, Record Type, and Data
fields.

Start Linear Address Record
(32-bit format only)

Record
Mark

Record
Length (4)

Load
Offset (0)

Record
Type (5)

EIP
(4 bytes)

Checksum

(")
The Start Linear Address Record is used to specifyxtrigon start address for the objeite.f Thevalue

given is the 32-bit linear address for the EIP registdote that this record only specifies the code address
within the 32-bit linear address space of the 80386. If the code is tox&@rtien in the real mode of the

80386, then the Start Segment Address Record should be used instead, since that record specifies both the
CS and IP register contents necessary for real mode.

The Start Linear Address Record can appear anywhere in a 32-bit hexadecimallebjéctifch a record
is not present in a hexadecimal object file, a loader is free to assign a default start address.

The contents of the individual fields within the record are:

Record mark
This field contains 0x3A, the hexadecimal encoding of the ASCII colon (“:”) character.

Record length
The field contains 0x3034, the hexadecimal encoding of the ASCII characters “04”, which is the
length, in bytes, of the EIP register content within this record.

Load Offset
This field contains 0x30303030, the hexadecimal encoding of the ASCII characters “0000”,
since this field is not used for this record.

Record Type
This field contains 0x3035, the hexadecimal encoding of the ASCII character “05”, which
specifies the record type to be a Start Linear Address Record.

EIP Thisfield contains eight ASCII hexadecimal digits that specify the 32-bit EIP register contents.
The field is encoded big-endian (most significant digit first).

Reference Manual SRecord 78

srec_intel(5) srec_intel(5)

Checksum

This field contains the check sum on the Record length, Load Offset, Record Type, and EIP
fields.

Start Segment Address Record

(16- or 32-bit formats)

Record Record Load Record CS (2 bytes)| IP (2 bytes) Checksum
Mark Length (4) | Offset (0) | Type (3)
()
The Start Segment Address Record is used to specifix¢het®n start address for the obje&.f The
value given is the 20-bit segment address for the CS anddRters. Noteahat this record only specifies
the code address within the 20-bit segmented address space of the 8086/80186. The Start Segment Address
Record can appear anywhere in a 16-bit hexadecimal oligectlf such a record is not present in a
hexadecimal object file, a loader is free to assign a default start address.

The contents of the individual fields within the record are:

Record Mark
This field contains 0x3A, the hexadecimal encoding of the ASCII colon (“:”) character.

Record Length
The field contains 0x3034, the hexadecimal encoding of the ASCII characters “04”, which is the
length, in bytes, of the CS and IP register contents within this record.

Load Offset
This field contains 0x30303030, the hexadecimal encoding of the ASCII characters “0000”,
since this field is not used for this record.

Record Type
This field contains 0x3033, the hexadecimal encoding of the ASCII character '03’, which
specifies the record type to be a Start Segment Address Record.

CSs Thisfield contains four ASCII hexadecimal digits that specify the 16-bit CS register contents.
The field is encoded big-endian (most significant digit first).

IP Thisfield contains four ASCII hexadecimal digits that specify the 16-bit IP register contents.
The field is encoded big-endian (most significant digit first).

Checksum

This field contains the check sum on the Record length, Load Offset, Record Type, CS, and IP
fields.

End of File Record

(8-, 16-, or 32-bit formats)

Record Record Load Record Checksum (OxFF
Mark Length (0) | Offset (0) | Type (1)
(H:")

The End of File Record specifies the end of the hexadecimal object file.
The contents of the individual fields within the record are:

Record mark
This field contains 0x3A, the hexadecimal encoding of the ASCII colon (*:") character.

Record Length
The field contains 0x3030, the hexadecimal encoding of the ASCII charactets SOtethis
record does not containyBata bytes, the length is zero.

Load Offset
This field contains 0x30303030, the hexadecimal encoding of the ASCII characters “0000”,
since this field is not used for this record.

Reference Manual SRecord 79

srec_intel(5) srec_intel(5)

Record Type
This field contains 0x3031, the hexadecimal encoding of the ASCII character “01”, which
specifies the record type to be an End of File Record.

Checksum
This field contains the check sum an the Record Length, Load Offset, and Record Type fields.
Since all the fields are static, the check sum can also be calculated statickthe value is
0x4646, the hexadecimal encoding of the ASCII characters “FF”".

Size Multiplier
In general, binary data will expand in sized by approximately 2.3 times when represented with this format.

EXAMPLE
Here is an example Intel kéle. It contains the data “Hello, Worldio be loaded at address 0.
:0D00000048656C6C6F2C20576F726C640AA1
:00000001FF

REFERENCE
This information comes (very indirectly) froMicroprocessos and Piogrammed LogicSecond Edition,
Kenneth L. Short, 1987, Prentice-Hall, ISBN 0-13-580606-2.

COPYRIGHT
srec_catversion 1.38
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Peter Miller

The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thestec_cat
-VERSion Licenseommand. Thiss free software and you are welcome to redistribute it under certain
conditions; for details use thsréc_cat -VERSiIon Licerissammand.

AUTHOR
Peter Miller E-Mail: millerp@canbauug.org.au
N* WWW: http://www.canb.auug.org.au/ millerp/
Derivation

This manual page is deed from a file marked as follows:
Intel Hexadecimal Object File Format Specification; Revision A, 1/6/88

Disclaimer: Intel makes no representation or warranties with respect to the contents hereof and specifically
disclaims ag implied warranties of merchantability or fithess foy garticular purpose. Furthdntel

reserves the right to revise this publication from time to time in the content hereof without obligation of
Intel to notify ary person of such revision or changes. The publication of this specification should not be
construed as a commitment on Irggdart to implement anproduct.

Reference Manual SRecord 80

srec_mos_tech(5) srec_mos_tech(5)

NAME
srec_mos_tech — MOS Technologies file format

DESCRIPTION
The Mos Technologies format allows binary files to be uploaded and downloaded between between a
computer system (such as a PC, Macintosh, or workstation) and an emulaauatian board for
microcontrollers and microprocessors.

The Lines
Each line consists of %elds. Thesare the length field, address field, data field, and the checksum. The
lines alvays start with a semicolon (;) character.

The Fields

: \ Length\ Address\ Daté Checksu*n\

Length Therecord length field is a 2 character (1 byte) field that specifies the number of data bytes in the
record.

Address Thigs a 2-byte address that specifies where the data in the record is to be loaded into memory.

Data Thedata field contains thexecutable code, memory-loadable data or desesdptiformation to
be transferred.

Checksum
The checksum is an 2-byte field that represents the least signifieabytevof the the sum of the
values represented by the pairs of characters making up the sleoigth, address, and data
fields.

Size Multiplier
In general, binary data will expand in sized by approximately 2.4 times when represented with this format.

EXAMPLE
Here is an example MOS Technologies forniat flt contains the data “Hello, Worldio be loaded at
address 0.
S$110000048656C6C6F2C20576F726C640A9D
;00
COPYRIGHT
srec_catversion 1.38
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Peter Miller

The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thesfec_cat
-VERSion Licenseommand. Thiss free software and you are welcome to redistribute it under certain
conditions; for details use thsréc_cat -VERSion Licerissommand.

AUTHOR
Peter Miller E-Mail: millerp@cantauug.org.au
N* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual SRecord 81

srec_motorola(5) srec_motorola(5)

NAME
srec_motorola — Motorola S-Record hexadecimal file format

DESCRIPTION
This format is also known as tEorciser Exormacsor Exormaxformat.

Motorola’s Srecord format allows binary files to be uploaded and downloaded betweeonrtvputer
systems. Thigype of format is widely used when transferring programs and data between a computer
system (such as a PC, Macintosh, or workstation) and an emulat@tuatien board for Motorola
microcontrollers and microprocessors.

The Lines
Most S-Record file contain only S-Record lines (see the next section), wivas atart with a capital S
character Some systems generate various “extensiomfich usually manifest as lines which start with
something else. These “extensidihes may or may not break other systems made by other vendors.
Caveat emptor.

The Fields
The S-record format consists of 5 fields. These are the type field, length field, address field, data field, and
the checksum. The linesvadys start with a capital S character.

| S | Type | RecordLength Address Data Checkgum

Type Thetype field is a 1 character field that specifies whether the record is an SO, S1, S2, S3, S5, S6,
S7, S8 or S9 field.

Record Length
The record length field is a 2 character (1 byte) field that specifies the number of character pairs
(bytes) in the record, excluding the type and record length fields.

Address Thiss a 2-, 3- or 4-byte address that specifies where the data in the S-record is to be loaded into
memory.

Data Thedata field contains thexecutable code, memory-loadable data or desesgptiformation to
be transferred.

Checksum
The checksum is an 8-bit field that represents the least significant byte of theocomglement
of the sum of the values represented by the pairs of characters making up the legifd’
address, and data fields.

Record Types
SO Thistype of record is the header record for each block of S-records. The data field may contain
ary descriptve information identifying the following block of S-records. (It is commonly
“HDR” on mary systems.) Theddress field is normally zero.

S1 Arecord containing data and the 2-byte address at which the data is to reside.
S2 Arecord containing data and the 3-byte address at which the data is to reside.
S3 Arecord containing data and the 4-byte address at which the data is to reside.
S5 Anoptional record containing the number of S1, S2 and S3 records transmitted in a particular

block. Thecount appears in the two-byte addraesklf Theres no data field.

S6 Anoptional record containing the number of S1, S2 and S3 records transmitted in a particular
block. Thecount appears in the three-byte addresdd.f Thereis no data field.

S7 Atermination record for a block of S3 records. The address field may contain the 4-byte address
of the instruction to which control is passed. There is no data field.

S8 Atermination record for a block of S2 records. The address field may optionally contain the
3-byte address of the instruction to which control is passed. There is no data field.

S9 Atermination record for a block of S1 records. The address field may optionally contain the
2-byte address of the instruction to which control is passed. If not specified, the first entry point

Reference Manual SRecord 82

srec_motorola(5) srec_motorola(5)

specification encountered in the object module input will be used. There is no data field.

Size Multiplier
In general, binary data will expand in sized by approximately 2.4 times when represented with this format.

EXAMPLE
Here is an example S-Recoitf It contains the data “Hello, Worldto be loaded at address O.
S00600004844521B
$110000048656C6C6F2C20576F726C640A9D
S5030001FB
S9030000FC

COPYRIGHT
srec_catversion 1.38
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Peter Miller

The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thestec_cat
-VERSion Licenseommand. Thiss free software and you are welcome to redistribute it under certain
conditions; for details use thsréc_cat -VERSiIon Licerissammand.

AUTHOR
Peter Miller E-Mail: millerp@canbauug.org.au
N* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual SRecord 83

srec_needham(5) srec_needham(b)

NAME
srec_needham — Needham EMP-series programmer ASCI| file format

DESCRIPTION
This format is understood by Needham Electronics’ EMP-series programmers. See
www.needhams.com/winman.pdf for more information. (This format is very similar to the ASCII-
Hex format, but without the "B and "C guard characters.)

Each data byte is represented as 2 hexadecimal characters, and is separated by white space from all other
data bytes.

The address for data bytes is set by using a sequefé@mphn, characters, whenennnis the

8-character ascii representation of the address. The comma is required. There is no need for an address
record unless there arams. Implicitly the file starts a address 0 if no address is set before the first data
byte.

Size Multiplier
In general, binary data will expand in sized by approximately 3.0 times when represented with this format.

EXAMPLE
Here is an example asciibhéle. It contains the data “Hello, Worldio be loaded at address 0x1000.
$A1000,
48 65 6C 6C 6F 2C 20 57 6F 72 6C 64 OA

COPYRIGHT

srec_catversion 1.38
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Peter Miller

The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thestec_cat
-VERSion Licenseommand. Thiss free software and you are welcome to redistribute it under certain
conditions; for details use thsréc_cat -VERSiIon Licerissammand.

AUTHOR
Peter Miller E-Mail: millerp@canbauug.org.au
N* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual SRecord 84

srec_0s65v(5) srec_0s65v(5)

NAME
srec_0s65v — OS65V Loader file format

DESCRIPTION
This format is used by Ohio Scientific OS65V-compatible loaders. This family of machines includes the
OSI C1RSuperboard Il, C2, C4, C8, and Challenger lll, as well as the UK101, and Elektor Junior.

The file startes with a period (0x2E), to ensure address entry mode. then a 4-digidddress, followed
by a slash '/ (0X2F) to enter the data entry mode. The initial addressagsgbresent. There is no need
for an additional address record unless there are gaps.

Each data byte is represented as 2 hexadecimal characters, and is separated by a carriage return character
(Ox0D) (advance address). The final return character may be omitted.

The data is concluded with a period Ox2E) to re-enter address mode. If an address to s&teon is
specified, then the last 5 bytes arenrG wherennnnis the 4-digit &ecution address, and G is the 'Go’
command.

Size Multiplier
In general, binary data will expand in sized by approximately 3.0 times when represented with this format.

EXAMPLE
Here is an example asciishéle. It contains the data “Hello, Worldto be loaded at address 0x1000, with
execution at 0x1003. (On a 6502, this is the opcode for indirect jump to 0x2C6F.)

1000/48"M65"M6C"M6C"M6F"M2C"M20"M57"M6F"M72"M6C"M64"M0OA™M.1010G

COPYRIGHT
srec_catversion 1.38
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Peter Miller

The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thestec_cat
-VERSion Licenseommand. Thiss free software and you are welcome to redistribute it under certain
conditions; for details use thsréc_cat -VERSiIon Licerissammand.

AUTHOR
Peter Miller E-Mail: millerp@canbauug.org.au
N* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual SRecord 85

srec_signetics(5) srec_signetics(5)

NAME
srec_signetics — Signetics file format
DESCRIPTION

The Signetics file format is not often used. The major disadvantage in modern applications is that the
addressing range is limited to only 64kb.

Records
All data lines are called records, and each record contains the following 5 fields:

| saaa| cc| ag dd $s

The field are defined as follows:
Every record starts with this identifier.

aaaa Thaddressiéld. A four digit (2 byte) number representing the first address to be used by this

record.
cc Thebyte-count. Atwo digit value (1 byte), counting the actual data bytes in the record.
as Addresshecksum. Ceers 2 address bytes and the byte count.
dd Theactual data of this record. There can be 1 to 255 data bytes per record (see cc)
Ss DataChecksum. Ceers only all the data bytes of this record.

Record Begin
Every record begins with a colon *character Records contain only ASCII characters. No spaces or tabs
are allowed in a record. In fact, apart from the 1st colon, no other characters than 0..9 and A..F are allowed
in a record. Interpretation of a record should be case less, it does not matter if you use a..f or A..F.

Unfortunately the colon was chosen for the Signetics file format, similar to the Intel format (see
srec_inte{5) for more information). Howeer, SRecord is able to automatically detect the dofference
between the tavformat, when you use the€suessformat specifier.

Address Field
This is the address where the first data byte of the record should be stored. After storing that data byte, the
address is incremented by 1 to point to the address for the next data byte of the record. And so on, until all
data bytes are stored. The address is represented by a 4 xligintiger (2 bytes), with the MSD first.

The order of addresses in the records of a file is not important. The file may also contain address gaps, to
skip a portion of unused memory.

Byte Count

The byte count cc counts the actual data bytes in the current record. Usually recer@sdaga bytes,
but any number between 1 and 255 is possible.

A value of 0x00 for cc indicates the end of tie. fIn this case notwven the address checksum wiill follow!
The record (and file) are terminated immediately.

It is not recommended to send too maata bytes in a record for that may increase the transmission time
in case of errors. Alsovaid sending only a f@ data bytes per record, because the addneshend will be
too heavy in comparison to the payload.

Address Checksum
This is not really a checksum anymore, it looks more dKIRC. Thechecksum can not only detect errors
in the values of the bytes, but also bytes out of order can be detected.

The checksum is calculated by this algorithm:
checksum =0
fori=1to3
checksum = checkum XOR byte
ROL checksum
next i
For the Address Checksum we only need 2 Address bytes and 1 Byte Count byte to be addedhyrhat’
we count to 3 in the loop. Every byte is XORed with the previous result. Then the intermediate result is

Reference Manual SRecord 86

srec_signetics(5) srec_signetics(5)

rolled left (carry rolls back into bO0).
This results in a very reliable checksum, and that for only 3 bytes!
The last record of the file does not contaiy elmecksums! Sthe file ends right after the Byte Count of 0.

Data Field
The payload of the record is formed by the Datllf Thenumber of data bytes expected igegiby the
Byte Countifeld. Thelast record of the file may not contain a Data field.

Data Checksum
This checksum uses the same algorithm as used for the Address Checksum. This time we calculate the
checksum with only the data bytes of this record.
checksum =0
fori=1tocc
checksum = checksum XOR byte
ROL checksum
next i
Note that we count to the Byte Count cc this time.

Size Multiplier
In general, binary data will expand in sized by approximately 2.4 times when represented with this format.

EXAMPLE

Here is an example Signetics file
:BO0010A5576F77212044696420796F75207265617B
:BO1010E56C6C7920676F207468726F756768206136
:B02010256C6C20746861742074726F75626C652068
:BO300D5F746F207265616420746869733FD1
:BO3D00

In the example ahe you can see a piece of code in Signetics format. The first 3 lineslédytes of

data each, which can be seen by the byte count. The 4th line has only 13 bytes, because the program is at

it's end there.

Notice that the last record of the file contains no data bytes, andemcae Address Checksum.

SEE ALSO
http://sbprojects.fol.nl/knowledge/fileformats/signetics.htm

AUTHOR
This man page was taken from thewabb®\eb page. It was written by San Bergmans
<sanmail@bigfoot.com>

Reference Manual SRecord 87

srec_spasm(5) srec_spasm(b)

NAME
srec_spasm — SPASM file format

DESCRIPTION
This format is the output of the Paralax SPASM assembler defunct, I'm told). The file contains two
columns of 16-bit hexadecimal codeslues. Thdirst column is the word address, the second column is
the word data.

By default, SRecord treats this is big-endian data (the most significantrbtjte If you want little endian
order use the —spasm-le argument instead.

Size Multiplier
In general, binary data will expand in sized by approximately 5.0 times when represented with this format

(5.5 times in Windows).

EXAMPLE
Here is an example SPASNEL It contains the data “Hello, Worldto be loaded at bytes address 0x0100
(but remembetthe file contents are word addressed).
0080 6548
0081 6C6C
0082 2C6F
0083 5720
0084 726F
0085 646C

COPYRIGHT
srec_catversion 1.38
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Peter Miller

The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thestec_cat
-VERSion Licenseommand. Thiss free software and you are welcome to redistribute it under certain
conditions; for details use thsréc_cat -VERSIon Licerissammand.

AUTHOR
Peter Miller E-Mail: millerp@canbauug.org.au
N* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual SRecord 88

srec_spectrum(5) srec_spectrum(5)

NAME
srec_spectrum — Spectrum file format

DESCRIPTION
In this format, bytes are recorded as ASCII code with binary digits represented by 1s and 0s. Each byte is
preceeded by a decimal address.

The file ends with a Control-C character (0x03).

Size Multiplier
In general, binary data will expand in sized by approximately 14 times when represented with this format
(or 15 times on DOS or Windows).

EXAMPLE
Here is an example Spectruilef It contains the data “Hello, Worldfo be loaded at address 0x0.

"B

0000 01001000
0001 01100101
0002 01101100
0003 01101100
0004 01101111
0005 00101100
0006 00100000
0007 01010111
0008 01101111
0009 01110010
0010 01101100
0011 01100100
0012 00100001
0013 00001010
“C

COPYRIGHT
srec_catversion 1.38
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Peter Miller

The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thestec_cat
-VERSion Licenseommand. Thiss free software and you are welcome to redistribute it under certain
conditions; for details use thsréc_cat -VERSiIon Licerissammand.

AUTHOR
Peter Miller E-Mail: millerp@canbauug.org.au
N* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual SRecord 89

srec_steie(5) srec_stsie(5)

NAME
srec_stewie — Stewighinary file format

DESCRIPTION
If you hare a LRL for documentation of this format, please let mevkno

Any resemblance to the Motorola S-Record is superficial, and extends only to the data records. The header
records and termination records are completeferdint. Noneof the other Motorola S-Records record
type are aailable.

The Records
All records start with an ASCII capital S charactadue 0x53, followed by a type specifier byte. All
records consist of binary bytes.

The Header Record
Each file starts with a fixed four byte header record.

]0x53 \ 0x3o\ 0x3o\ 0x3$

The Data Records
Each data record consists of 5 fields. These are the type field, length field, address field, data field, and the
checksum. Thénes alvays start with a capital S character.

| 0x53 | Type | RecordLength Address Dafa Checksum

Type Thetype field is a one byte field that specifies whether the record has a two-byte address field
(0x31), a three-byte address field (0x32) or a four-byte address field (0x33). The address is big-
endian.

Record Length
The record length field is a one byte field that specifies the number of bytes in the record
following this byte.

Address Thiss a 2-, 3- or 4-byte address that specifies where the data in the record is to be loaded into
memory.

Data Thedata field contains thexecutable code, memory-loadable data or desgdptiformation to
be transferred.

Checksum
The checksum is a one byte field that represents the least significant byte of the one’s
complement of the sum of the values represented by the bytes making up the fecgti,
address, and data fields.

The Termination Record
Each file ends with a fixed mbyte termination record.

Size Multiplier

In general, binary data will expand in sized by approximately 1.2 times when represented with this format.

Reference Manual SRecord 90

srec_steie(5) srec_stsie(5)

EXAMPLE
Here is an hex-dump examplief It contains the data “Hello, Worldto be loaded at address O.
0000: 53 30 30 3353 31 10 00 00 48 65 6C 6C 6F 2C 20 S003S1...Hello,
0010: 57 6F 72 6C 64 0A 9D 53 38 World..S8

COPYRIGHT
srec_catversion 1.38
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Peter Miller

The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thestec_cat
-VERSion Licenseommand. Thiss free software and you are welcome to redistribute it under certain
conditions; for details use thsréc_cat -VERSiIon Licerissammand.

AUTHOR
Peter Miller E-Mail: millerp@canbauug.org.au
N* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual SRecord 91

srec_tektronix(5) srec_tektronix(5)

NAME
srec_tektronix — Tektronix hexadecimal file format

DESCRIPTION
The Tektronix hexadecimal file format is no longer very common. It serves a similar purpose to the
Motorola and Intel formats, usually used to transfer data into EPROM programmers.

The Lines
Most Tektronix h& files contain only Tektronix helines (see the next section), whictvals start with a
slash (“/") character There are only tartypes of lines — data lines and a termination line.

Data Lines
Data lines hee five fields: address, length, checksum 1, data and checksum 2. TheJiags sthrt with a
slash (“/") character.

|/ | Address| Length] Checksumfl Data Checksym2

Address Thiss a 4 character (2 byte) address that specifies where the data in the record is to be loaded
into memory.

Data Length

The data length field is a 2 character (1 byte) field that specifies the number of character pairs
(bytes) in the datadld. Thisfield never has a value of zero.

Checksum 1
The checksum 1 field is a 2 character (1 byiehiif Itsvalue is the 8-bit sum of the six 4-bit
values which ma& up he address and length fields.

Data Thedata field contains character pairs (bytes); the number of character pairs (bytes) is indicated
by the length field.

Checksum 2
The checksum 2 field is a 2 character (1 byiehilf Itsvalue is the least significant byte of the
sum of the all the 4-bit values of the data field.

Termination Line

Termination lines hee three fields: address, zero and checksum. The limeysistart with a slash (“/”)
character.

|/ | Address| Zero| Checksuin
Address Thigs a 4 character (2 byte) address that specifies where to lxegirtien.

Zero Thedata length field is a 2 character (1 byte) field of value zero.

Checksum
The checksum 1 field is a 2 character (1 byeRIf Itsvalue is the 8-bit sum of the six 4-bit
values which ma& up he address and zero fields.

Size Multiplier
In general, binary data will expand in sized by approximately 2.4 times when represented with this format.

Reference Manual SRecord 92

srec_tektronix(5) srec_tektronix(5)

EXAMPLE
Here is an example Tektronix>héle. It contains the data “Hello, Worldto be loaded at address O.
/00000D0D48656C6C6F2C20576F726C640A52
/00000000

COPYRIGHT
srec_catversion 1.38
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Peter Miller

The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thestec_cat
-VERSion Licenseommand. Thiss free software and you are welcome to redistribute it under certain
conditions; for details use thsréc_cat -VERSiIon Licerissammand.

AUTHOR
Peter Miller E-Mail: millerp@canbauug.org.au
N* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual SRecord 93

srec_tektronix_x@ended(5) srec_tektronixxended(5)

NAME
srec_tektronix_extended - Tektronix Extended hexadecimal file format

DESCRIPTION
This format allows binary files to be uploaded and downloaded betwestntaputer systems, typically
between a computer system (such as a PC, Macintosh, or workstation) and an emulatsatameboard
for microcontrollers and microprocessors.

The Lines
Lines alvays start with a percent (%) charact&ach line consists of 8efids. Theseare the length field,
the type field, the checksum, the address field (including address length), and the data field.

The Fields

| % | Length | Type| Checksum Addre§s Data

Record Length
The record length field is a 2 character (1 byte) field that specifies the number of characters (not
bytes) in the record, excluding the percent, the length field, the type field and the checksum.

Type Thetype field is a 1 character field that specifies whether the record is data (6) or termination (8).

Checksum
The checksum is an 2 character (1 byte) field that represents the sum of all the nibbles on the line,
excluding the checksum.

Address Thiss a 9 characterdld. Thefirst character is the address size; it\vgagb 8. The remaining 8
chgaracters are the 4-byte address that specifies where the data is to be loaded into memaory.

Data Thedata field contains thexecutable code, memory-loadable data or desesdptiformation to
be transferred.

Record Types
6 A record containing data. The data is placed at the address specified.

8 A termination record. The address field may optionally contain the address of the instruction to
which control is passed. There is no data field.

Size Multiplier
In general, binary data will expand in sized by approximately 2.5 times when represented with this format.

EXAMPLE
Here is an example Tektronix extendéel.f It contains the data “Hello, Worldfo be loaded at address
0x006B.
%256D980000006B48656C6C6F2C20576F726C64210A
%09819800000000

COPYRIGHT
srec_catversion 1.38
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Peter Miller

The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thesfec_cat
-VERSion Licenseommand. Thiss free software and you are welcome to redistribute it under certain
conditions; for details use thsréc_cat -VERSion Licerissommand.

AUTHOR
Peter Miller E-Mail: millerp@cantauug.org.au
N* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual SRecord 94

srec_ti_tagged_16(5) srec_ti_tagged 16(5)

NAME
srec_ti_tagged_16 —eXas Instruments Tagged (SDSKa/820) file format

DESCRIPTION
This format is also known as théTaggel or Texas Instruments SDSMNA320) format.

This format allows binary files to be uploaded and downloaded betwestntaputer systems, typically
between a computer system (such as a PC, Macintosh, or workstation) and an emulatsatameboard
for 16-bit microcontrollers and microprocessors.

The Lines
Unlike mary other object formats, the lines themselves are not especiallyisigmif Theformat consits of
a rumber oftagged fields, and lines are composed of a series of these fields.

Tag Description

* Data byte.

End of file.

File header (optional).
Checksum.

Dummy checksum (ignored).
Word Address.

Data word.

End of data record.

Program identifier (optional).

[B[n]n]

One byte of data. Thenis 8-bit big-endian hexadecimal.

End of File
[criF]

The end of data is indicated by this tag. The end of line sequence (LF on Unix systems, CRLF on PCs)
follows this tag.

XTW®©O®o~NO -

Data Byte

File Header

|0 | length | flename]

The optional start-of-file record begins with a tag character ('0’) and a 12-character file ibadest
four characters are the count (in hex) of the 16-bit data word values (B) whiety fadtancluding data
byte values (*). The remaining file header characters are the name of the file and maABEHN
characters, blank padded.

Checksum

7 [nln[n]n]

The checksum is the 2s complement sum of the 8-bit ASCII values of characters, beginning with the first
tag character and ending with the checksum tag character (7jainfihes 16-bit big-endian hexadecimal.

Reference Manual SRecord 95

srec_ti_tagged_16(5) srec_ti_tagged 16(5)

Dummy Checksum

[(8[n]n[n]n]

The checksum is the 2s complement sum of the 8-bit ASCII values of characters, beginning with the first
tag character and ending with the checksum tag character (8hnmhe 16-bit big-endian hexadecimal.

Address

(9 [n]n[n]n]

Addresses may begn for ary data byte, but none is mandatoifhe file begins at 0000 if no address is
given before the first datadld. Thennnnis 16-bit big-endian hexadecimal.

Data Word

[(Blafa[b] b

Two bytes of data. Theaandbbare each 8-bit big-endian hexadecimal.

End of Record

The end of line sequence (LF on Unix systems, CRLF on PCs) is escaped using this tag. The checksum is
reset to zero at this point.

Program ldentifier

[(K[n[n[n]n] ex]

The program identifier can contain a brief description of the program, or can be eefitg text portion
is optional). Thennnnlength (hex) of the field includes the ‘K’, the length and the text; it is at least 5.

Size Multiplier
In general, binary data will expand in sized by approximately 2.9 times when represented with this format.

EXAMPLE
Here is an example TI-Taggeitef It contains the data “Hello, Worldto be loaded at address 0x0100.
K000590080B4865B6C6CB6F2CB2057B6F72B6C64*0A7F641F

Here is another example from the reference below
00028 7FDCFF
90000BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F400F
90008BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F3F8F
90010BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F3FFF
90018BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F3F7F
90020BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F3FEF

SEE ALSO
http://www.dataio.com/pdf/Manuals/Unifamily/981-0014-016.pdf (page 6-7)
COPYRIGHT
srec_catversion 1.38
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Peter Miller
The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thestec_cat

-VERSion Licenseommand. Thisgs free software and you are welcome to redistribute it under certain
conditions; for details use thsréc_cat -VERSion Licerissommand.

AUTHOR
Peter Miller E-Mail: millerp@canbauug.org.au
N* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual SRecord 96

srec_ti_tagged(5) srec_ti_tagged(5)

NAME
srec_ti_tagged —ékas Instruments Tagged (SDSMAC) file format

DESCRIPTION
This format is also known as thé& Tagged or TI-SDSMACformat.

This format allows binary files to be uploaded and downloaded betwestntaputer systems, typically
between a computer system (such as a PC, Macintosh, or workstation) and an emulatsatameboard
for microcontrollers and microprocessors.

The Lines
Unlike mary other object formats, the lines themselves are not especiallyisignmif Theformat consits of
a rumber oftagged fields, and lines are composed of a series of these fields.

Tag Description

* Data byte.

End of file.

File header (optional).
Checksum.

Dummy checksum (ignored).
Address.

Data word.

End of data record.

Program identifier (optional).

[B[n]n]

One byte of data. Thenis 8-bit big-endian hexadecimal.

End of File
[criF]

The end of data is indicated by this tag. The end of line sequence (LF on Unix systems, CRLF on PCs)
follows this tag.

XTW®©O®o~NO -

Data Byte

File Header

|0 | length | flename]

The optional start-of-file record begins with a tag character ('0’) and a 12-character file ibadest
four characters are the byte count of the file data. The remaining 8 characters are the name of the file and
may be ap ASCII characters, blank padded.

Checksum

7 [nln[n]n]

The checksum is the 2s complement sum of the 8-bit ASCII values of characters, beginning with the first
tag character and ending with the checksum tag character (7jainfihes 16-bit big-endian hexadecimal.

Reference Manual SRecord 97

srec_ti_tagged(5) srec_ti_tagged(5)

Dummy Checksum

[(8[n]n[n]n]

The checksum is the 2s complement sum of the 8-bit ASCII values of characters, beginning with the first
tag character and ending with the checksum tag character (8hnmhe 16-bit big-endian hexadecimal.

Address

(9 [n]n[n]n]

Addresses may begn for ary data byte, but none is mandatoifhe file begins at 0000 if no address is
given before the first datadld. Thennnnis 16-bit big-endian hexadecimal.

Data Word

[(Blafa[b] b

Two bytes of data. Theaandbbare each 8-bit big-endian hexadecimal.

End of Record

The end of line sequence (LF on Unix systems, CRLF on PCs) is escaped using this tag. The checksum is
reset to zero at this point.

Program ldentifier

[(K[n[n[n]n] ex]

The program identifier can contain a brief description of the program, or can be eetye ¢ext portion
is optional). Thennnnlength (hex) of the field includes the ‘K’, the length and the text; it is at least 5.
Size Multiplier
In general, binary data will expand in sized by approximately 2.9 times when represented with this format.
EXAMPLE

Here is an example TI-Taggeitef It contains the data “Hello, Worldto be loaded at address 0x0100.
K000590080B4865B6C6CB6F2CB2057B6F72B6C64*0A7F648F

and here is another example from the reference below
00050 7FDD4F
90000BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F400F
90010BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F3FFF
90020BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F3FEF
90030BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F3FDF
90040BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F3FCF

SEE ALSO
http://www.dataio.com/pdf/Manuals/Unifamily/981-0014-016.pdf (page 6-33)
COPYRIGHT
srec_catversion 1.38
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Peter Miller
The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thestec_cat

-VERSion Licenseommand. Thisgs free software and you are welcome to redistribute it under certain
conditions; for details use thsréc_cat -VERSion Licerissommand.

AUTHOR
Peter Miller E-Mail: millerp@canbauug.org.au
N* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual SRecord 98

srec_ti_txt(5) srec_ti_txt(5)

NAME
srec_ti_txt — Bxas Instruments ti-txt (MSP430) file format

DESCRIPTION
The ti-TXT format is used by theeXas Instruments MSP430 familty programming adapter.

The TI-TXT he format supports 16-bit hexadecimal data. It consists of one or more sections, followed by
the end-of-file indicator.

Each section consistes of an at (@) sign followed a start address (in hexadecimal), and newline, and then
data bytes (in headecimal). Theection address is followed by anii@e. Thereare to be 16 data bytes
per line, except for the last line in a section.

The end-of-file indicator is the lettgrfollowed by a nevline. Theend-of-file indicator mandatory.

Size Multiplier
In general, binary data will expand in sized by approximately 3.0 times when represented with this format.
EXAMPLE
Here is an example ti-txt file taken from the reference below:
@F000

31 40 00 03 B2 40 80 5A 20 01 D2 D3 22 00 D2 E3
21 00 3F 40 E8 FD 1F 83 FE 23 F9 3F

@FFFE

00 FO

g

SEE ALSO
http://www.ti.com/lit/pdf/slau101, section A.2ote: the portion which says addresses mustvea,eand
the number of data bytes in a section mustven,es wrong.

COPYRIGHT
srec_ti_txtversion 1.38
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Peter Miller

Thesrec_ti_txtprogram comes with ABSOLUTELNO WARRANTY; for details use thestec_ti_txt
-VERSion Licenseommand. Thiss free software and you are welcome to redistribute it under certain
conditions; for details use thsréc_ti_txt -VERSion Licenssommand.

AUTHOR
Peter Miller E-Mail: millerp@canbauug.org.au
N* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual SRecord 99

srec_vmem(5) srec_vmem(5)

NAME
srec_vmem - vmem file format

DESCRIPTION
This format is the Verilog VMEM format. This is axhformat suitable for loading into Verilog simulations
using theSreadmemh call.

The text file to be read shall contain only the following:
White space (spaces,wménes, tabs, and form-feeds)
Comments (both types of C++ comment are allowed)
Hexadecimal numbers

White space and/or comments shall be used to separate the numbers.
In the following discussion, the term "address" refers to arxiimde the array that models the memory.

As the file is read, each number encountered is assigned to a siceesdielement of the memory.
Addressing is controlled both by specifying start and/or finish addresses in the systewotaiomand
by specifying addresses in the data file.

When addresses appear in the data file, the format is an "at" cha@dtdlo(ved by a hexadecimal
number as follows:
@hh...h

Both uppercase and lowercase digits are allowed in the nuiNbexhite space is allowed between tbe
and the numberAs mary address specifications as needed within the data file can be used. When the
system task encounters an address specification, it loads subsequent data starting at that memory address.

Commentary
There is no checksum in this format, which can generate falsevpositien guessing file formats on
input.

There is no indication of the word size in the file, since it is dependent on the word type of the Verilog
memory it is being read into. SRecord will guess the word size based on the number of digits it sees in the
numbers, but this is only a guess.

SRecord will also assume that the numbers are to be loaded big-endian; that is, most significant byte (first
byte seen) into the lowest addresgeted by the word.

You can use the-byte-swapfilter to change the byte order; it takes an optional width of bytes to swap
within.
Size Multiplier

In general, binary data will expand in sized by approximately 2.9 times (32-bit), 3.1 times (16-bit) or 3.6
times (8-bit) when represented with this format.

EXAMPLE
Here is an example Verilog VMEMI€. It contains the data “Hello, Worltto be loaded at address
0x1000.
@00000400 48656C6C 6F2C2057 6F726C64 OAFFFFFF

REFERENCE
IEEE P1364-2005/D2, Standard for Verilog Hardware Description Language (Draft), section 17.2.8
"Loading memory data from a file", p. 295.
Copyright © 2003 IEEE
http://www.boyd.com/1364/
http://www.boyd.com/1364/1364-2005-d2.pdf.gz

Reference Manual SRecord 100

srec_vmem(5) srec_vmem(5)

COPYRIGHT
srec_catversion 1.38
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Peter Miller

The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thestec_cat
-VERSion Licenseommand. Thiss free software and you are welcome to redistribute it under certain
conditions; for details use thsréc_cat -VERSiIon Licerissammand.

AUTHOR
Peter Miller E-Mail: millerp@canbauug.org.au
N* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual SRecord 101

srec_wilson(5)

NAME
srec_wilson — wilson file format

DESCRIPTION

srec_wilson(5)

This is a mystery format, added to support a mysery EPROM loader used by Alan Wilson

<dvdsales@dvdlibrary.co.uk>

If you knaw the true name of this format, please let mewkntt bears a remarkable similarity to the
Motorola S-Record format, hower | can find no reference to a "compressed" Motorola format.

The Lines

Each line contains normal ASCII characters, and “high bitamaracters, but the ASCII control characters
are aoided (the high-bit-on con characters are noided). Normaline termination characters (CRLF or
LF, depending on your system) are used.

The presence of high-bit-on characters makes this format unattriactend via email, as it must be
wrapped as a binary attachment, increasing its size.

In general, a single byte per byte is used to encode valuesydn@ame values use mbytes, according to

the following table:

Byte Value

0x00 ..
OxAO ..
0xBO .
0xCoO ..
0xDO ..
OxEOQ .

Ox9F
OxAF

. OxBF

OxCF
OxDF

. OXFF

Encodingl or 2 chars)

0x40 ..
0Ox3A 0x30 ..

0x3B 0x30 ..
0x3C 0x30 ..

0x3D 0x30 .

OxDF

Ox3A Ox3F
0x3B 0Ox3F
0x3C Ox3F

. 0x3D 0x3F
OXEO ..

OxFF

The rest of this description, when refering to “byteséans byte values encoded using thevalible.

The Fields

Each line consists of 5 fields. These are the type field, length field, address field, data field, and the

checksum.

| Type | Record Length| Address| Data] Checksum

Type Thetype field is a 1 character field that specifies whether the record is data (0x43), or termination

(0Ox47).
Record Length

The record length field is a 1 byte field that specifies the number of bytes in the record, excluding
the type and record length fields.

Address Thiss a 4-byte address that specifies where the data is to be loaded into memory.

Data Thedata field contains thexecutable code, memory-loadable data or desesgptiformation to

be transferred.
Checksum

The checksum is an 1-byte field that represents the least significant byte of theoonmEément
of the sum of the values represented by the bytes making up the length, address, and data fields.

Reference Manual

SRecord

102

srec_wilson(5) srec_wilson(5)

Record Types
0x43 (#) A record containing data and the 4-byte address at which the data is to reside.

0x47 (") Atermination record. The address field may contain the 4-byte address of the instruction to
which control is passed. There is no data field.

Size Multiplier
In general, binary data will expand in sized by approximately 1.5 times when represented with this format.

COPYRIGHT
srec_catversion 1.38
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Peter Miller

The srec_catprogram comes with ABSOLUTELNO WARRANTY; for details use thestec_cat
-VERSion Licenseommand. Thiss free software and you are welcome to redistribute it under certain
conditions; for details use thsréc_cat -VERSiIon Licerissammand.

AUTHOR
Peter Miller E-Mail: millerp@canbauug.org.au
N* WWW: http://www.canb.auug.org.au/ millerp/

Reference Manual SRecord 103

srec_wilson(5) srec_wilson(5)

Reference Manual SRecord 1000

Table of Contents(SRecord) Table of Contents(SRecord)

The README fle
Release Notes .

o

srec_cat(1)
srec_cmp(1)
srec_aamples(1)
srec_info(1)
srec_input(1)
srec_license(1)
srec_aomf(5)
srec_ascii_hd5b)
srec_atmel_generic(5)
srec_binary(5)
srec_brecord(5)
srec_cosmac(5)
srec_dec_binary(5)
srec_emon52(5)
srec_Airchild(5)
srec_hstload(5)
srec_formatted_binary(5)
srec_fpc(5)
srec_intel16(5)
srec_intel(5)
srec_mos_tech(5)
srec_motorola(5)
srec_needham(5)
srec_0s65v(5)
srec_signetics(b)
srec_spasm(5)
srec_spectrum(5)
srec_steie(5)
srec_tektronix(5)
srec_tektronix_x@ended(5)
srec_ti_tagged_16(5)
srec_ti_tagged(5)
srec_ti_txt(5)
srec_vmem(5)
srec_wilson(5)

Reference Manual

How to build SRecord .

How to add a nev file format .
manipulagprom loadifes
compatao eprom load files for equallty
ramples of hav to use SRecord
informatiombout eprom loadlés .
inpufile specifcations . . .
GNGeneral Public License .
InteAbsolute Object Moduledfmat

Ascii-Hex file format

Atme&leneric file format.
binarfile format

FreescalBC68EZ328 Dragonball bootstrap record format

RCg&osmac Elf file format.
DEBinary (XXDP) file format.
Elektdonitor (EMON52) file format
Rairchild Fairbug file format.
LSLogic Fast Load file format.
oFmatted Binary file format. .
Bur Packed Code (FPC) file format.
InteHexadecimal 16-bit file format speicifition
InteHexadecimal object file format specition
MO®echnologies file format .
Motorol&-Record hexadecimal file format
Needh&iviP-series programmer ASCII file formaI
OS65Woader file format .
Signetifise format.
ABM file format .
Spectruite format
Stavie's hinary file format.
@ktronix hexadecimal file format. .
€ktronix Extended hexadecimal file format .
eXas Instruments Tagged (SDSa/820) file format .
ékas Instruments Tagged (SDSMAC) file format .
‘&xas Instruments ti-txt (MSP430) file format.
VMEMile format . G
wilsoffile format

SRecord

BB ewoonnnca RSl N0, Suaaafid o NDEB® M

Table of Contents(SRecord)

srec_info(1)
srec_aomf(5)
srec_needham(b)

srec_ascii_hg5b)
srec_ascii_hg5b)
srec_atmel_generic(5)
srec_atmel_generic(5)
srec_binary(5)
srec_binary(5)
srec_formatted_binary(5)
srec_steie(5)
srec_formatted_binary(5)
srec_dec_binary(5)
srec_intel16(5)
srec_brecord(5)

srec_brecord(5)

srec_cat(1)
srec_cmp(1)

srec_fpc(5)

srec_cmp(1)
srec_cosmac(5)
srec_cosmac(5)
srec_dec_binary(5)
srec_brecord(5)
srec_emon52(5)
srec_cosmac(5)
srec_emon52(5)
srec_needham(5)
srec_cat(1)

srec_info(1)

srec_cmp(1)

srec_cmp(1)
srec_aamples(1)
srec_aamples(1)
srec_tektronix_x@ended(5)
srec_tektronix_x@ended(5)

srec_brecord(5)
srec_hirchild(5)
srec_Airchild(5)
srec_Airchild(5)
srec_hstload(5)
srec_hstload(5)
srec_ascii_hd5b)
srec_atmel_generic(5)
srec_binary(5)
srec_cosmac(5)
srec_Airchild(5)
srec_hstload(5)

Reference Manual

36
55
84

57
57
58
58
59
59
67
90
67
62
71
60

60

19
25

68
25
61
61
62
60
63
61
63
84
19
36
25

25 srec cmp - compare tweprom load files for

27
27
94
94

60
65
65
65

66
66
57
58

59

61
65

66

Table of Contents(SRecord)

srec info - information about eprom load files
SRecord - Intel Absolute Object Module Format
srec needham - Needham EMP-serieASCI| file format
programmer
srec ascii he- Ascii-Hex file format
srec ascii he- Ascii-Hex file format
srec atmel generic - Atmel Generic file form
srec atmel generic - Atmel Generic file format
srec binary - binary file format
srec binary - binary file format
srec formatted binary - Formatted Binary file format
srec stewie - Stewie’'s binary file format
srec formatted binary - Formatted Binary file format
SRecord - DEC Binary (XXDP) file format
srec intell6 - Intel Hexadecimal 16- bit file format specification
srec brecord - Freescale MC68EZ32&ootstrap record format
Dragonball
srec brecord - Freescale MC68EZ328 Drag
bootstrap record format
srec cat - manipulate eprom load files
srec cmp - compare tweprom load files for
equality
SRecord - four packed code file format
srec cmp - compare tweprom load files for equality
srec cosmac - RCA Cosmac Elf file format
srec cosmac - RCA Cosmac Elf file format

SRecord - DEC Binary (XXDP) file format
srec brecord - Freescale MC68EZ328 Dragonball bootstrap record format
SRecord - Elektor Monitor (EMON52) file format

Elf file format
EMONS52) file format
EMP-series programmer ASCII file f
eprom load files
eprom load files
eprom load files for equality
equality
srec examples - examples of twao use SRecc
srec examples - examples of her to use SRecord
srec tektronix extended - Tektronix ~ Extended hexadecimal file format
srec tektronix extended - Tektronix Extended hexadec
file format
srec brecord - Freescale MC68 EZ328 Dragonball bootstrap record
srec fairchild - Fairchild Farbug file format
srec fairchild - Farchild Fairbug file format
srec fairchild - Fairchild Fairbug file format
srec fastload - LS| Logic Fast Load file format
srec fastload - LS| Logic Fast Load file forme
srec ascii he- Ascii-Hex file format
srec atmel generic - Atmel Genericfile format
srec binary - binary file format
srec cosmac - RCA Cosmac Elffile format
srec fairchild - Fairchild Fairbug file format
srec fastload - LS| Logic Fast Load file format

srec cosmac - RCA Cosmac
SRecord - Elektor Monitor (
srec needham - Needham
srec cat - manipulate
srec info - information about
srec cmp - compare two

SRecord v

Table of Contents(SRecord) Table of Contents(SRecord)

srec_formatted_binary(5) 67 srec formatted binary - Formatted Binaryfile format
srec_mos_tech(5) 81 srec mos tech - MOS Technologiesfile format
srec_motorola(5) 82 srec motorola - Motorola S-Record file format
hexadecimal
srec_needham(5) 84 srec needham - Needham EMP-seriefile format
programmer ASCII
srec_dec_binary(5) 62 SRecord - DEC Binary (XXDP) file format
srec_emon52(5) 63 SRecord - Elektor Monitor (EMONS52) file format
srec_fpc(5) 68 SRecord - four packed code file format
srec_signetics(b) 86 SRecord - Signetics file format
srec_0s65v(5) 85 srec 0s65v - OS65V Loader file format
srec_spasm(5) 88 srec spasm - SPASM file format
srec_spectrum(5) 89 srec spectrum - Spectrum file format
srec_steie(5) 20 srec stewie - Stewighinary file format
srec_tektronix_x@ended(5) 94 srec tektronix extended - Tektronix file format
Extended hexadecimal
srec_tektronix(5) 92 srec tektronix - Tektronix hexadecimal file format
srec_ti_tagged_16(5) 95 srec ti tagged 16 -€kas Instruments Tagged file format
(SDSMAC 320)
srec_ti_tagged(5) 97 srec ti tagged -&xas Instruments Tagged file format
(SDSMAC)
srec_ti_txt(5) 99 srec ti txt - Bxas Instruments ti-txt file format
(MSP430)
srec_vmem(5) 100 srec vmem - vmem file format
srec_wilson(5) 102 srec wilson - wilson file format
srec_intel16(5) 71 srec intell6 - Intel Hexadecimal 16-bit file format specification
srec_intel(5) 75 srec intel - Intel Hexadecimal object file format specification
srec_cat(1) 19 srec cat - manipulate eprom loadfiles
srec_info(1) 36 srec info - information about eprom loadfiles
srec_cmp(1) 25 srec cmp - compare tweprom load files for equality
srec_input(1) 38 SRecord - input file specifications
srec_cmp(1) 25 srec cmp - compare tweprom load files for equality
srec_ascii_hd5b) 57 srec ascii he- Ascii-Hex file format
srec_atmel_generic(5) 58 srec atmel generic - Atmel Generic file format
srec_binary(5) 59 srec binary - binary file format
srec_brecord(5) 60 srec brecord - Freescale MC68EZ32&ormat
Dragonball bootstrap record
srec_cosmac(5) 61 srec cosmac - RCA Cosmac Elf file format
srec_Airchild(5) 65 srec fairchild - Fairchild Fairbug file format
srec_hstload(5) 66 srec fastload - LS| Logic Fast Load file format
srec_formatted_binary(5) 67 srec formatted binary - Formatted Binaryformat
file
srec_mos_tech(5) 81 srec mos tech - MOS Technologies file format
srec_motorola(5) 82 srec motorola - Motorola S-Record format
hexadecimal file
srec_needham(5) 84 srec needham - Needham EMP-serieformat
programmer ASCII file
srec_dec_binary(5) 62 SRecord - DEC Binary (XXDP) file format
srec_emon52(5) 63 SRecord - Elektor Monitor (EMON52) file format
srec_fpc(5) 68 SRecord - four packed code file format
srec_aomf(5) 55 SRecord - Intel Absolute Object Module Format
srec_signetics(b) 86 SRecord - Signetics file format
srec_0s65v(5) 85 srec 0s65v - OS65V Loader file format

Reference Manual SRecord \Y;

Table of Contents(SRecord) Table of Contents(SRecord)

srec_spasm(5) 88 srec spasm - SPASM file format
srec_spectrum(5) 89 srec spectrum - Spectrum file format
srec_steie(5) 20 srec stewie - Stewighinary file format
srec_tektronix_xended(5) 94 srec tektronix extended - Tektronix format
Extended hexadecimal file
srec_tektronix(5) 92 srec tektronix - Tektronix hexadecimal file format
srec_ti_tagged_16(5) 95 srec ti tagged 16 -€kas Instruments Tagged format
(SDSMAC 320) file
srec_ti_tagged(5) 97 srec ti tagged -&xas Instruments Tagged format
(SDSMAC) file
srec_ti_txt(5) 99 srec ti txt - Bxas Instruments ti-txt format
(MSP430) file
srec_vmem(5) 100 srec vmem - vmem file format
srec_wilson(5) 102 srec wilson - wilson file format
srec_intel16(5) 71 srecintell6 - Intel Hexadecimal 16-bit file format specification
srec_intel(5) 75 srec intel - Intel Hexadecimal object file format specification
srec_formatted_binary(5) 67 srec formatted binary - Formatted Binary file format
srec_formatted_binary(5) 67 srec formatted binary - Formatted Binary file
format
srec_fpc(5) 68 SRecord - four packed code file format
srec_brecord(5) 60 srec brecord - Freescale MC68EZ328 Dragonball
bootstrap record format
srec_atmel_generic(5) 58 srec atmel generic - Atmel Generic file format
srec_atmel_generic(5) 58 srec atmel generic - Atmel Generic file format
srec_intel16(5) 71 srec intell6 - Intel Hexadecimal 16-bit file format specific
srec_motorola(5) 82 srec motorola - Motorola S-Record hexadecimal file format
srec_tektronix_x¢ended(5) 94 srec tektronix extended - Tektronix hexadecimal file format
Extended
srec_tektronix(5) 92 srec tektronix - Tektronix ~ hexadecimal file format
srec_intel(5) 75 srec intel - Intel Hexadecimal object file format specific
srec_ascii_hg5b) 57 srec ascii he- Ascii-Hex file format
srec_ascii_hg5b) 57 srec ascii he- Ascii- Hex file format
srec_aamples(1) 27 srec examples - examples of vhto use SRecord
srec_info(1) 36 srec info - information about eprom load file
srec_info(1) 36 srec info - information about eprom load files
srec_input(1) 38 SRecord - input file specifications
srec_ti_tagged_16(5) 95 srec ti tagged 16 -€kas Instruments Tagged (SDSI2/820) file
format
srec_ti_tagged(5) 97 srec ti tagged -8xas Instruments Tagged (SDSMAC) file for
srec_ti_txt(5) 99 srec titxt - Bxas Instruments ti-txt (MSP430) file format
srec_intel16(5) 71 srec intell6 - Intel Hexadecimal 16-bit file
format specification
srec_aomf(5) 55 SRecord - Intel Absolute Object Module Format
srec_intel16(5) 71 srec intell6 - Intel Hexadecimal 16-bit file format
specification
srec_intel(5) 75 srec intel - Intel Hexadecimal object file format
specification
srec_intel(5) 75 srec intel - Intel Hexadecimal object file forn
specification
srec_0s65v(5) 85 srec 0s65v - OS65V Loader file format
srec_hstload(5) 66 srec fastload - LS| Logic Fast Load file format
srec_cat(1) 19 srec cat - manipulate eprom load files
srec_info(1) 36 srec info - information about eprom load files

Reference Manual SRecord vi

Table of Contents(SRecord) Table of Contents(SRecord)

srec_cmp(1) 25 srec cmp - compare tweprom load files for equality
srec_hstload(5) 66 srec fastload - LSI Logic Fast Load file format
srec_hstload(5) 66 srec fastload - LSl Logic Fast Load file format
srec_cat(1) 19 srec cat- manipulate eprom load files
srec_brecord(5) 60 srec brecord - Freescale = MCG68EZ328 Dragonball bootstrap re
format
srec_aomf(5) 55 SRecord - Intel Absolute Object Module Format
srec_emon52(5) 63 SRecord - Elektor Monitor (EMON52) file format
srec_mos_tech(5) 81 srec mos tech - MOS Technologies file formr
srec_mos_tech(5) 81 srec mos tech- MOS Technologies file format
srec_motorola(5) 82 srec motorola - Motorola S-Record hexadec
file format
srec_motorola(5) 82 srec motorola - Motorola S-Record hexadecimal file fc
srec_ti_txt(5) 99 srec ti txt - Bxas Instruments ti-txt (MSP430) file format
srec_needham(5) 84 srec needham - Needham EMP-series programmer A
file format
srec_needham(b) 84 srec needham - Needham EMP-series
programmer ASCII file format
srec_intel(5) 75 srec intel - Intel Hexadecimal object file format specification
srec_aomf(5) 55 SRecord - Intel Absolute Object Module Format
srec_0s65v(5) 85 srec 0s65v - OS65V Loader file format
srec_0s65v(5) 85 srec 0s65v - OS65V Loader file format
srec_fpc(5) 68 SRecord - four packed code file format
srec_needham(b) 84 srec needham - Needham EMP-series programmer ASCII file format
srec_cosmac(5) 61 srec cosmac - RCA Cosmac Elf file format
srec_brecord(5) 60 srec brecord - Freescale MC68EZ328&ecord format
Dragonball bootstrap
srec_motorola(5) 82 srec motorola - Motorola S- Record hexadecimal file format
srec_steie(5) 20 srec stewie - Stewie’ s hinary file format
srec_ti_tagged_16(5) 95 srec ti tagged 16 -€kas Instruments Tagged SDSMAC 320) file format
(
srec_ti_tagged(5) 97 srecti tagged -8xas Instruments Tagged (SDSMAC) file format
srec_needham(5) 84 srec needham - Needham EMP- series programmer ASCII file forma
srec_signetics(5) 86 SRecord - Signetics file format
srec_spasm(5) 88 srec spasm - SPASM file format
srec_spasm(5) 88 srec spasm - SPASM file format
srec_intel16(5) 71 srecintell6 - Intel Hexadecimal 16-bit file specification
format
srec_intel(5) 75 srec intel - Intel Hexadecimal object file specification
format
srec_input(1) 38 SRecord - input file specifications
srec_spectrum(5) 89 srec spectrum - Spectrum file format
srec_spectrum(5) 89 srec spectrum - Spectrum file format
srec_ascii_hg5b) 57 srec ascii he- Ascii-Hex file format
srec_atmel_generic(5) 58 srec atmel generic - Atmel Generic file
format
srec_binary(5) 59 srec binary - binary file format
srec_brecord(5) 60 srec brecord - Freescale MC68EZ328
Dragonball bootstrap record format
srec_cat(1) 19 srec cat - manipulate eprom load files
srec_cmp(1) 25 srec cmp - compare tweprom load files f
equality
srec_cosmac(5) 61 srec cosmac - RCA Cosmac Elf file forr

Reference Manual SRecord Vii

Table of Contents(SRecord)

srec_aamples(1)

srec_Airchild(5)
srec_hstload(5)

srec_formatted_binary(5)

srec_info(1)
srec_intel16(5)
srec_intel(5)
srec_mos_tech(5)
srec_motorola(5)
srec_needham(5)

srec_aamples(1)
srec_dec_binary(5)
srec_emon52(5)

srec_fpc(5)
srec_motorola(5)
srec_input(1)
srec_aomf(5)

srec_signetics(5)
srec_0s65v(5)
srec_spasm(5)
srec_spectrum(5)
srec_steie(5)

srec_tektronix_xended(5)

srec_tektronix(5)
srec_ti_tagged_16(5)
srec_ti_tagged(5)
srec_ti_txt(5)
srec_vmem(5)
srec_wilson(5)
srec_steie(5)
srec_steie(5)
srec_ti_tagged_16(5)
srec_ti_tagged_16(5)

srec_ti_tagged(5)
srec_ti_tagged(5)

Reference Manual

27

65
66

67
36
71
75
81
82
84
27
62
63
68
82
38
55
86
85
88
89
90
94
92
95
97
99
100
102
90
90
95
95

97
97

srec examples - examples ofahto use

srec motorola - Motorola

srec ti tagged 16 -€kas Instruments
srec ti tagged -&xas Instruments

SRecord

srec stewie -
srec
srec ti

srec ti

Table of Contents(SRecord)

srec examples - examples ofhto use

SRecord

srec fairchild - Fairchild Fairbug file forn

srec fastload - LSI Logic Fast Load file

format

srec formatted binary - Formatted Binat

file format

srec info - information about eprom loac

files

srec intel16 - Intel Hexadecimal 16-bit f

format specification

srec intel - Intel Hexadecimal object file

format specification

srec mos tech - MOS Technologies file

format

srec motorola - Motorola S-Record

hexadecimal file format

srec needham - Needham EMP-series

programmer ASCII file format

SRecord

SRecord - DEC Binary (XXDP) file form

SRecord - Elektor Monitor (EMONS52) fi

format

SRecord - four packed code file format
S-Record hexadecimal file format

SRecord - input file specifications

SRecord - Intel Absolute Object Module

Format

SRecord - Signetics file format

srec 0s65v - OS65V Loader file format

srec spasm - SPASM file format

srec spectrum - Spectrum file format

srec stewie - Stewigtinary file format

srec tektronix extended - Tektronix

Extended hexadecimal file format

srec tektronix - Tektronix hexadecimal f

format

srec ti tagged 16 -€kas Instruments Tag

(SDSMAC 320) file format

srec ti tagged -@xas Instruments Tagge!

(SDSMAC) file format

srec ti txt - Bxas Instruments ti-txt

(MSP430) file format

srec vmem - vmem file format

srec wilson - wilson file format
Stewig'hinary file format

stewie - Stewig'hinary file format

tagged 16 -€kas Instruments Tagged

(SDSMAC 320) file format

Tagged (SDSMA 320) file format

Tagged (SDSMAC) file format

tagged - xas Instruments Tagged

(SDSMAC) file format

viii

Table of Contents(SRecord)

srec_mos_tech(5)
srec_mos_tech(5)
srec_tektronix_xended(5)
srec_tektronix_xended(5)

srec_tektronix(5)
srec_tektronix(5)

srec_ti_tagged_16(5)
srec_ti_tagged(5)
srec_ti_txt(5)
srec_ti_tagged_16(5)
srec_ti_tagged(5)

srec_ti_txt(5)
srec_ti_txt(5)

srec_cmp(1)
srec_ti_txt(5)
srec_ti_txt(5)

srec_aamples(1)
srec_0s65v(5)
srec_vmem(5)
srec_vmem(5)
srec_0s65v(5)
srec_wilson(5)
srec_wilson(5)
srec_dec_binary(5)

Reference Manual

81

81
94
94

92
92

95

97

99

95

97

99
99

25
99
99

27
85
100
100
85
102
102
62

srec mos
srec mos tech - MOS

srec tektronix extended -

srec

srec tektronix -
srec

srec ti tagged 16 -
srec ti tagged -
srec ti txt -
srec
srec

srec ti txt - Exas Instruments
srec

srec cmp - compare
srec ti txt - Bxas Instruments ti-
srec ti

srec examples - examples ofahto
srec 0s65v - OS65

srec vmem -

srec

srec 0s65

srec wilson -

srec
SRecord - DEC Binary (

SRecord

Table of Contents(SRecord)

tech - MOS Technologies file format
Technologies file format
Tektronix Extended hexadecimal file for
tektronix extended - Tektronix Extende
hexadecimal file format
Tektronix hexadecimal file format
tektronix - Tektronix hexadecimal file
format
Texas Instruments Tagged (SDSK2/&820)
file format
Texas Instruments Tagged (SDSMAC) f
format
Texas Instruments ti-txt (MSP430) file
format

ti tagged 16 -€kas Instruments Tagged
(SDSMAC 320) file format

ti tagged - &xas Instruments Tagged
(SDSMAC) file format

ti-txt (MSP430) file format

ti txt - Bxas Instruments ti-txt (MSP430
file format

tweprom load files for equality

txt (MSP430) file format

txt - Bxas Instruments ti-txt (MSP430) 1
format
use SRecord
V Loader file format

vmem file format

vmem - vmem file format
v - OS65V Loader file format

wilson file format

wilson - wilson file format

XXDP) file format

